PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 47 (2) May. 2024 / JTAS-2911-2023

 

Development of An In-house aPPD ELISA for Mycobacterium avium Complex (MAC) Antibodies Detection in Zoo Primates

Yusuf Madaki Lekko, Azlan Che-Amat, Peck Toung Ooi, Sharina Omar, Siti Zubaidah Ramanoon, Mazlina Mazlan and Faez Firdaus Abdullah Jesse

Pertanika Journal of Science & Technology, Volume 47, Issue 2, May 2024

DOI: https://doi.org/10.47836/pjtas.47.2.14

Keywords: Antibodies, ELISA, Mycobacterium avium complex, non-human primates, Protein-G

Published on: 30 May 2024

In non-human primates (NHPs), Mycobacterium avium complex (MAC) species are the major source of non-tuberculous mycobacteriosis, causing tuberculous-like lesions in lymph nodes and parenchymatous organs in zoo and wildlife animals. Poor species-specific detection by serological diagnosis has negatively impacted the surveillance of MAC on non-human primates. Serum was collected from suspected twelve (n = 12) NHPs with no record of health monitoring, including gibbon (n = 5), capuchins (n = 2), siamang (n = 2), mandrill (n = 1), and orangutan (n = 2). An in-house avian purified protein derivative (aPPD) enzyme-linked immunosorbent assays (ELISA) antibody detection was developed and modified based on the established protocols. The aPPD ELISA for MAC antibodies detection at serum and Protein-G dilutions of 1:200-0.5µg/ml, respectively, detected 3/12 (25%) positive serum. At both serum and Protein-G dilutions of 1:100-0.05 and 1:300-1 µg/ml, the aPPD ELISA detected 12/12 (100%), respectively. The antibody was not detected for an in-house aPPD ELISA with serum and anti-monkey immunoglobulin G (IgG) dilutions at 1:100-0.5 and 1:300-1 µg/ml. However, 2/12 (16%) was detected using serum and anti-monkey IgG dilutions at 1:200-0.05 µg/ml. An in-house aPPD ELISA procedure for MAC antibodies detection in primates, at serum and Protein-G dilutions of 1:100-0.05 and 1:300-1 µg/ml, both have shown sensitivity and specificity of 100%, positive predictive value and negative predictive value of 100%, respectively. The serum and anti-monkey IgG have shown extremely low sensitivity and specificity. In conclusion, the performance of an in-house aPPD ELISA using three different dilutions on serum and conjugates in detecting MAC in a primate has shown that Protein-G horseradish peroxidase, as secondary conjugates were able to detect MAC antibodies.

  • Aurtenetxe, O., Barral, M., Vicente, J., de la Fuente, J., Gortázar, C., & Juste, R. A. (2008). Development and validation of an enzyme-linked immunosorbent assay for antibodies against Mycobacterium bovis in european wild boar. BMC Veterinary Research, 4, 43. https://doi.org/10.1186/1746-6148-4-43

  • Bezos, J., Casal, C., Romero, B., Schroeder, B., Hardegger, R., Raeber, A. J., López, L., Rueda, P., & Domínguez, L. (2014). Current ante-mortem techniques for diagnosis of bovine tuberculosis. Research in Veterinary Science, 97, S44–S52. https://doi.org/10.1016/j.rvsc.2014.04.002

  • Biet, F., Boschiroli, M. L., Thorel, M. F., & Guilloteau, L. A. (2005). Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC). Veterinary Research, 36(3), 411–436. https://doi.org/10.1051/vetres:2005001

  • Boadella, M., Lyashchenko, K., Greenwald, R., Esfandiari, J., Jaroso, R., Carta, T., Garrido, J. M., Vicente, J., de la Fuente, J., & Gortázar, C. (2011). Serologic tests for detecting antibodies against Mycobacterium bovis and Mycobacterium avium subspecies Paratuberculosis in Eurasian wild boar (Sus scrofa scrofa). Journal of Veterinary Diagnostic Investigation, 23(1), 77–83. https://doi.org/10.1177/104063871102300111

  • Che’ Amat, A., González-Barrio, D., Ortiz, J. A., Díez-Delgado, I., Boadella, M., Barasona, J. A., Bezos, J., Romero, B., Armenteros, J. A., Lyashchenko, K. P., Venteo, A., Rueda, P., & Gortázar, C. (2015). Testing Eurasian wild boar piglets for serum antibodies against Mycobacterium bovis. Preventive Veterinary Medicine, 121(1–2), 93–98. https://doi.org/10.1016/j.prevetmed.2015.05.011

