e-ISSN 2231-8534
ISSN 0128-7702
J
Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Amal, M. N. A., Ismail, A., Saad, M. Z., Yasin, I. S. M., Nasruddin, N. S., Mastor, S. S., Rahman, M. H. A., & Mohamad, N. (2019). Study on Streptococcus agalactiae infection in Java medaka (Oryzias javanicus Bleeker, 1854) model. Microbial Pathogenesis, 131, 47-52. https://doi.org/10.1016/j.micpath.2019.03.034
Amal, M. N. A., Zarif, S. T., Suhaiba, M. S., Aidil, M. R. M., Shaqinah, N. N., Zamri-Saad, M., & Ismail, A. (2018). The effects of fish gender on susceptibility to acute Streptococcus agalactiae infection in Java medaka Oryzias javanicus. Microbial Pathogenesis, 114, 251-254. https://doi.org/10.1016/j.micpath.2017.11.069
Amin, N., Zulkifli, S. Z., Azmai, M. N. A., & Ismail, A. (2021). Toxicity of zinc oxide nanoparticles on the embryo of Java Medaka (Oryzias javanicus Bleeker, 1854): A comparative study. Animals, 11(8), 2170. https://doi.org/10.3390/ani11082170
Asharani, P. V., Wu, Y. L., Gong, Z., & Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19(25), 255102. https://doi.org/10.1088/0957-4484/19/25/255102
Ates, M., Daniels, J., Arslan, Z., Farah, I. O., & Rivera, H. F. (2013). Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: Effects of particle size and solubility on toxicity. Environmental Science: Processes and Impacts, 15(1), 225–233. https://doi.org/10.1039/C2EM30540B
Aziz, S., Abdullah, S., Abbas, K., & Zia, M. A. (2020). Effects of engineered zinc oxide nanoparticles on freshwater fish, Labeo rohita: Characterization of ZnO nanoparticles, acute toxicity, and oxidative stress. Pakistan Veterinary Journal, 40(4), 479-483. https://doi.org/10.29261/pakvetj/2020.030
Bai, W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y., & Chai, Z. (2010). Toxicity of zinc oxide nanoparticles to zebrafish embryo: A physicochemical study of toxicity mechanism. Journal of Nanoparticle Research, 12, 1645-1654. https://doi.org/10.1007/s11051-009-9740-9
Balbus, J. M., Maynard, A. D., Colvin, V. L., Castranova, V., Daston, G. P., Denison, R. A., Dreher, K. L., Goering, P. L., Goldberg, A. M., Kulinowski, K. M., Monteiro-Riviere, N. A., Oberdörster, G., Omenn, G. S., Pinkerton, K. E., Ramos, K. S., Rest, K. M., Sass, J. B., Silbergeld, E. K., & Wong, B. A. (2007). Meeting report: Hazard assessment for nanoparticles—Report from an interdisciplinary workshop. Environmental Health Perspectives, 115(11), 1654–1659. https://doi.org/10.1289/ehp.10327
Blinova, I., Ivask, A., Heinlaan, M., Mortimer, M., & Kahru, A. (2010). Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution, 158(1), 41-47. https://doi.org/10.1016/j.envpol.2009.08.017
Chen, P.-J., Wu, W.-L., & Wu, K. C.-W. (2013). The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Water Research, 47(12), 3899–3909. https://doi.org/10.1016/j.watres.2012.12.043
Chen, T.-H., Lin, C.-C., & Meng, P.-J. (2014). Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio). Journal of Hazardous Materials, 277, 134-140. https://doi.org/10.1016/j.jhazmat.2013.12.030
Cong, Y., Jin, F., Wang, J., & Mu, J. (2017). The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma. Aquatic Toxicology, 185, 11–18. https://doi.org/10.1016/j.aquatox.2017.01.006
Fernández, D., García-Gómez, C., & Babín, M. (2013). In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells. Science of the Total Environment, 452–453, 262–274. https://doi.org/10.1016/j.scitotenv.2013.02.079
García-Gómez, C., García-Gutiérrez, S., Obrador, A., & Fernández, M. D. (2020). Study of Zn availability, uptake, and effects on earthworms of zinc oxide nanoparticle versus bulk applied to two agricultural soils: Acidic and calcareous. Chemosphere, 239, 124814. https://doi.org/10.1016/j.chemosphere.2019.124814
Gatti, A. M., Montanari, S., Monari, E., Gambarelli, A., Capitani, F., & Parisini, B. (2004). Detection of micro- and nano-sized biocompatible particles in the blood. Journal of Materials Science: Materials in Medicine, 15, 469–472. https://doi.org/10.1023/B:JMSM.0000021122.49966.6d
Golling, G., Amsterdam, A., Sun, Z., Antonelli, M., Maldonado, E., Chen, W., Burgess, S., Haldi, M., Artzt, K., Farrington, S., Lin, S.-Y., Nissen, R. M., & Hopkins, N. (2002). Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nature Genetics, 31, 135–140. https://doi.org/10.1038/ng896
Handy, R. D., von der Kammer, F., Lead, J. R., Hassellöv, M., Owen, R., & Crane, M. (2008). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17, 287-314. https://doi.org/10.1007/s10646-008-0199-8
