Effect of Interactions of Three Growth-promoting Microorganisms on VAM Colonization, Spore Density, Plant Growth and Nutrient Accumulation in Tomato (Lycopersicon esculentum) Seedlings

THOMSON T. EDATHIL, S. MANIAN and K. UDAIYAN
Microbiology Unit, Dept. of Botany
Bharathiar University
Coimbatore 641 046 Tamil Nadu, India

Keywords: vesicular-arbuscular mycorrhiza, Azospirillum brasilense, Bacillus megaterium var. phosphaticum, Lycopersicon esculentum

ABSTRACT
Interactions of Azospirillum brasilense and Bacillus megaterium var. phosphaticum and Glomus fasciculatum in the rhizosphere of tomato plants were studied. There was no significant difference in plant growth parameters between VAM-inoculated treatments. Plants inoculated with the phosphobacteria had significantly higher shoot length, which was equivalent to VAM and other VAM + phosphobacteria combinations. Azospirillum or phosphobacteria alone increased plant biomass compared with the uninoculated control. VAM index was significantly reduced with the addition of phosphobacteria. There was no difference in tissue nutrient concentrations between treatments.

INTRODUCTION
Interactions of growth-promoting microbial populations in the rhizosphere of VA-mycorrhizal plants have been studied by many workers (Barea et al. 1983; Pacovsky and Fuller 1985; Linderman 1988; Baas 1990). Subba Rao et al. (1985) reported that the synergistic interactions of VAM and Azospirillum brasilense significantly increased dry matter production and grain yield of barley. Response of plants to colonization by mycorrhizas depends on many biotic and environmental factors. Plant-available P is considered to influence the degree of mycorrhizal symbiosis (Bethlenfalvay et al. 1982). Among the many soil microorganisms known to solubilize unavailable forms of P, phosphobacteria have been used as bacterial fertilizer (Bagyaraj 1984). These bacteria survive for a longer period in the rhizosphere of mycorrhizal roots (Linderman 1988). Hence this trial aimed to study the interactions of VAM fungus with Azospirillum and phosphobacteria in rhizosphere soils of tomato seedlings and their effect on plant growth, tissue nutrient concentration, VAM colonization and spore density.

MATERIALS AND METHODS
The soil used was a nutrient deficient (N 225, P 22.5, K 780, Zn 0.20 and Cu 0.78 kg/ha) alluvial deposit of sandy loam with pH 7.2 and EC 0.2 milli S/cm from the Bharathiar University
THOMSON T. EDATHIL, S. MANIAN AND K. UDAIYAN

Campus, Coimbatore. A mixture of equal parts of soil and sand autoclaved at 121°C and 15 lb/inch² (1 h each on three consecutive days, followed by 1 week incubation at room temperature) was used to fill 30 x 12 cm polyethylene bags (about 3 kg per bag). As bacteria require an organic substratum for initial establishment in the soil (Lynch 1983; Subba Rao 1993), 50 g of autoclaved, (121°C, 15 lb/inch²) dried cowdung was added to the topsoil in each bag.

A stock culture of *Glomus fasciculatum* was used as VAM inoculum, since it is known that this species is most effective in enhancing growth and P uptake (Sulochana et al. 1989; Sivaprasad et al. 1992). It was maintained in a pot culture of 90-day-old maize. Fresh cultures of *Azospirillum brasilense* and phosphobacteria, *Bacillus megaterium* var. *phosphaticum* (obtained from the Tamil Nadu Agricultural University, Coimbatore) were used as bacterial inocula. Ten grams of VAM inoculum soil, containing approx. 644 spores (64 spores/g dry soil) along with lyphae and infected root fragments/10 g charcoal base containing about 10⁶ bacterial cells, (1 g charcoal base containing 10⁸ bacterial cells) were placed as a thin layer about 2 cm below the soil surface in the bags. The control bags received autoclaved inocula. The treatments used were: (i) VAM-free (control), (ii) *Azospirillum*, (iii) phosphobacteria, (iv) VAM, (v) VAM + *Azospirillum*, (vii) VAM + *Azospirillum* + phosphobacteria. Seeds of tomato (*Lycopersicon esculentum* Mill.) cv. Co 1 were sown in all the bags at the rate of 10 seeds/bag. The bags were kept in a greenhouse, watered regularly and the seedlings were thinned on the 5th day after emergence (DAE) to maintain one seedling per bag. Each treatment was replicated four times.

