e-ISSN 2231-8526
ISSN 0128-7680
Norhaslina Mohd Sidek, Siti Rozaimah Sheikh Abdullah and Sarifah Fauziah Syed Draman
Pertanika Journal of Science & Technology, Volume 33, Issue S3, December 2025
DOI: https://doi.org/10.47836/pjst.33.S3.03
Keywords: Abandoned mine lake water, mathematical computing, plant-based remediation, Scirpus grossus, simulation
Published on: 2025-04-24
This study explores the use of Scirpus grossus for phytoremediation of ex-mining lake water, offering a potential low-cost alternative to conventional wastewater treatment. The focus is on removing contaminants such as total iron, total nitrate, total sulfate, total phosphorus, electrical conductivity, chemical oxygen demand, turbidity, and pH. Over 28 days, the ex-mining lake water was treated with S. grossus to assess contaminant removal, with the results analyzed using a mathematical model in Microsoft Excel. The model simulated exponential reductions in pollutants and increases in pH, with absorption coefficients calculated for each parameter. The study found that S. grossus effectively reduced contaminants, with the most significant removal of total iron at 95.45%. The pH of the water increased from 2.61 (acidic) to 6.29 (neutral), improving its suitability for aquatic life. The predicted removal rates closely matched the observed data, suggesting that the model is reliable for forecasting phytoremediation outcomes. Overall, the study confirms that S. grossus is a highly effective species for cleaning ex-mining lake water, offering a sustainable and cost-effective solution for industrial wastewater treatment. The findings encourage further research into the scalability, long-term effectiveness, and integration of this technique with other wastewater management strategies.
Almaamary, E. A. S., Abdullah, S. R. S., Hasan, H. A., Rahim, R. A. A., & Idris, M. (2017). Treatment of methylene blue in wastewater using Scirpus grossus. Malaysian Journal of Analytical Sciences, 21(1), 182-187. http://dx.doi.org/10.17576/mjas-2017-2101-21
Almaamary, E. A. S., Abdullah, S. R. S., Ismail, N. I., Idris, M., Kurniawan, S. B., & Imron, M. F. (2022). Comparative performance of Scirpus grossus for phytotreating mixed dye wastewater in batch and continuous pilot subsurface constructed wetland systems. Journal of Environmental Management, 307, 114534. https://doi-org.uitm.idm.oclc.org/10.1016/j.jenvman.2022.114534
Alvarez-Vazquez, L. J., Martínez, A., Rodríguez, C., Vazquez-Mendez, M. E., & Vilar, M. A. (2019). Mathematical analysis and optimal control of heavy metals phytoremediation techniques. Applied Mathematical Modelling, 73, 387-400. https://doi-org.uitm.idm.oclc.org/10.1016/j.apm.2019.04.011
Darajeh, N., Idris, A., Masoumi, H. R. F. M., Nourani, A., Truong, P., & Sairi, N. A. (2016). Modelling BOD and COD removal from palm oil mill secondary lake water in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. Journal of Environmental Management, 181, 343-352. https://doi.org/10.1016/j.jenvman.2016.06.060
Ismail, N. I., Abdullah, S. R. S., Idris, M., Hasan, H. A., Halmi, M. I. E., Al Sbani, N. H., Jehawi, O. H., Sanusi, S. N. A., & Hashim, M. H. (2017). Accumulation of Fe-Al by Scirpus grossus grown in synthetic bauxite mining wastewater and identification of resistant rhizobacteria. Environmental Engineering Science, 34(5), 367-375. http://dx.doi.org/10.1089/ees.2016.0290
Ismail, N. I., Abdullah, S. R. S., Idris, M., Kurniawan, S. B., Halmi, M. I. E., Al Sbani, N. H., Jehawi, O. H., & Hasan, H. A. (2020). Applying rhizobacteria consortium for the enhancement of Scirpus grossus growth and phytoaccumulation of Fe and Al in pilot constructed wetlands. Journal of Environmental Management, 267, 1110643. https://doi.org/10.1016/j.jenvman.2020.110643
Jaskulak, M., Grobelak, A., & Vandenbulcke, F. (2020). Modelling assisted phytoremediation of soils contaminated with heavy-metals: Main opportunities, limitations, decision making and future prospects. Chemosphere, 249, 126196. https://doi.org/10.1016/j.chemosphere.2020.126196
Jyotsna, K., Bhasin, S. K., & Punit, B. (2015). Mathematical approach to assess phytoremediation potential of Lemna Minor for pulp and paper mill lake water–A case study. International Research of Advance Research in Science and Engineering, 4, Special Issue (01), 707-714. http://data.conferenceworld.in/ICSTM2/P2397-2404.pdf
Kamalu, C. I. O., Okere, P. C., Egbufor, U. C., Nwandikom, G. I., Obijiaku, J. C., & Asomugha, C. C. (2017). Modelling and optimization of phytoremediation kinetics of metals in soil by a plant hyperacumulator. American Journal of Engineering Research, 6(11), 196-207.