Hao, L., Chen, L., Hao, J., & Zhong, N. (2013). Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): A comparative study with its bulk counterparts. Ecotoxicology and Environmental Safety, 91, 52-60. https://doi.org/10.1016/j.ecoenv.2013.01.007
Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.-C., & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO, and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7), 1308-1316. https://doi.org/10.1016/j.chemosphere.2007.11.047
Hou, J., Wu, Y., Li, X., Wei, B., Li, S., & Wang, X. (2018). Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates, and microorganisms. Chemosphere, 193, 852–860. https://doi.org/10.1016/j.chemosphere.2017.11.077
Imai, S., Koyama, J., & Fujii, K. (2007). Effects of estrone on full life cycle of Java medaka (Oryzias javanicus), a new marine test fish. Environmental Toxicology and Chemistry, 26(4), 726-731. https://doi.org/10.1897/05-539R2.1
Ismail, A., & Yusof, S. (2011). Effect of mercury and cadmium on early life stages of Java medaka (Oryzias javanicus): A potential tropical test fish. Marine Pollution Bulletin, 63(5-12), 347-349. https://doi.org/10.1016/j.marpolbul.2011.02.014
Iwamatsu, T., & Kobayashi, H. (2002). Electron microscopic observations of karyogamy in the fish egg. Development, Growth and Differentiation, 44(5), 357-363. https://doi.org/10.1046/j.1440-169X.2002.00649.x
Kashiwada, S. (2006). Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environmental Health Perspectives, 114(11), 1697–1702. https://doi.org/10.1289/ehp.9209
Kaya, H., Aydin, F., Gürkan, M., Yılmaz, S., Ates, M., Demir, V., & Arslan, Z. (2016). A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): Organ pathologies, osmoregulatory responses, and immunological parameters. Chemosphere, 144, 571-582. https://doi.org/10.1016/j.chemosphere.2015.09.024
Khandoga, A., Stampfl, A., Takenaka, S., Schulz, H., Radykewicz, R., Kreyling, W., & Krombach, F. (2004). Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. Circulation, 109(10), 1320–1325. https://doi.org/10.1161/01.CIR.0000118524.62298.E8
Khoshnood, R., Jaafarzadeh, N., Jamili, S., Farshchi, P., & Taghavi, L. (2016). Acute toxicity of TiO2, CuO and ZnO nanoparticles in brine shrimp, Artemia franciscana. Iranian Journal of Fisheries Sciences, 16(4), 1287–1296.
Kiener, T. K., Selptsova-Friedrich, I., & Hunziker, W. (2008). Tjp3/ZO-3 is critical for epidermal barrier function in zebrafish embryos. Developmental Biology, 316(1), 36–49. https://doi.org/10.1016/j.ydbio.2007.12.047
Laban, G., Nies, L. F., Turco, R. F., Bickham, J. W., & Sepúlveda, M. S. (2010). The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology, 19, 185-195. https://doi.org/10.1007/s10646-009-0404-4
Lee, K. J., Nallathamby, P. D., Browning, L. M., Osgood, C. J., & Xu, X.-H. N. (2007). In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano, 1(2), 133–143. https://doi.org/10.1021/nn700048y
Li, J., Chen, Z., Huang, R., Miao, Z., Cai, L., & Du, Q. (2018). Toxicity assessment and histopathological analysis of nano-ZnO against marine fish (Mugilogobius chulae) embryos. Journal of Environmental Sciences, 73, 78-88. https://doi.org/10.1016/j.jes.2018.01.015
Murthy, M, K., Mohanty, C, S., Swain, P., & Pattanayak, R. (2022). Assessment of toxicity in the freshwater tadpole Polypedates maculatus exposed to silver and zinc oxide nanoparticles: A multi-biomarker approach. Chemosphere, 293, 133511, https://doi.org/10.1016/j.chemosphere.2021.133511
Organization for Economic Co-operation and Development. (2013). Test No. 210: Fish, early‐life stage toxicity test. OECD. https://www.oecd-ilibrary.org/docserver/9789264203785-en.pdf?expires=1715742309&id=id&accname=guest&checksum=DBDC65B79C5369E61BACCAD90C9B798C
Patibandla, S., Zhang, Y., Tohari, A. M., Gu, P., Reilly, J., Chen, Y., & Shu, X. (2018). Comparative analysis of the toxicity of gold nanoparticles in zebrafish. Journal of Applied Toxicology, 38(8), 1153-1161. https://doi.org/10.1002/jat.3628
Peters, A., Dockery, D. W., Muller, J. E., & Mittleman, M. A. (2001). Increased particulate air pollution and the triggering of myocardial infarction. Circulation, 103(23), 2810–2815. https://doi.org/10.1161/01.CIR.103.23.2810
