e-ISSN 2231-8526
ISSN 0128-7680
Muhammad Alhassan, Azhar Abdul Rahman, Iskandar Shahrim Mustafa, Mohd Zahri Abdul Aziz, Mohd Zakir Kassim, Mohammed Salem Abdullah Bagahezel, Habib Ahmad Ibrahim and Kabiru Alhaji Bala
Pertanika Journal of Science & Technology, Volume 33, Issue 2, March 2025
DOI: https://doi.org/10.47836/pjst.33.2.23
Keywords: HEMA, infrared absorption spectrum, maltose additive, polymer gel dosimeter, saccharide additive
Published on: 2025-03-07
A polymer Gel Dosimeter (PGD) provides essential three-dimensional (3D) radiation dose distribution for the radiotherapy planning system (TPS). This study investigates the use of infrared absorption spectrum as a novel and more cost-effective alternative to Magnetic Resonance Imaging (MRI), Nuclear Magnetic Resonance (NMR), and Optical Computed Tomography (Optical CT) for reading out PGDs. The PGDs were fabricated using 2-Hydroxyethyl methacrylate (HEMA), maltose, N’N, methylene(bis)acrylamide (Bis), gelatin, deionized water (DI Water), and Tetrakis (hydroxymethyl) phosphonium chloride (THPC), and were irradiated using a Linear Accelerator (LINAC) within the range of 0–30 Gy. The possibility of translating molecular vibrational frequency, amplitude, and energy of vibration into absorbed dose was explored by analyzing the absorption spectra in the near-infrared region (NIR) with wavelengths between 750–1100 nm. The findings reveal that these vibrational properties can be employed to interpret irradiated PGDs. Furthermore, an increase in maltose concentration within the 0–520 mM range widens the linear dose range and enhances sensitivity. The PGDs exhibit temporal stability up to 7 days post-irradiation, and the span of their response remains relatively unaffected by scanning temperature. In conclusion, NIR spectroscopy offers a cost-effective method for interpreting PGDs, potentially improving the affordability and efficiency of PGD dosimetry in clinical radiotherapy. This holds particularly promising for less developed countries, aligning with the sustainable development goal (SDG) of ensuring affordable healthcare for all. We finally recommend further research into translating the molecular vibrational parameters into 3D images.
Abdel-Ghany, A. M., Abu-Khadra, A. S., & Sadeq, M. S. (2020). Influence of Fe cations on the structural and optical properties of alkali-alkaline borate glasses. Journal of Non-Crystalline Solids, 548, Article 120320. https://doi.org/10.1016/j.jnoncrysol.2020.120320
Adliene, D., Urbonavicius, B. G., Laurikaitiene, J., & Puiso, J. (2020). New application of polymer gels in medical radiation dosimetry: Plasmonic sensors. Radiation Physics and Chemistry, 168, Article 108609. https://doi.org/10.1016/j.radphyschem.2019.108609
Al-Jarrah, A. M., Rahman, A. A., Shahrim, I., Razak, N. N. A. N. A., Ababneh, B., & Tousi, E. T. (2016). Effect of inorganic salts and glucose additives on dose–response, melting point and mass density of genipin gel dosimeters. Physica Medica, 32(1), 36–41. https://doi.org/10.1016/j.ejmp.2015.09.003
Aliasgharzadeh, A., Anaraki, V., Khoramian, D., Ghorbani, M., & Farhood, B. (2022). The impact of various amounts of fabricating components on the response of PASSAG polymer gel dosimeter: An optimization study. Radiation Physics and Chemistry, 190, Article 109804. https://doi.org/10.1016/j.radphyschem.2021.109804
