PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abhary, M., & Al-Hazmi, A.-A. (2016). Antibacterial activity of Miswak (Salvadora persica L.) extracts on oral hygiene. Journal of Taibah University for Science, 10(4), 513-520. https://doi.org/10.1016/j.jtusci.2015.09.007

  • Ageyeva, T., Kovács, J. G., & Tábi, T. (2021). Comparison of the efficiency of the most effective heterogeneous nucleating agents for Poly(lactic acid). Journal of Thermal Analysis and Calorimetry, 147(15), 8199-8211. https://doi.org/10.1007/s10973-021-11145-y

  • Ahmad, H., & Rajagopal, K. (2014). Salvadora persica L. (Meswak) in dental hygiene. The Saudi Journal for Dental Research, 5(2), 130-134. https://doi.org/10.1016/j.sjdr.2014.02.002

  • Alili, N., Türp, J. C., Kulik, E. M., & Waltimo, T. (2014). Volatile compounds of Salvadora persica inhibit the growth of oral Candida species. Archives of Oral Biology, 59(5), 441-447. https://doi.org/10.1016/j.archoralbio.2014.02.001

  • Aliotta, L., Cinelli, P., Coltelli, M., Righetti, M. C., Gazzano, M., & Lazzeri, A. (2017). Effect of nucleating agents on crystallinity and properties of Poly (lactic acid) (PLA). European Polymer Journal, 93, 822-832. https://doi.org/10.1016/j.eurpolymj.2017.04.041

  • Amoian, B., Moghadamnia, A., Barzi, S., Sheykholeslami, S., & Rangiani, A. (2010). Salvadora persica extract chewing gum and gingival health: Improvement of gingival and probe-bleeding index. Complementary Therapies in Clinical Practice, 16(3), 121-123. https://doi.org/10.1016/j.ctcp.2009.11.002

  • Arbelaiz, A., Fernández, B., Ramos, J. A., Retegi, A., Llano-Ponte, R., & Mondragon, I. (2005). Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Composites Science and Technology, 65(10), 1582-1592. https://doi.org/10.1016/j.compscitech.2005.01.008

  • Bakri, M. K., Jayamani, E., & Hamdan, S. (2017). Processing and characterization of banana fiber/epoxy composites: Effect of alkaline treatment. Materials Today: Proceedings, 4(2), 2871-2878. https://doi.org/10.1016/j.matpr.2017.02.167

  • Chaaben, R., Taktak, R., Mnif, B., Guermazi, N., & Elleuch, K. (2020). Innovative biocomposite development based on the incorporation of Salvadora persica in acrylic resin for dental material. Journal of Thermoplastic Composite Materials, 35(11), 1815-1831. https://doi.org/10.1177/0892705720939167

  • Chaurasia, A., Patil, R., & Nagar, A. (2013). Miswak in oral cavity - An update. Journal of Oral Biology and Craniofacial Research, 3(2), 98-101. https://doi.org/10.1016/j.jobcr.2012.09.004

  • Cornelissen, T., Yperman, J., Reggers, G., Schreurs, S., & Carleer, R. (2008). Flash co-pyrolysis of biomass with polylactic acid. Part 1: Influence on bio-oil yield and heating value. Fuel, 87(7), 1031-1041. https://doi.org/10.1016/j.fuel.2007.07.019

  • Corre, Y.-M., Maazouz, A., Duchet, J., & Reignier, J. (2011). Batch foaming of chain extended PLA with supercritical CO2: Influence of the rheological properties and the process parameters on the cellular structure. The Journal of Supercritical Fluids, 58(1), 177-188. https://doi.org/10.1016/j.supflu.2011.03.006

  • Correia, C., Gomes, T. E. P., Gonçalves, I., & Neto, V. (2022). Reprocessability of PLA through chain extension for fused filament fabrication. Journal of Manufacturing and Materials Processing, 6(1), 26. https://doi.org/10.3390/jmmp6010026

