Home / Pre-Press / JTAS-2327-2021

 

Effects of Three Rainfall Patterns on Soil Chemical Properties in Black Pepper Cultivation in a Hilly Topography

Abd Hamid Izzah, Wan Yahaya Wan-Asrina, Abd Wahid Samsuri, Idris Wan-Mohd-Razi and Vijayanathan Jeyanny

Pertanika Journal of Tropical Agricultural Science, Pre-Press

DOI: https://doi.org/10.47836/pjtas.45.1.06

Keywords: Black pepper, intensity, Northeast monsoon, rainfall pattern, slope, topography

Published: 2021-12-17

This study was conducted to determine the effect of the rainfall pattern on cation nutrients in black pepper cultivation in a hilly topography. A field study was conducted in black pepper cultivation in a hilly topography around Bintulu, Sarawak, Malaysia, with a 26o slope during the Northeast monsoon in 2020. Six blocks were established on 462.56 m2, with four subsequent soil samples (0-20 cm) collected per block after the rainfall. Soil samples were analysed using the standard pH, total organic carbon (TOC), soil texture, total nitrogen (TN), available phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and manganese (Mn) in triplicate. Rainfall pattern (October < November > December) affects TN (300.31-1422.90 mg/kg) and K availability (13.54-166.68 mg/kg), especially during peak season in November 2020. Available P, Ca, Mg, Fe, and Mn exhibit minimum rainfall effect but are closely related to combined interaction with parent material and topography. Therefore, proper soil management, such as applying fertiliser using top dressing, foliar spray, and manure amendment, including growing cover crop, is recommended to improve nutrient availability.

  • Arunrat, N., Kongsurakan, P., Sereenonchai, S., & Hatano, R. (2020). Soil organic carbon in sandy paddy fields of Northeast Thailand: A review. Agronomy, 10(8), 1061. https://doi.org/10.3390/agronomy10081061

  • Bertol, I., Mello, E. L., Guadagnin, J. C., Zaparolli, A. L. V., & Carrafa, M. R. (2003). Nutrient losses by water erosion. Scientia Agricola, 60(3), 581-586. https://doi.org/10.1590/S0103-90162003000300025

  • Emmanuel, H., Samuel, O. A., Kwame, A. F., Kofi, A., Thomas, A., Muhammed, A., Joshua, Y. A., & John, B. (2020). Phosphorus sorption in tropical soils. AIMS Agriculture and Food, 5(4), 599-616. https://doi.org/10.3934/agrfood.2020.4.599

  • Food and Agriculture Organization. (2021). Standard operating procedure for soil nitrogen - Kjeldahl method. FAO.

  • Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32(3), 390-399. https://doi.org/10.1111/sum.12270

  • Gregersen, B., Aalbæk, J., Lauridsen, P., Kaas, M., & Lopdrup, U. (2003). Land use and soil erosion in Tikolod, Sabah, Malaysia. https://www.researchgate.net/publication/253679071_LAND_USE_AND_SOIL_EROSION_IN_TIKOLOD_SABAH_MALAYSIA

  • Gu, C., & Riley, W. J. (2010). Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling — A modeling analysis. Journal of Contaminant Hydrology, 112(1), 141-154. https://doi.org/10.1016/j.jconhyd.2009.12.003

  • Hagedorn, F., Steiner, K. G., Sekayange, L., & Zech, W. (1997). Effect of rainfall pattern on nitrogen mineralization and leaching in a green manure experiment in south Rwanda. Plant and Soil, 195(2), 365-375. https://doi.org/10.1023/A:1004266205502

  • Hess, L. J. T., Hinckley, E. L. S., Robertson, G. P., & Matson, P. A. (2020). Rainfall intensification increases nitrate leaching from tilled but not no-till cropping systems in the U. S. Midwest. Agriculture, Ecosystems and Environment, 290, 106747. https://doi.org/10.1016/j.agee.2019.106747

  • Hua, W., Luo, P., An, N., Cai, F., Zhang, S., Chen, K., Yang, J., & Han, X. (2020). Manure application increased crop yields by promoting nitrogen use efficiency in the soils of 40-year soybean-maize rotation. Scientific Reports, 10(1), 14882. https://doi.org/10.1038/s41598-020-71932-9

  • Izzah, A. H., & Wan Asrina, W. Y. (2018). Spatial variability of nitrogen, phosphorus, and potassium using geospatial techniques on black pepper farms. Azarian Journal of Agriculture, 5(3), 76-85.

