Ceiling Geometry and Daylighting Performance of Side Lit Historical Museum Galleries Under Tropical Overcast Sky Condition

Sabarinah Sh Ahmad1*, Noraini Ahmad2 and Anuar Talib1

1Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
2Kulliyyah of Architecture & Environmental Design (KAED), International Islamic University (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Malaysia

ABSTRACT

Safe level of daylighting for artefact conservation in historic buildings is a difficult task to achieve. Previous studies indicated that lighting problems in historic museum galleries were mainly due to unshaded walls that allowed direct sun penetration over the display areas. Ceiling geometry can also affect the daylighting performance significantly, particularly on the interior distribution of light. Malaysia, with hot and humid climate, and tropical sky conditions receives plenty of natural light all year around. The fluxes in natural lighting exposures confirm the need for strategic daylight control programme in the exhibition gallery. The study aims to assess the ceiling geometry contribution for four orientations; North, East, South and West through computer simulations. The research approach was based on comparisons between pitched and flat ceiling simulation output data. Further comparisons were performed with the recommended lighting limits for conservation of artefacts. The comparisons allowed better understanding of light damage issues and highlight the control of daylighting distributions through realistic predictive images and ceiling geometry designs. The results showed that the types of exhibits materials and its placement are affected by the ceiling geometry and constant changes in natural lighting exposure. The study confirms that ceiling geometry can act as a control mechanism with the environment physical features as part of preventive conservation criteria in the exhibition gallery. Thus, a systematic light-monitoring programme in the exhibition gallery is necessary to control illuminance level and cumulative exposure limits, for artefact preservation.

Keywords: Ceiling geometry, daylighting performance, historic building, tropical sky
INTRODUCTION

Adaptive reuse of a historic building for a museum or heritage facility can present certain challenges (Ahmad, Ahmad, & Talib, 2013). Corridors and balconies that are partially enclosed or fully opened with natural light penetration are among the main features of historic buildings that serve as exhibition spaces. Nevertheless, these favourable natural lighting conditions either accounted for energy conservation or enhancing the visual quality promoted severe threat on the artefacts. Studies have proven that many of the lighting issues in museum galleries were mainly due to direct sun penetration over the display areas (Ahmad, Ahmad, & Talib, 2012; Del Hoyo-Meléndez, Mecklenburg, & Doménech-Carbó, 2011; De Graaf, Dessouky, & Müller, 2014; Wilson, 2006). The introduction of daylit exhibition spaces in historic museum buildings creates a much more complicated preservation problem due to the untested quantity of light development and variability in illuminance level (Ahmad, Ahmad, & Talib, 2011). Therefore, the design of daylit exhibition spaces, either in a museum or as an integral part of a historic building, need to take consideration not only functional requirements but also preventive conservation planning to preserve every single artefact. Today, there is an urgent worldwide demand for energy saving and sustainability, where passive design with climatic responsiveness should be pursued in all building types (Alrubaih et al., 2013; Toledo, 2007). Toledo (2007), and Maekawa and Beltra (2004) highlighted that climate control can be achieved for both visitors’ comfort and material conservation by enhancing their original architectural features.

Lighting Limits for Conservation of Artefacts

Based on the literature review on the recommended lighting limits for artefact conservation by the museums community for safe lighting levels (Thomson, 1990), the following classification is used for daylighting assessment and formed the basis to understand light damage issues in relation to the recommended lighting limits for artefact conservation:

i) For Category I- Highly responsive/Sensitive materials, \(\leq 50 \text{ lux} \)

 Example: Textiles, costumes, tapestries, paper, parchment, dyed leather, painted or dyed wood, natural history exhibits i.e., botanical specimens, fur and feathers.

ii) For Category II-Moderately responsive/ sensitive materials, \(\leq 200 \text{ lux}. \)

 Example: Oil and tempera painting, fresco, undyed leather, horn, bone, unpainted wood and lacquer, and some plastics.

iii) For Category III-Non-responsive/Non-sensitive materials, \(\leq 300 \text{ lux} \)

 Example: Metal, stone, glass, ceramics, enamel, and most minerals.
Ceiling Geometry