Peters, L. E., MacKinnon, M., Van Meer, T., van den Heuvel, M. R., & Dixon, D. G. (2007). Effects of oil sands process-affected waters and naphthenic acids on yellow perch (Perca flavescens) and Japanese medaka (Orizias latipes) embryonic development. Chemosphere, 67(11), 2177–2183. https://doi.org/10.1016/j.chemosphere.2006.12.034
Rajkumar, K. S., Sivagaami, P., Ramkumar, A., Murugadas, A., Srinivasan, V., Arun, S., Kumar, P. S., & Thirumurugan, R. (2022). Bio-functionalized zinc oxide nanoparticles: Potential toxicity impact on freshwater fish Cyprinus carpio. Chemosphere, 290, 133220. https://doi.org/10.1016/j.chemosphere.2021.133220
Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., Gorovtsov, A., Tsitsuashvili, V. S., Purvis, W. O., Ghazaryan, K. A., & Movsesyan, H. S. (2018). Effects of zinc-oxide nanoparticles on soil, plants, animals, and soil organisms: A review. Environmental Nanotechnology, Monitoring and Management, 9, 76-84. https://doi.org/10.1016/j.enmm.2017.12.006
Sabir, S., Arshad, M., & Chaudhari, S. K. (2014). Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. The Scientific World Journal, 2014, 925494. https://doi.org/10.1155/2014/925494
Salleh, A. F. M., Amal, M. N. A., Nasruddin, N. S., Zulkifli, S. Z., Yusuff, F. M., Ibrahim, W. N. W., & Ismail, A. (2017). Water pH effects on survival, reproductive performances, and ultrastructure of gonads, gills, and skins of the Java medaka (Oryzias javanicus). Turkish Journal of Veterinary and Animal Sciences, 41(4), 471-481. https://doi.org/10.3906/vet-1701-9
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7, 219–242. https://doi.org/10.1007/s40820-015-0040-x
Suman, T. Y., Radhika Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113, 23–30. https://doi.org/10.1016/j.ecoenv.2014.11.015
Taherian, S. M. R., Hosseini, S. A., Jafari, A., Etminan, A., & Birjandi, M. (2019). Acute toxicity of zinc oxide nanoparticles from Satureja hortensis on rainbow trout (Oncorhynchus mykiss). Turkish Journal of Fisheries and Aquatic Sciences, 20(6), 481-489. https://doi.org/10.4194/1303-2712-v20_6_06
Wittbrodt, J., Shima, A., & Schartl, M. (2002). Medaka - A model organism from the far east. Nature Reviews Genetics, 3, 53-64. https://doi.org/10.1038/nrg704
Wong, S. W. Y., Leung, P. T. Y, Djurišić, A. B., & Leung, K. M. Y. (2010). Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytical and Bioanalytical Chemistry, 396, 609-618. https://doi.org/10.1007/s00216-009-3249-z
Woo, S., & Yum, S. (2011). Transcriptional response of marine medaka (Oryzias javanicus) on exposure to toxaphene. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 153(3), 355-361. https://doi.org/10.1016/j.cbpc.2010.12.006
Wu, Y., & Zhou, Q. (2012). Dose- and time-related changes in aerobic metabolism, chorionic disruption, and oxidative stress in embryonic medaka (Oryzias latipes): Underlying mechanisms for silver nanoparticle developmental toxicity. Aquatic Toxicology, 124–125, 238–246. https://doi.org/10.1016/j.aquatox.2012.08.009
Wu, Y., Zhou, Q., Li, H., Liu, W., Wang, T., & Jiang, G. (2010). Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicology, 100(2), 160-167. https://doi.org/10.1016/j.aquatox.2009.11.014
Xiao, Y., Vijver, M. G., Chen, G., & Peijnenburg, W. J. G. M. (2015). Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. Environmental Science and Technology, 49(7), 4657–4664. https://doi.org/10.1021/acs.est.5b00538
Xiong, D., Fang, T., Yu, L., Sima, X., & Zhu, W. (2011). Effects of nano-scale TiO2, ZnO, and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409(8), 1444-1452. https://doi.org/10.1016/j.scitotenv.2011.01.015
Yu, J.-F., Fukamachi, S., Mitani, H., Hori, H., & Kanamori, A. (2006). Reduced expression of vps11 causes less pigmentation in medaka, Oryzias latipes. Pigment Cell Research, 19(6), 628–634. https://doi.org/10.1111/j.1600-0749.2006.00346.x
Zhao, X., Wang, S., Wu, Y., You, H., & Lv, L. (2013). Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress, and DNA damage in embryo-larval zebrafish. Aquatic Toxicology, 136-137, 49-59. https://doi.org/10.1016/j.aquatox.2013.03.019
Zhu, X., Wang, J., Zhang, X., Chang, Y., & Chen, Y. (2009). The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology, 20(19), 195103. https://doi.org/10.1088/0957-4484/20/19/195103
Zhu, X., Zhu, L., Duan, Z., Qi, R., Li, Y., & Lang, Y. (2008). Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. Journal of Environmental Science and Health, Part A, 43(3), 278-284. https://doi.org/10.1080/10934520701792779
ISSN 0128-7702
e-ISSN 2231-8534
Recent Articles