Bahrami, F., Abtahi, S. M. M., Sardari, D., & Bakhshandeh, M. (2021). Investigation of a modified radiochromic genipin-gel dosimeter: Dosimetric characteristics and radiological properties. Journal of Radioanalytical and Nuclear Chemistry, 328(1), 19–31. https://doi.org/10.1007/s10967-021-07635-w
Darwish, S. M., & Darwish, I. M. (2022). Spectroscopic investigation of tau protein conformational changes by static magnetic field exposure. Journal of Physics Communications, 6(7), Article 075004. https://doi.org/10.1088/2399-6528/ac7d3a
Deene, Y. D. (2022). Radiation dosimetry by use of radiosensitive hydrogels and polymers: Mechanisms, state-of-the-art and perspective from 3D to 4D. Gels, 8(9), Article 599. https://doi.org/10.3390/gels8090599
Deene, Y. D. (2004). Essential characteristics of polymer gel dosimeters. Journal of Physics: Conference Series, 3, 34–57. https://doi.org/10.1088/1742-6596/3/1/006
Farajollahi, A. R., Bonnett, D. E., Ratcliffe, A. J., Aukett, R. J., & Mills, J. A. (1999). An investigation into the use of polymer gel dosimetry in low dose rate brachytherapy. The British Journal of Radiology, 72(863), 1085–1092. https://doi.org/10.1259/bjr.72.863.10700826
Gadagkar, S. R., & Call, G. B. (2015). Computational tools for fitting the hill equation to dose-response curves. Journal of Pharmacological and Toxicological Methods, 71, 68–76. https://doi.org/10.1016/j.vascn.2014.08.006
Ishak, S. A., Iskandar, S. M., & Rahman, A. A. (2015). Sensitivity of HEMATEG induced by radiation dose in the diagnostic X-Ray energy range. Advanced Materials Research, 1087, 267–271. https://doi.org/10.4028/www.scientific.net/AMR.1087.267
Jaszczak, M., Maras, P., & Kozicki, M. (2020). Characterization of a new N -vinylpyrrolidone-containing polymer gel dosimeter with Pluronic F-127 gel matrix. Radiation Physics and Chemistry, 177, Article 109125. https://doi.org/10.1016/j.radphyschem.2020.109125
Javaheri, N., Yarahmadi, M., Refaei, A., & Aghamohammadi, A. (2020). Improvement of sensitivity of X-ray CT reading method for polymer gel in radiation therapy. Reports of Practical Oncology & Radiotherapy, 25(1), 100–103. https://doi.org/10.1016/j.rpor.2019.12.017
Kipouros, P., Pappas, E., Baras, P., Hatzipanayoti, D., Karaiskos, P., Sakelliou, L., Sandilos, P., & Seimenis, I. (2001). Wide dynamic dose range of VIPAR polymer gel dosimetry. Physics in Medicine and Biology, 46(8), 2143–2159. https://doi.org/10.1088/0031-9155/46/8/308
Kozicki, M., Berg, A., Maras, P., Jaszczak, M., & Dudek, M. (2020). Clinical radiotherapy application of N-vinylpyrrolidone-containing 3D polymer gel dosimeters with remote external MR-reading. Physica Medica, 69, 134–146. https://doi.org/10.1016/j.ejmp.2019.11.014
Lotfy, S., Basfar, A. A., Moftah, B., & Al-Moussa, A. A. (2017). Comparative study of nuclear magnetic resonance and UV–visible spectroscopy dose-response of polymer gel based on N-(Isobutoxymethyl) acrylamide. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 413, 42–50. https://doi.org/10.1016/j.nimb.2017.09.033
Masithoh, R. E., Pahlawan, M. F. R., Saputri, D. A. S., & Abadi, F. R. (2023). Visible-near-infrared spectroscopy and chemometrics for authentication detection of organic soybean flour. Pertanika Journal of Science and Technology, 31(2), 671–688. https://doi.org/10.47836/pjst.31.2.03