Previous research and reviews stated that ceiling geometry is an important part of the lighting scheme, which also affect daylight level and determine whether a space is well lit (Freewan, Shao, & Riffat, 2009; Freewan, 2010; Kim & Chung, 2011; Rakha & Nassar, 2011). Freewan (2010) investigated the accuracy of physical models and RADIANCE simulation in measuring daylight performance using the interactions of louvers and ceiling geometries. The simulation revealed that curved ceiling added to the daylighting uniformity and quality compared to a flat ceiling. Freewan (2010) also found that the curved, chamfered, arched, and sloped-down ceilings (except sloped-up ceiling geometry) improved the daylighting performance in June and December, as well as in March. The study also demonstrated that louvers performed better with curved and chamfered ceiling throughout the year. Furthermore, in other studies by Freewan, Shao and Riffat (2009), they found that curved ceiling improved the performance of alight shelf. The study found that both combinations improved uniformity where the illuminance level increased in the rear part and decreased in the front part of a room. Rakha and Nassar (2011) studied on performance optimization of ceiling form and found that curvilinear ceiling form achieved better daylighting uniformity compared to mesh ceiling form.

The purpose of this research is to explore the effects of ceiling geometries on a historic building’s exhibition space with either pitched or flat ceiling on days with maximum and minimum daylight, which are 21 March and 21 December respectively as proposed by Shahriar and Mohit (2007) for peninsular Malaysia. A simulation output data using the reference case at West (existing) orientation and the interior reflectance values were further compared with the recommended lighting limits for artefacts conservation by the museums community for safe light levels. This study is to ascertain whether ceiling geometry can act as passive control mechanism with the environment physical features as part of preventive conservation criteria in the exhibition gallery. By assessing all the findings, the best possible conditions of room orientation and ceiling geometry for long-term preservation of museum artefacts under given sky condition are recommended.

MATERIALS AND METHOD

The study used validated RADIANCE software which is integrated in the IES<VE> programme to analyse the impacts of ceiling geometry provided with different room orientations on daylight level at work plane/exhibit height. The aim was to find the best ceiling geometry and room orientation conditions for daylight control. Radiance is a back-ward ray-tracing comprehensive programme that accurately predicts light levels and rendering that produces synthetic images that are realistic for all sky conditions (Ibrahim & Zain-Ahmed, 2007; Joarder, Ahmed, Price, & Mourshed, 2009).
The simulation parameters are as follows:

- **Location**: Latitude and Longitude of Melaka is 2° 11’ N and, 102° 14’ E at elevation 13 m
- **Date and Time**: 21 March and 21 December (10.00h, 13.00h and 16.00h)
- **Sky condition**: CIE Overcast sky
- **Orientations**: North, East, South and West
- **Floor area**: 43.4 m² (1st floor)
- **Pitched ceiling (H)**: 2.6 m min, 4 m (under pitch), Flat ceiling (H): 3 m
- **Window-wall ratio (WWR)**: 20%
- **Opened window**: 100% transmittance
- **Window sill (H)**: 900 mm
- **Analysis grid**: 4 measuring points (at horizontal point of 1 m (H) in all showcases)
- **Against the Window Wall (AWW) reflectance**: 90%
- **Opposite the Window Wall (OWW) reflectance**: 60%
- **Ceiling Reflectance**: 20%
- **Floor Reflectance**: 30%
- **Showcase with wood framing - 6mm clear glass**: 80% transmittance
- **Showcase back panel reflectance**: 30% (Velvety red fabric)

For simulation analysis, a flat ceiling will be examined and compared to the reference case gallery with pitched ceiling as shown in Figure 1; which is considered as the base case in all the cases. All internal surface reflectance values were kept constant. All models had the same floor area, length and width but the ceiling heights values were of different heights. Average daylight measurements were calculated on work plane height (exhibit height) at horizontal point of 1 m (H) in all showcases along against and opposite window walls provided with varying room orientations. The source of daylight is side lit from the windows.

Figure 1 shows the positions and configurations of the four showcases, they are labelled as showcases A, B, C and D. The wall along showcases A and B is called the AWW (against window wall), while the wall along showcases C and D is the OWW (opposite window wall). For simulation assessment, the ground floor space underneath the study gallery was hidden as it will not affect the simulation output and will only lengthen the simulation process unnecessarily (Joarder et al., 2009).
RESULTS AND DISCUSSION

Average Illuminance Level (Lux) on Work Plane (Exhibit Height) at Horizontal Points of 1 m (H)