At 60 DAE, the plants were harvested and growth parameters such as shoot and root length, leaf area, biomass, tissue nutrient (N, P, K, Zn and Cu) concentrations, VAM colonization index (VAMI) and spore density were determined. Leaf area was measured using a leaf area meter. Plant biomass was recorded after drying at 60°C for 12 h. Determination of VAMI was done after staining the root samples following the method of Phillips and Hayman (1970) and using the scoring method of Edathil et al. (1994). Spore density was assessed using the modified wet-sieving and decanting method (Gerdemann and Nicolson 1963) and expressed as the number of spores per gram of dry soil. Tissue nutrient concentration was determined following the standard methods of Jackson (1973).

RESULTS

There was no significant difference in the growth parameters of tomato seedlings between VAM treatments. Phosphobacteria-inoculated seedlings exhibited the highest shoot length (73 cm), which was equivalent to VAM (67 cm) and VAM + phosphobacteria (64 cm) combinations. Seedlings inoculated with *Azospirillum* or phosphobacteria alone had higher biomass than the uninoculated control. Leaf area and root length were more or less equal in all treatments (Table 1).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Leaf area (cm²)</th>
<th>Shoot length (cm)</th>
<th>Root length (cm)</th>
<th>Biomass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAM-free (control)</td>
<td>23.05a</td>
<td>61.00bc</td>
<td>46.75ab</td>
<td>2.48d</td>
</tr>
<tr>
<td>Azospirillum</td>
<td>17.77a</td>
<td>60.25bc</td>
<td>33.25b</td>
<td>4.23a</td>
</tr>
<tr>
<td>Phosphobacteria</td>
<td>22.22a</td>
<td>73.00a</td>
<td>43.75ab</td>
<td>4.12a</td>
</tr>
<tr>
<td>VAM</td>
<td>20.81a</td>
<td>67.00ab</td>
<td>42.00ab</td>
<td>3.87ab</td>
</tr>
<tr>
<td>VAM + Azospirillum</td>
<td>19.32a</td>
<td>60.75bc</td>
<td>40.25bc</td>
<td>3.01bd</td>
</tr>
<tr>
<td>VAM + Phosphobacteria</td>
<td>18.20a</td>
<td>64.75ab</td>
<td>46.75ab</td>
<td>3.05bd</td>
</tr>
<tr>
<td>VAM + Azospirillum + Phosphobacteria</td>
<td>23.15a</td>
<td>64.50b</td>
<td>58.75a</td>
<td>3.39abcd</td>
</tr>
</tbody>
</table>

Values are mean of four replications.
Values with the same letter are not significantly different P> 0.05 according to Duncan’s new multiple range test.
The VAM and VAM + *Azospirillum*-inoculated plants registered higher VAMI than phosphobacteria-inoculated treatments. However, spore density was equal in all VAM treatments (Table 2). The accumulation of N, K, Zn and Cu in plant tissue was equal in all treatments. In the case of P accumulation, there was no regular trend (Table 3).

DISCUSSION

The enhancement of plant growth with the addition of VAM fungi (Nicolson 1960; Koske *et al.* 1975; Tinker 1975, 1978; Menge *et al.* 1978; Koske 1981; Abbott and Robson 1982), *Azospirillum* (Barea *et al.* 1983; Pacovsky and Fuller 1985; Palanisami 1985; Subba Rao *et al.* 1985) and phosphobacterium (Graeves and

TABLE 2

Effect of interactions of microorganisms in the rhizosphere of tomato plants on VAM colonization and spore density