  • Izzah, A. H., & Wan Asrina, W. Y. (2019). Black pepper in Malaysia: An overview and future prospects. Agricultural Reviews, 40(4), 296-302. https://doi.org/10.18805/ag.R-129

  • Luo, C., Gao, Y., Zhu, B., & Wang, T. (2013). Sprinkler-based rainfall simulation experiments to assess nitrogen and phosphorus losses from a hillslope cropland of purple soil in China. Sustainability of Water Quality and Ecology, 1-2, 40-47. https://doi.org/10.1016/j.swaqe.2014.03.001

  • Meda, R., Pavan, A., Cassiolato, E., & Miyazawa, M. (2002). Dolomite lime’s reaction applied on the surface of a sandy soil of the Northwest Paraná, Brazil. Brazilian Archives of Biology and Technology, 45(2), 219-222. https://doi.org/10.1590/S1516-89132002000200014

  • Mendes, W. C., Alves Júnior, J., Cunha, P. C. R., Silva, A. R., Evangelista, A. W. P., & Casaroli, D. (2016). Potassium leaching in different soils as a function of irrigation depths. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(11), 972-977. https://doi.org/10.1590/1807-1929/agriambi.v20n11p972-977

  • Mohamad, N., Jamal, M., Annammala, K., Yusop, Z., Alias, N., & Sugumaran, D. (2018). Impact of forest conversion to agricultural plantation on soil erosion. In MATEC Web of Conferences (Vol. 250, p. 04004). EDP Sciences. https://doi.org/10.1051/matecconf/201825004004

  • Nguyen, X. H., & Pham, A. H. (2018). Assessing soil erosion by agricultural and forestry production and proposing solutions to mitigate: A case study in Son La Province, Vietnam. Applied and Environmental Soil Science, 2018, 2397265. https://doi.org/10.1155/2018/2397265

  • Nunes, M. R., Denardin, J. E., Vaz, C. M. P., Karlen, D. L., & Cambardella, C. A. (2019). Lime movement through highly weathered soil profiles. Environmental Research Communications, 1(11), 115002. https://doi.org/10.1088/2515-7620/ab4eba

  • Opala, P. A. (2017). Influence of lime and phosphorus application rates on growth of maize in an acid soil. Advances in Agriculture, 2017, 7083206. https://doi.org/10.1155/2017/7083206

  • Paramananthan, S. (2000). Soils of Malaysia: Their characteristics and identification. Academy of Sciences.

  • Paulus, A. D., Sim, S. L., Eng, L., Megir, G., & Rosmah, J. (2011). Pepper production technology in Malaysia. Malaysian Pepper Board and Department of Agriculture Sarawak.

  • Penn, C., & Camberato, J. (2019). A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9(6), 120. https://doi.org/10.3390/agriculture9060120

  • Sa’adi, Z., Shahid, S., Chung, E. S., & Ismail, T. (2017). Projection of spatial and temporal changes of rainfall in Sarawak of Borneo Island using statistical downscaling of CMIP5 models. Atmospheric Research, 197, 446-460. https://doi.org/10.1016/j.atmosres.2017.08.002

  • Saka, H. A., Azeez, J. O., Odedina, J. N., & Akinsete, S. J. (2017). Dynamics of soil nitrogen availability indices in a sandy clay loam soil amended with animal manures. International Journal of Recycling of Organic Waste in Agriculture, 6(2), 167-178. https://doi.org/10.1007/s40093-017-0165-7

  • Samndi, M. A., & Mahmud, A. T. (2014). Distribution of potassium forms along a hillslope positions of newer basalt on the Jos Plateau Nigeria. International Journal of Soil Science, 9(3), 90-100. https://doi.org/10.3923/ijss.2014.90.100

  • Senbayram, M., Gransee, A., Wahle, V., & Thiel, H. (2015). Role of magnesium fertilisers in agriculture: Plant–soil continuum. Crop and Pasture Science, 66(12), 1219-1229. https://doi.org/10.1071/CP15104

  • Shamshuddin, J., Anda, M., Ishak, C., & Omar, S. (2011). Growth of cocoa planted on highly weathered soil as affected by application of basalt and/or compost. Communications in Soil Science and Plant Analysis, 42(22), 2751-2766. https://doi.org/10.1080/00103624.2011.622822