Table 1 shows how the illuminance levels changed at 10.00h, 13.00h and 16.00h in the showcases at four types of room orientations served with different ceiling geometries on 21 March and 21 December for both AWW and OWW at 1 m planar surfaces.
Figures 2 and 3 illustrate the readings captured in Table 1 by showing the comparisons between pitched and flat ceilings with isolux analysis at South facing orientation on 21 March and 21 December respectively. It can be seen that the AWW records lower illumination readings than the OWW for all conditions. The pitched ceiling also captures higher illumination distribution in the interior space than the flat ceiling. This means more light is distributed on the planar surfaces at 1 m above the floor, which represents the horizontal exhibit surfaces.
Figure 2. Comparison between pitched and a flat ceiling with isolux analysis on 21 March at 10.00h, 13.00h and 16.00h under overcast sky condition.
Table 1 shows that for the flat ceiling at AWW showcases A and B at East, South and North orientations, there are decreased illuminance level between -8 and -47% (10 to 16lux) in the morning at 10.00h on 21 March compared with the pitched ceiling gallery. Meanwhile, the reduction of illumination between -17 and -25% (9 to 10lux) is observed on 21 December for East, West and South orientations. During this hour, both pitched and flat ceiling at South orientation registered the highest illuminance level of 21lux and 16lux on 21 March respectively. However, the North orientation registered similar and highest illuminance level of 15lux on 21 December for both types of ceiling.

Figure 3. Comparison between pitched and a flat ceiling with isolux analysis on 21 December at 10.00h, 13.00h and 16.00h under overcast sky condition

Against Window Wall (AWW) for Showcases A and B

Table 1 shows that for the flat ceiling at AWW showcases A and B at East, South and North orientations, there are decreased illuminance level between -8 and -47% (10 to 16lux) in the morning at 10.00h on 21 March compared with the pitched ceiling gallery. Meanwhile, the reduction of illumination between -17 and -25% (9 to 10lux) is observed on 21 December for East, West and South orientations. During this hour, both pitched and flat ceiling at South orientation registered the highest illuminance level of 21lux and 16lux on 21 March respectively. However, the North orientation registered similar and highest illuminance level of 15lux on 21 December for both types of ceiling.
At 13.00h, Table 1 shows that the flat ceiling gallery registers reduced illuminance level between -13 and -39% (14 - 20lux) at the \textit{AWW} showcases A and B at East, South and West orientations on 21 March than the pitched ceiling gallery. Meanwhile, the results for 21 December show decreased illuminance level between -24 and -40% (12 - 17lux) at all orientations.

Table 1 also shows that on 21 March, the pitched ceiling gallery records the highest illuminance level of 23lux at East, West and South orientations respectively. Meanwhile, the highest illuminance level of 31lux is registered at North orientation on the same solstice when using the flat ceiling. On 21 December, both pitched and a flat ceilings register the highest illuminance level of 23lux and 17lux respectively at South orientation.

According to Table 1, at late afternoon (16.00h), the flat ceiling gallery registers decreased illuminance level between -32 and -33% (12 to 15lux) and between -25 and -33% (8 to 15lux) at the \textit{AWW} showcases at all orientations on 21 March and 21 December respectively. Both pitched and a flat ceilings register the highest illuminance level of 22lux and 15lux respectively at North orientation on 21 March, whereas, the highest illuminance level of 20lux and 15lux are observed for pitched and a flat ceilings respectively at South orientation on 21 December.

The overall results show that the pitched ceiling interior has higher illumination than the flat ceiling on the \textit{AWW} side as shown in Table 1 and Figures 2 and 3. Generally, the simulation analysis indicated that at the three indicated hours (10.00h, 13.00h and 16.00h), for both pitched and flat ceiling conditions, enabled exposure limit of below 50lux, 200lux and 300lux for categories I, II and III respectively to be sustained at \textit{AWW} showcases throughout most orientations on both 21 March and 21 December.

Opposite Window Wall (\textit{OWW}) for Showcases C and D

Table 1 shows that at 10.00h, on 21 March, the flat ceiling gallery records decreased illuminance level between -4 and -37% (66 to 79lux) at the opposite window wall (\textit{OWW}) showcases C and D at all orientations compared to the pitched ceiling gallery. Meanwhile, decreased illuminance level between -4 and -37% (76-86lux) are observed at East, West and North orientations on 21 December.

At \textit{OWW}, on 21 March, both pitched and flat ceilings register the highest illuminance level of 105lux and 79lux at South and North orientations respectively as shown in Table 1. It is observed that on 21 December, pitched ceiling registers the highest illuminance level of 92lux at both East and West orientations. Meanwhile, the highest illuminance levels of 86lux at both South and North orientations are observed when using the flat ceiling on the same solstice as shown in Table 1.