<table>
<thead>
<tr>
<th>Treatment</th>
<th>VAMI (%)</th>
<th>Spore Density (individuals/g dry soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAM-free (control)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Azospirillum</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Phosphobacteria</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>VAM</td>
<td>62.25*</td>
<td>12.61*</td>
</tr>
<tr>
<td>VAM + Azospirillum</td>
<td>69.67*</td>
<td>11.34*</td>
</tr>
<tr>
<td>VAM + Phosphobacteria</td>
<td>49.10bc</td>
<td>11.16*</td>
</tr>
<tr>
<td>VAM + Azospirillum +</td>
<td>42.51ab</td>
<td>9.23a</td>
</tr>
<tr>
<td>Phosphobacteria</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are means of four replications
Values with the same letter are not significantly different at P>0.05 according to Duncan's new multiple range test.

TABLE 3

Effect of interactions of microorganisms in the rhizosphere on tissue nutrient concentrations in tomato plants

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N (%)</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Zn (%)</th>
<th>Cu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAM-free (control)</td>
<td>1.82a</td>
<td>0.14b</td>
<td>4.3a</td>
<td>0.011a</td>
<td>0.001a</td>
</tr>
<tr>
<td>Azospirillum</td>
<td>1.99a</td>
<td>0.15ab</td>
<td>4.2a</td>
<td>0.01a</td>
<td>0.0013a</td>
</tr>
<tr>
<td>Phosphobacteria</td>
<td>2.10a</td>
<td>0.16a</td>
<td>3.6a</td>
<td>0.01a</td>
<td>0.0012a</td>
</tr>
<tr>
<td>VAM</td>
<td>1.67a</td>
<td>0.14b</td>
<td>4.1a</td>
<td>0.01a</td>
<td>0.001a</td>
</tr>
<tr>
<td>VAM + Azospirillum</td>
<td>1.74a</td>
<td>0.16a</td>
<td>4.4a</td>
<td>0.01a</td>
<td>0.0011a</td>
</tr>
<tr>
<td>VAM + Phosphobacteria</td>
<td>1.81a</td>
<td>0.12c</td>
<td>4.1a</td>
<td>0.01a</td>
<td>0.0011a</td>
</tr>
<tr>
<td>VAM + Azospirillum +</td>
<td>2.01a</td>
<td>0.17a</td>
<td>4.2a</td>
<td>0.01a</td>
<td>0.0014a</td>
</tr>
<tr>
<td>Phosphobacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are means of four replications
Values with the same letter are not significantly different at P>0.05 according to Duncan's new multiple range test.
VAM colonization can be reduced (Hayman et al. 1982; Abbott and Robson 1982). If nutrient availability, especially phosphorus, is high, the host plant may show a negative growth response to VAM fungi and VAM colonization can be reduced (Hayman et al. 1975; Johnson 1976; Sparling and Tinker 1978; Koide 1991). Data in Table 2 substantiate this observation because addition of phosphobacteria significantly reduced VAM index in tomato plants. The VAMI was significantly higher in VAM and VAM + Azospirillum treatments.

Higher shoot length was observed in the treatment with phosphobacteria or its combination with VAM fungus (Table 1). Shoot elongation may be a function of the excretion of certain growth promoting substances by the bacteria, because researchers have proved that the growth promotion by B. megaterium is mainly due to their excretion of growth-promoting hormones and vitamins (Banik and Dey 1982; Meyer and Linderman 1986).

Tien et al. (1979) reported the production of plant hormones by Azospirillum. The plant hormones present in bacterial cultures may improve the formation and development of VA mycorrhiza (Azcon et al. 1978).

The unaffected nature of VAMF spore density in the rhizosphere of tomato seedlings co-inoculated with either Azospirillum or phosphobacteria probably indicates the positive interactions among these growth-promoting micro-organisms (Table 2).

Since there is no difference in the tissue concentrations between the treatments (Table 3), it may not serve as an indication of the beneficial microbial interactions in a nutrient-rich (organic manure amended) soil with regard to nutrient accumulation.

REFERENCES

GRAEVES, M.P. and D.N. WEBLEY. 1965. A study of the breakdown of organic phosphate by microorganisms from the root region of certain

(Received 28 March 1995) (Accepted 28 February 1996)