Kumar, S., Dube, K. K., & Rai, J. P. N. (2005). Mathematical model for phytoremediation of pulp and paper industry wastewater. Journal of Scientific & Industrial Research, 64(October 2005), 717-721.
Kumari, S. B., Kumar, M. M., Kumar, K. V., Juginu, M. S., Kavithamani, N., & Hema, S. (2015). Phytoremediation of industrial lake water and reduction of physico-chemical parameters from pond water using aquatic weeds. IOSR Journal of Environmental Science, Toxicology and Food Technology, 9(11), Special Issue(I), 54-55. https://doi.org/10.6084/M9.FIGSHARE.1603361.V1
Kutty, A. A., & Al-Mahaqeri, S. A. (2016). An investigation of the levels and distribution of selected heavy metals in sediments and plant species within the vicinity of ex-iron mine in Bukit Besi. Journal of Chemistry, 2016(1), 1-12. http://dx.doi.org/10.1155/2016/2096147
Mohammadi, F., Samaei, M. R., Azhdarpoor, A., Teiri, H., Badeenezhad, A., & Rostami, S. (2019). Modelling and optimizing pyrene removal from the soil by phytoremediation using response surface methodology, artificial neural networks, and genetic algorithm. Chemosphere, 237, 124486. https://doi.org/10.1016/j.jece.2020.103985
Shi, L., Li, J., Palansooriya, K. N., Chen, Y., Hou, D., Meers, E., Tsang, D. C. W., Wang, X., & Ok, Y. S. (2023). Modelling phytoremediation of heavy metal contaminated soils through machine learning. Journal of Hazardous Materials, 441, 129904. https://doi-org.uitm.idm.oclc.org/10.1016/j.jhazmat.2022.129904
Sidek, N. M., Abdullah, S. R. S., Draman, S. F. S., & Ahmad, N. ‘U. (2020). Phytoremediation of ex-mining lake water in constructed wetland by perennial plants. Chiang Mai University Journal of Natural Sciences, 19(3), 580-594. https://doi.org/10.12982/CMUJNS.2020.0038
Sidek, N. M., Abdullah, S. R. S., Draman, S. F. S., Ahmad, N. ‘U, Rosli, M. M. M., & Sanusi, M. F. (2018). Phytoremediation of abandoned mining lake by water hyacinth and water lettuces in constructed wetlands. Jurnal Teknologi, 80(5), 87-93. https://doi.org/10.11113/jt.v80.10992
Simha, L. U., & Achyuth, K. N. (2015). Mathematical modelling of household water treatment by duckweed batch reactor. International Research of Advance Research in Science and Engineering, 4, Special Issue (01), 1-6.
Sordes, F., Pellequer, E., Sahli, S., Sarzynski, T., Denes, M., & Techer, I. (2023). Phytoremediation of chloride from marine dredged sediments: A new model based on a natural vegetation recolonization. Journal of Environmental Management, 344, 118508. https://doi-org.uitm.idm.oclc.org/10.1016/j.jenvman.2023.118508
Tangahu, B.V. (2015). Growth rate measurement of Scirpus Grossus plant as preliminary step to apply the plant in wastewater treatment using reedbed system. Journal of Civil & Environment Engineering, 2015, 5(6), 100192. http://dx.doi.org/10.4172/2165-784X.1000192
Tangahu, B.V., Abdullah S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2022). Lead (Pb) removal from contaminated water using constructed wetland planted with Scirpus grossus: Optimization using Response Surface Methodology (RSM) and assessment of rhizobacterial addition. Chemosphere, 291, 132952. https://doi-org.uitm.idm.oclc.org/10.1016/j.chemosphere.2021.132952
Wang, J., & Delavar, M. A. (2024). Modelling phytoremediation: Concepts, methods, challenges and perspectives. Soil & Environmental Health, 2, 100062. https://doi.org/10.1016/j.seh.2024.100062
ISSN 0128-7680
e-ISSN 2231-8526