  • Sharangi, A. (2011). Performance of rooted cuttings of black pepper (Piper nigrum L.) with organic substitution of nitrogen. International Journal of Agricultural Research, 6(9), 673-681. https://doi.org/10.3923/ijar.2011.673.681

  • Simonsson, M., Östlund, A., Renfjäll, L., Sigtryggsson, C., Börjesson, G., & Kätterer, T. (2018). Pools and solubility of soil phosphorus as affected by liming in long-term agricultural field experiments. Geoderma, 315, 208-219. https://doi.org/10.1016/j.geoderma.2017.11.019

  • Siskawardani, D. D., Onthong, J., Khawmee, K., & Poonpakdee, C. (2016). Manganese status in upland and lowland rubber-growing soils in Songkhla province, southern Thailand. Agriculture and Natural Resources, 50(4), 321-325. https://doi.org/10.1016/j.anres.2016.01.005

  • Siswanto, S. Y., & Sule, M. I. S. (2019). The impact of slope steepness and land use type on soil properties in Cirandu sub-sub catchment, Citarum Watershed. In IOP Conference Series: Earth and Environmental Science (Vol. 393, No. 1, p. 012059). IOP Publishing. https://doi.org/10.1088/1755-1315/393/1/012059

  • Sivaraman, K., Kandiannan, K., Peter, K. V., & Thankamani, C. K. (1999). Agronomy of black pepper (Piper nigrum L.) - A review. Spices and Aromatic Crops, 8(1), 1-18.

  • Srinivasan, V., Dinesh, R., Hamza, S., & Parthasarathy, V. A. (2007). Nutrient management in black pepper (Piper nigrum L.). Nutrition and Natural Resources, 2(62). https://doi.org/10.1079/PAVSNNR20072062

  • Stagnari, F., Maggio, A., Galieni, A., & Pisante, M. (2017). Multiple benefits of legumes for agriculture sustainability: An overview. Chemical and Biological Technologies in Agriculture, 4(1), 2. https://doi.org/10.1186/s40538-016-0085-1

  • Sutherland, R. A. (1998). Loss-on-ignition estimates of organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia, 389(1-3), 153-167. https://doi.org/10.1023/A:1003570219018

  • Tan, K. H. (2005). Soil sampling, preparation, and analysis. Taylor & Francis.

  • Tan, K. H. (2010). Principles of soil chemistry. Taylor & Francis.

  • Yan, B., & Hou, Y. (2018). Effect of soil magnesium on plants: A review. In IOP Conference Series: Earth and Environmental Science (Vol. 170, No. 2, p. 022168). IOP Publishing. https://doi.org/10.1088/1755-1315/170/2/022168

  • Yao, Y., Dai, Q., Gao, R., Gan, Y., & Yi, X. (2021). Effects of rainfall intensity on runoff and nutrient loss of gently sloping farmland in a karst area of SW China. PLOS One, 16(3), e0246505. https://doi.org/10.1371/journal.pone.0246505

  • Yaşar Korkanç, S., & Dorum, G. (2019). The nutrient and carbon losses of soils from different land cover systems under simulated rainfall conditions. CATENA, 172, 203-211. https://doi.org/10.1016/j.catena.2018.08.033

  • Yokoyama, D., Mori, T., Wagai, R., Hiradate, S., & Kitayama, K. (2018). Characteristics of phosphorus fractions in the soils derived from sedimentary and serpentinite rocks in lowland tropical rain forests, Borneo. Soil Science and Plant Nutrition, 64(2), 218-221. https://doi.org/10.1080/00380768.2017.1421018

  • Zanon, J. A., Favaretto, N., Democh Goularte, G., Dieckow, J., & Barth, G. (2020). Manure application at long-term in no-till: Effects on runoff, sediment and nutrients losses in high rainfall events. Agricultural Water Management, 228, 105908. https://doi.org/10.1016/j.agwat.2019.105908

  • Zhang, S., Zhang, X., Huffman, T., Liu, X., & Yang, J. (2011). Influence of topography and land management on soil nutrients variability in Northeast China. Nutrient Cycling in Agroecosystems, 89, 427-438. https://doi.org/10.1007/s10705-010-9406-0

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JTAS-2327-2021

Download Full Article PDF

Share this article

Recent Articles