At 13.00h, on 21 March and 21 December, the flat ceiling gallery records decreased illuminance level between -7 and -27% (86 to 123lux) and between -22 and -24% (93 to 114lux) respectively at the \textit{OWW} showcases C and D at all orientations in comparison with the pitched ceiling gallery (Table 1). Table 1 also shows that at 13.00h, the \textit{OWW} showcases served by both pitched and a flat ceiling register the highest illuminance level of 132lux and 123lux respectively at South orientation on 21 March. Pitched ceiling indicates the highest
illuminance level of 146lux at both South and North orientations on 21 December, whereas, the flat ceiling gallery with South orientation shows the highest illuminance level of 114lux.

At 16.00h, the OWW showcases C and Din a flat ceiling gallery at East, South and West orientations register reduction of illuminance level between -13 and -46% (65-97lux) and between -30 to -41% (58 to 96lux) when compared with the pitched ceiling gallery on March and December solstices respectively (Table 1). The gallery with pitched ceiling indicated highest illuminance level of 112lux at both East and West orientations on 21 March, whereas, highest illuminance level of 97lux were observed at East orientation when using a flat ceiling during the same solstice. On 21 December, both East and West orientations registered highest illuminance level of 105lux for gallery with pitched ceiling and 96lux for flat ceiling at North orientation.

The results show that the pitched ceiling gallery interior has higher illumination than the flat ceiling on the OWW side as shown in Table 1 and Figures 2 and 3. However higher illumination levels are a concern when the exhibit are light sensitive and can be damaged when continuously exposed to too much illumination. The simulation analysis indicated that at 10.00h, 13.00h and 16.00h, both pitched and flat ceilings used for all orientations at the OWW showcases on both 21 March and December had exceeded the allowable exposure limit of 50lux for Category I-Highly responsive/Sensitive materials. However, the illumination levels are within the recommended lighting limits for artefact conservation for categories II and III of below 200lux and 300lux for category II and III respectively.

CONCLUSION

This study presented a simulation analysis for flat and pitched ceiling geometry performance on daylight level under overcast sky conditions in Melaka, Malaysia. The chosen date and time were 21 March and 21 December to represent the month of maximum and minimum daylight respectively in Malaysia (Shahriar & Mohit, 2007).

Generally, the simulation analysis indicated that the illumination levels are within the recommended lighting limits for artefact conservation for category I, II and III respectively to be sustained at AWW showcases throughout most orientations on both 21 March and December. However, the simulation analysis also indicated the illumination levels had exceeded the allowable exposure limit of 50lux for Category I-Highly responsive/Sensitive materials at the OWW showcases on both 21 March and December. Nevertheless, at these hours, both ceilings enabled exposure limit of below 200lux and 300lux for category II and III respectively to be sustained at OWW showcases for most orientations.

The acquired results from the reference case of pitched ceiling at West orientation served higher illuminance level compared to a flat ceiling type. Generally, the flat ceiling gallery recorded reduced illuminance level in both AWW and OWW showcases throughout both 21 March and December at most hours and orientations when compared with the pitched ceiling. Therefore, a gallery designed with a flat ceiling allows a significant degree of control towards the illuminance level compared to a pitched ceiling gallery. In design and preventive conservation applications, it is advisable to select a flat ceiling for Category II and III (moderately responsive material and non-responsive material).
Based on the above results, it can be concluded that most showcases at all orientations interacted with the ceiling geometry and responded to the sky vision angle and behaved more expressive in the reflected light direction and distribution. The results revealed that more care should be taken in the preliminary stage of design to avoid placement of light-sensitive materials and moderately sensitive materials in daylit areas, unless proper control and monitoring system are in place. The ceiling geometries assessment addressed major issues on the daylight behaviour and preservation of exhibits, which leave the architects and museum community with choices for design and monitoring strategies for long-term preservations of the exhibits.

The simulation assessment is presented as generic indications of light damage issues in relation to the recommended lighting limits for artefact conservation for specific interior geometry and reflectance values. Spaces with different configurations of form, ceiling geometry and reflectance values can be further researched to arrive at a more comprehensive result.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to IRMI, Universiti Teknologi MARA (UiTM) for funding the research under the Excellence Fund Research Scheme and International Islamic University Malaysia (IIUM) and participating museums for their kind support. Additional funding was provided by the Malaysian Ministry of Higher Education (MOHE) under the Fundamental Grant Scheme from the Ministry of Higher Education (FRGS 5/3 113/2015) for the publication fees.

REFERENCES