  • Das, M., & Chakraborty, D. (2006). Influence of mercerization on the dynamic mechanical properties of bamboo, A natural lignocellulosic composite. Industrial & Engineering Chemistry Research, 45(19), 6489-6492. https://doi.org/10.1021/ie0603971

  • Ezeamaku, U. L., Onukwuli, O. D., Ezeh, M. E., Eze, I. O., Odimegwu, N. E., & Agu, C. P. (2022). Experimental investigation on influence of selected chemical treatment on banana fibre. Industrial Crops and Products, 185, 115135. https://doi.org/10.1016/j.indcrop.2022.115135

  • Guillaume, G., Phillipe, E., & Luc, R. (2013). Twin-screw extrusin impact on natural fibre morphology and material properties in poly(lactic acid) based biocomposites. Industrial Crops and Products, 46, 173-185. https://doi.org/10.1016/j.indcrop.2013.01.026

  • Hristov, V., & Vasileva, S. (2003). Dynamic mechanical and thermal properties of modified poly(propylene) wood fiber composites. Macromolecular Materials and Engineering, 288(10), 798-806. https://doi.org/10.1002/mame.200300110

  • Hyvarinen, M., Jabeen, R., & Karki, T. (2020). The modelling of extrusion processes for polymers-a review. Polymers (Basel), 12(6), 1306. https://doi.org/10.3390/polym12061306

  • Jia, S., Yu, D., Zhu, Y., Wang, Z., Chen, L., & Fu, L. (2017). Morphology, crystallization and thermal behaviors of PLA-based composites: Wonderful effects of hybrid GO/PEG via dynamic impregnating. Polymers (Basel), 9(10), 528. https://doi.org/10.3390/polym9100528

  • John, M., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343-364. https://doi.org/10.1016/j.carbpol.2007.05.040

  • Karsli, N. G., & Aytac, A. (2014). Properties of alkali treated short flax fiber reinforced poly (lactic acid)/polycarbonate composites. Fibers and Polymers, 15(12), 2607-2612. https://doi.org/10.1007/s12221-014-2607-4

  • Kuzmin, A. M., & Radaikina, E. A. (2020). Technology development for the production of thermoplastic composites with agricultural fillers by compounding method on co-directional twin screw extruder. IOP Conference Series:Materials Science and Engineering 290, 873, 012022. https://doi.org/10.1088/1757-899X/873/1/012022

  • Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 15(1), 25-33. https://doi.org/10.1007/s10924-006-0042-3

  • Marques, M. de F. V., Melo, R. P., Araujo, R. da S., Lunz, J. do N., & Aguiar, V. de O. (2014). Improvement of mechanical properties of natural fiber-polypropylene composites using successive alkaline treatments. Journal of Applied Polymer Science, 132(12), 41710. https://doi.org/10.1002/app.41710

  • Mikulyonok, I. O. (2013). Equipment for preparing and continuous molding of thermoplastic composites. Chemical and Petroleum Engineering, 48(11), 658-661. https://doi.org/10.1007/s10556-013-9676-x

  • Moawed, E. A. (2013). Effect of heating processes on Salvadora persica (Miswak) and its application for removal and determination of aniline blue from wastewater. Journal of Taibah University for Science, 7(1), 26-34. https://doi.org/10.1016/j.jtusci.2013.03.002

  • Moawed, E. A., & Abulkibash, A. B. (2016). Selective separation of Light green and Safranin O from aqueous solution using Salvadora persica (Miswak) powder as a new biosorbent. Journal of Saudi Chemical Society, 20, S178-S185. https://doi.org/10.1016/j.jscs.2012.10.011

  • Moser, K., Schmitt, M., Holzer, A., Bergmann, B., Diemert, J., & Elsner, P. (2016). Optimization of PLA compounds using novel nucleating agents and plasticizers. AIP Conference Proceedings, 1779(1), 060006-1-060006-5. https://doi.org/10.1063/1.4965527

  • Mukherjee, T., & Kao, N. (2011). PLA based biopolymer reinforced with natural fibre: A Review. Journal of Polymers and the Environment, 19, 714-725. https://doi.org/10.1007/s10924-011-0320-6

  • Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17-46. https://doi.org/10.1016/j.addr.2016.04.003

  • Nagarajan, V., Zhang, K., Misra, M., & Mohanty, A. K. (2015). Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: Influence of nucleating agent and mold temperature. ACS Appl Mater Interfaces, 7(21), 11203-11214. https://doi.org/10.1021/acsami.5b01145

  • Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M. C. (2019). Poly(lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 125, 307-360. https://doi.org/10.1016/j.ijbiomac.2018.12.002

  • Orue, A., Jauregi, A., Unsuain, U., Labidi, J., Eceiza, A., & Arbelaiz, A. (2016). The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites. Composites Part A: Applied Science and Manufacturing, 84, 186-195. https://doi.org/10.1016/j.compositesa.2016.01.021

  • Pluta, M., Paul, M.-A., Alexandre, M., & Dubois, P. (2006). Plasticized polylactide/clay nanocomposites. I. The role of filler content and its surface organo-modification on the physico-chemical properties. Journal of Polymer Science Part B: Polymer Physics, 44(2), 299-311. https://doi.org/10.1002/polb.20694

  • Rajesh, G., & Prasad, A. V. R. (2014). Tensile properties of successive alkali treated short jute fiber reinforced PLA composites. Procedia Materials Sciences 5, 2188-2196. https://doi.org/10.1016/j.mspro.2014.07.425

  • Ramadan, K. S., & Alshamrani, S. A. (2016). Phytochemical analysis and antioxidant activity of Salvadora persica extracts. Journal of Basic and Applied Research in Biomedicine, 2(3), 390-395.

  • Raquez, J.-M., Habibi, Y., Murariu, M., & Dubois, P. (2013). Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38, 1504-1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014

  • Ray, D., Sarkar, B. K., Basak, R. K., & Rana, A. K. (2002). Study of the thermal behavior of alkali-treated jute fibers. Journal of Applied Polymer Science, 85(12), 2594-2599. https://doi.org/10.1002/app.10934

  • Saini, P., Arora, M., & Kumar, M. N. V. R. (2016). Poly(lactic acid) blends in biomedical applications. Advanced Drug Delivery Reviews, 107, 47-59. https://doi.org/10.1016/j.addr.2016.06.014

  • Sarasini, F. (2017). 4 - Thermoplastic biopolymer matrices for biocomposites. In D. Ray (Ed.), Biocomposites for High-Performance Applications (pp. 81-123). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100793-8.00004-1

  • Satyanarayana, K. G., Arizaga, G. G. C., & Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers—An overview. Progress in Polymer Science, 34(9), 982-1021. https://doi.org/10.1016/j.progpolymsci.2008.12.002

  • Savaş, S. (2018). Structural properties and mechanical performance of Salvadora persica L. (Miswak) reinforced polypropylene composites. Polymer Composites, 40(S1), E663-E677. https://doi.org/10.1002/pc.24939

  • Sgriccia, N., & Hawley, M. (2007). Thermal, morphological, and electrical characterization of microwave processed natural fiber composites. Composites Science and Technology, 67(9), 1986-1991. https://doi.org/10.1016/j.compscitech.2006.07.031

  • Shafi, A. R., Diyana, A. N., Abdan, K., & Salit, M. S. (2023). Effect of alkaline treatment on mechanical and thermal properties of Miswak (Salvadora persica) fiber-reinforced polylactic acid. Polymers, 15(9), 2228. https://doi.org/10.3390/polym15092228

  • Shafi, A. R., , Abdan, K., Harmaen, A. S., Zaman, K., Isma, T., Liu, Q., & Lee, C. H. (2020a). Characterization study of empty fruit bunch (EFB) fibers reinforcement in poly (butylene) succinate (PBS)/starch/glycerol composite sheet. Polymers, 12(7), 1571. https://doi.org/10.3390/polym12071571

  • Shafi, A. R., Abdan, K., Harmaen, A. S., Zaman, K., Nurrazi, N. M. , Isma, T., & Lee, C. H. (2020b). Effect of empty fruit brunch reinforcement in polybutylene-succinate/modified tapioca starch blend for agricultural mulch films. Scientific Reports, 10(1), 1166. https://doi.org/10.1038/s41598-020-58278-y