Mustaqim, A. S., Yahaya, N. Z., Razak, N. N. A., & Zin, H. (2020). The dose enhancement of MAGAT gel dosimeter doped with zinc oxide at 6 MV photon beam. Radiation Physics and Chemistry, 172, Article 108739. https://doi.org/10.1016/j.radphyschem.2020.108739
Nezhad, Z. A., & Geraily, G. (2022). A review study on application of gel dosimeters in low energy radiation dosimetry. Applied Radiation and Isotopes, 179, Article 110015. https://doi.org/10.1016/j.apradiso.2021.110015
Nezhad, Z. A., Geraily, G., Parwaie, W., & Zohari, S. (2021). A novel investigation of the effect of different concentrations of methacrylic acid on the dose response of MAGAT gel dosimeter in intraoperative radiotherapy. Radiation Physics and Chemistry, 179, Article 109214. https://doi.org/10.1016/j.radphyschem.2020.109214
Ozaki, Y. (2021). Infrared spectroscopy—mid-infrared, near-infrared, and far-infrared/terahertz spectroscopy. Analytical Sciences, 37(9), 1193–1212. https://doi.org/10.2116/analsci.20R008
Pratiwi, R. A., Bayu, A., & Nandiyanto, D. (2022). How to read and interpret UV-VIS spectrophotometric results in determining the structure of chemical compounds. Indonesian Journal of Educational Research and Technology, 2(1), 1–20. https://doi.org/10.17509/xxxx.vxix
Rabaeh, K. A., Hammoudeh, I. M. E., Oglat, A. A., Eyadeh, M. M., Abdel-Qader, A. J., Aldweri, F. M., & Awad, S. I. (2021). Polymer gel containing N,N′-methylene-bis-acrylamide (BIS) as a single monomer for radiotherapy dosimetry. Radiation Physics and Chemistry, 187, Article 109522. https://doi.org/10.1016/j.radphyschem.2021.109522
Rashidi, A., Abtahi, S. M. M., Saeedzadeh, E., & Akbari, M. E. (2020). A new formulation of polymer gel dosimeter with reduced toxicity: Dosimetric characteristics and radiological properties. Zeitschrift Für Medizinische Physik, 30(3), 185–193. https://doi.org/10.1016/j.zemedi.2020.02.002
Renner, I. E., & Fritz, V. A. (2020). Using near-infrared reflectance spectroscopy (NIRS) to predict glucobrassicin concentrations in cabbage and brussels sprout leaf tissue. Plant Methods, 16(1), Article 136. https://doi.org/10.1186/s13007-020-00681-7
Shih, T. Y., Chen, W. T., Kuo, W. C., & Wu, J. (2022). Application of polarization-sensitive optical coherence tomography in measurement of gel dosimeters. Journal of Medical and Biological Engineering, 42(5), 621–629. https://doi.org/10.1007/s40846-022-00711-w
Shukor, N. S. A., Musarudin, M., Abdullah, R., & Aziz, M. Z. A/ (2022). Dose distribution of 192Ir HDR brachytherapy source measurement using gafchromic® EBT3 film dosimeter and TLD-100H. Pertanika Journal of Science and Technology, 30(1), 691–708. https://doi.org/10.47836/pjst.30.1.37
Watanabe, Y., Maeyama, T., Mizukami, S., Tachibana, H., Terazaki, T., Takei, H., Muraishi, H., Gomi, T., & Hayashi, S. I. (2022). Verification of dose distribution in high dose-rate brachytherapy for cervical cancer using a normoxic N-vinylpyrrolidone polymer gel dosimeter. Journal of Radiation Research, 63(6), 838–848. https://doi.org/10.1093/jrr/rrac053
Zapata, F., López-Fernández, A., Ortega-Ojeda, F., Quintanilla, G., García-Ruiz, C., & Montalvo, G. (2021). Introducing ATR-FTIR spectroscopy through analysis of acetaminophen drugs: Practical lessons for interdisciplinary and progressive learning for undergraduate students. Journal of Chemical Education, 98(8), 2675–2686. https://doi.org/10.1021/acs.jchemed.0c01231
ISSN 0128-7680
e-ISSN 2231-8526