  • Downs, S. H., Parry, J. E., Upton, P. A., Broughan, J. M., Goodchild, A. V., Nuñez-Garcia, J., Greiner, M., Abernethy, D. A., Cameron, A. R., Cook, A. J., de la Rua-Domenech, R., Gunn, J., Pritchard, E., Rhodes, S., Rolfe, S., Sharp, M., Vordermeier, H. M., Watson, E., Welsh, M., … Clifton-Hadley, R. S. (2018). Methodology and preliminary results of a systematic literature review of ante-mortem and post-mortem diagnostic tests for bovine tuberculosis. Preventive Veterinary Medicine, 153, 117–126. https://doi.org/10.1016/J.PREVETMED.2017.11.004

  • Frost, P. A., Calle, P. P., Klein, H., & Thoen, C. O. (2014). Zoonotic tuberculosis in nonhuman primates. In C. O. Thoen, J. H. Steele, & J. B. Kaneene (Eds.), Zoonotic tuberculosis: Mycobacterium bovis and other pathogenic mycobacteria (3rd ed., pp. 383–397). John Wiley & Sons. https://doi.org/10.1002/9781118474310.ch33

  • Kramsky, J. A., Manning, E. J. B., & Collins, M. T. (2003). Protein G binding to enriched serum immunoglobulin from nondomestic hoofstock species. Journal of Veterinary Diagnostic Investigation, 15(3), 253–261. https://doi.org/10.1177/104063870301500306

  • Kramsky, J. A., Miller, D. S., Hope, A., & Collins, M. T. (2000). Modification of a bovine ELISA to detect camelid antibodies to Mycobacterium paratuberculosis. Veterinary Microbiology, 77(3–4), 333–337. https://doi.org/10.1016/S0378-1135(00)00318-7

  • Lekko, Y. M., Ooi, P. T., Omar, S., Mazlan, M., Sivapalan, N., Ramanoon, S. Z., Jesse, F. F. A., Jasni, S., & Che-Amat, A. (2022). Surveillance and detection of Mycobacterium tuberculosis complex and Mycobacterium avium complex in captive non-human primates in zoological parks. Pakistan Veterinary Journal, 42(3), 340-345. https://doi.org/10.29261/pakvetj/2022.057

  • Manning, E. J. B. (2011). Paratuberculosis in captive and free-ranging wildlife. Veterinary Clinics of North America: Food Animal Practice, 27(3), 621–630. https://doi.org/10.1016/j.cvfa.2011.07.008

  • Prieto, J. M., Balseiro, A., Casais, R., Abendaño, N., Fitzgerald, L. E., Garrido, J. M., Juste, R. A., & Alonso-Hearn, M. (2014). Sensitive and specific enzyme-linked immunosorbent assay for detecting serum antibodies against Mycobacterium avium subsp. paratuberculosis in fallow deer. Clinical and Vaccine Immunology, 21(8), 1077–1085. https://doi.org/10.1128/CVI.00159-14

  • Pruvot, M., Forde, T. L., Steele, J., Kutz, S. J., De Buck, J., van der Meer, F., & Orsel, K. (2013). The modification and evaluation of an ELISA test for the surveillance of Mycobacterium avium subsp. paratuberculosis infection in wild ruminants. BMC Veterinary Research, 9, 5. https://doi.org/10.1186/1746-6148-9-5

  • Roller, M., Hansen, S., Böhlken-Fascher, S., Knauf-Witzens, T., Czerny, C.-P., Goethe, R., & Abd El Wahed, A. (2020). Molecular and serological footprints of Mycobacterium avium subspecies infections in zoo animals. Veterinary Sciences, 7(3), 117. https://doi.org/10.3390/VETSCI7030117

  • Roller, M., Hansen, S., Knauf-Witzens, T., Oelemann, W. M. R., Czerny, C. P., Abd El Wahed, A., & Goethe, R. (2020). Mycobacterium avium subspecies paratuberculosis infection in zoo animals: A review of susceptibility and disease process. Frontiers in Veterinary Science, 7, 572724. https://doi.org/10.3389/fvets.2020.572724