  • Sherwani, S. F. K., Zainudin, E. S., Sapuan, S. M., Leman, Z., & Khalina, A. (2021). Physical, mechanical, and morphological properties of treated sugar palm/glass reinforced poly(lactic acid) hybrid composites. Polymers (Basel), 13(21), 3620. https://doi.org/10.3390/polym13213620

  • Siakeng, R., Jawaid, M., Asim, M., Saba, N., M R, S., Siengchin, S., & Fouad, H. (2020a). Alkali treated coir/pineapple leaf fibres reinforced PLA hybrid composites: Evaluation of mechanical, morphological, thermal and physical properties. Express Polymer Letters, 14, 717-730. https://doi.org/10.3144/expresspolymlett.2020.59

  • Siakeng, R., Jawaid, M., Asim, M., & Siengchin, S. (2020b). Accelerated weathering and soil burial effect on biodegradability, colour and texture of coir/pineapple leaf fibres/PLA biocomposites. Polymers (Basel), 12(2), 15. https://doi.org/10.3390/polym12020458

  • Singh, M., & Singh, R. (2020). Twin screw extrusion for recycling of thermoplastics. Encyclopedia of Materials: Plastics and Polymers, 1, 651-661. https://doi.org/10.1016/B978-0-12-820352-1.00013-4

  • Sun, Z., Zhang, L., Liang, D., Xiao, W., & Lin, J. (2017). Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. International Journal of Polymer Science, 2017(1), 1-8. https://doi.org/10.1155/2017/2178329

  • Tahir, K., Nazir, S., Li, B., Khan, A. U., Khan, Z. U. H., Ahmad, A., & Khan, F. U. (2015). An efficient photo catalytic activity of green synthesized silver nanoparticles using Salvadora persica stem extract. Separation and Purification Technology, 150, 316-324. https://doi.org/10.1016/j.seppur.2015.07.012

  • Tokoro, R., Vu, D. M., Okubo, K., Tanaka, T., Fujii, T., & Fujiura, T. (2007). How to improve mechanical properties of polylactic acid with bamboo fibers. Journal of Materials Science, 43(2), 775-787. https://doi.org/10.1007/s10853-007-1994-y

  • Wang, Y., Liu, S., Wang, Q., Ji, X., Yang, G., Chen, J., & Fatehi, P. (2021). Strong, ductile and biodegradable polylactic acid/lignin-containing cellulose nanofibril composites with improved thermal and barrier properties. Industrial Crops and Products, 171, 113898. https://doi.org/10.1016/j.indcrop.2021.113898

  • Xu, J., & Song, J. (2015). Polylactic acid (PLA)-based shape-memory materials for biomedical applications. Shape Memory Polymers for Biomedical Applications, 2015, 197-217. https://doi.org/10.1016/B978-0-85709-698-2.00010-6

  • Yee, Y., Ching, Y. C., Rozali, S., Hashim, N. A., & Singh, R. (2016). Preparation and characterization of poly(lactic acid)-based composite reinforced with oil palm empty fruit bunch fiber and nanosilica. BioResources, 11(1), 2269-2286. https://doi.org/10.15376/biores.11.1.2269-2286

  • Yu, T., Ren, J., Li, S., Yuan, H., & Li, Y. (2010). Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Composites Part A: Applied Science and Manufacturing, 41(4), 499-505. https://doi.org/10.1016/j.compositesa.2009.12.006

  • Yusoff, R. B., Takagi, H., & Nakagaito, A. N. (2016). Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops and Products, 94, 562-573. https://doi.org/10.1016/j.indcrop.2016.09.017

  • Zhang, H., Huang, J., Yang, L., Chen, R., Zou, W., Lin, X., & Qu, J. (2015). Preparation, characterization and properties of PLA/TiO2 nanocomposites based on a novel vane extruder. RSC Advances, 5(6), 4639-4647. https://doi.org/10.1039/c4ra14538k

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles