e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Aboelazayem, O., Gadalla, M., & Saha, B. (2019). Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil. Renewable Energy, 143, 77-90. https://doi.org/10.1016/j.renene.2019.04.106.
Borugadda, V. B., & Goud, V. V. (2012). Biodiesel production from renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy Reviews, 16(7), 4763-4784. https://doi.org/10.1016/j.rser.2012.04.010
Celdeira, P. A., Gonçalves, M., Figueiredo, F. C. A., Bosco, S. M. D., Mandelli, D., & Carvalho, W. A. (2014). Sulfonated niobia and pillared clay as catalysts in etherification reaction of glycerol. Applied Catalysis A: General, 478, 98-106. https://doi.org/10.1016/j.apcata.2014.03.037
Cheng, J., Zhang, Z., Zhang, X., Liu, J., Zhou, J., & Cen, K. (2019). Sulfonated mesoporous Y zeolite with nickel to catalyze hydrocracking of microalgae biodiesel into jet fuel range hydrocarbons. International Journal of Hydrogen Energy, 44(3), 1650-1658. https://doi.org/10.1016/j.ijhydene.2018.11.110
de Jesus, A. A., de Santana Souza, D. F., de Oliveira, J. A., de Deus, M. S., da Silva, M. G., Franceschi, E., da Silva Egues, S. M., & Dariva, C. (2018). Mathematical modeling and experimental esterification at supercritical conditions for biodiesel production in a tubular reactor. Energy Conversion and Management, 171(April), 1697-1703. https://doi.org/10.1016/j.enconman.2018.06.108
Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968
Di Pietro, M. E., Mannu, A., & Mele, A. (2020). NMR determination of free fatty acids in vegetable oils. Processes, 8(4), Article 410. https://doi.org/10.3390/pr8040410
Effiyanti, L., Susanto., Hikmah, N., Indrawan, D. A., & Pari, G. (2019). Characterization and potential of wood waste sulfonated activated carbon catalyst based on rice husk hydrolysis reaction using microwave. Journal of Research Result Forest, 37(2), 67-80.
Encinar, J. M., Sánchez, N., Martínez, G., & García, L. (2011). Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology, 102(23), 10907-10914. https://doi.org/10.1016/j.biortech.2011.09.068
Farabi, M. S. A., Ibrahim, M. L., Rashid, U., & Taufiq-Yap, Y. H. (2019). Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Conversion and Management, 181(December 2018), 562-570. https://doi.org/10.1016/j.enconman.2018.12.033.
Gafar, A. (2012). Síntesis and biodiesel quality test from palm oil plant liquid waste transesterification process. Journal of Chemical Progress science, 2(1), 11-20.
Gebremariam, S. N., & Marchetti, J. M. (2018a). Biodiesel production through sulfuric acid catalyzed transesterification of acidic oil: Techno economic feasibility of different process alternatives. Energy Conversion and Management, 174(August), 639-648. https://doi.org/10.1016/j.enconman.2018.08.078
Gebremariam, S. N., & Marchetti, J. M. (2018b). Economics of biodiesel production: Review. Energy Conversion and Management, 168(February), 74-84. https://doi.org/10.1016/j.enconman.2018.05.002
Hasanudin., Said, M., Faizal, M., Dahlan, M. H., & Wijaya, K. (2012). Hydrocracking of oil residue from palm oil mill effluent to biofuel. Sustainable Enviroment Research, 22(6), 395-400.
Hasan, Z., Yoon, J. W., & Jhung, S. H. (2015). Esterification and acetylation reactions over in situ synthesized mesoporous sulfonated silica. Chemical Engineering Journal, 278, 105-112. https://doi.org/10.1016/j.cej.2014.12.025
Irawati., Kurniawan, C., & Harjono. (2019). Optimization of epoxidation fatty acid methyl esters (FAME) Based on palm olein as a cat filter additive. Indonesian Journal of Chemical Science, 8(1), 34-40.
Lathiya, D. R., Bhatt, D. V., & Maheria, K. C. (2018). Synthesis of sulfonated carbon catalyst from waste orange peel for cost effective biodiesel production. Bioresource Technology Reports, 2(2017), 69-76. https://doi.org/10.1016/j.biteb.2018.04.007
Lakhya, J. K., Boro, J., & Deka, D. (2014). Review on latest developments in biodiesel production using carbon-based catalysts. Renewable and Sustainable Energy Reviews, 29, 546-564. https://doi.org/10.1016/j.rser.2013.09.003
Li, J., Fu, Y. J., Qu, X. J., Wang, W., Luo, M., Zhao, C. J., & Zu, Y. G. (2012). Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst. Bioresource Technology, 108,112-118. https://doi.org/10.1016/j.biortech.2011.12.129
Liu, X. Y., Huang, M., Ma, H. L., Zhang, Z. Q., Gao, J. M., Zhu, Y. L., Han, X. J., & Guo, X. Y. (2010). Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules, 15(10), 7188-7196. https://doi.org/10.3390/molecules15107188
Luo, Y., Mei, Z., Liu, N., Wang, H., Han, C., & He, S. (2017). Synthesis of mesoporous sulfated zirconia nanoparticles with high surface area and their applies for biodiesel production as effective catalysts. Catalysis Today, 298(November 2016), 99-108. https://doi.org/10.1016/j.cattod.2017.05.047
Ma, L., Han, Y., Sun, K., Lu, J., & Ding, J. (2015). Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology. Energy Conversion and Management, 98, 46-53. https://doi.org/10.1016/j.enconman.2015.03.092
Maneechakr, P., Samerjit, J., Uppakarnrod, S., & Karnjanakom, S. (2020). Retraction notice to “Experimental design and kinetic study of ultrasonic assisted transesterification of waste cooking oil over sulfonated carbon catalyst derived from cyclodextrin”[Journal of Industrial and Engineering Chemistry 32 (2015) 128 - 136]. Journal of Industrial and Engineering Chemistry, 87, 264-264. https://doi.org/10.1016/j.jiec.2020.03.031.
Mar, W. W., & Samsook, E. (2012). Sulfonic-functionalized carbon catalyst for esterification of high free fatty acid. Procedia Engineering, 32, 212-218. https://doi.org/10.1016/j.proeng.2012.01.1259
Marchetti, J. M., & Errazu, A. F. (2008). Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid. Fuel, 87(15-16), 3477-3480. https://doi.org/10.1016/j.fuel.2008.05.011
Marchetti, J. M., Miguel, V. U., & Errazu, A. F. (2008). Techno-economic study of different alternatives for biodiesel production. Fuel Processing Technology, 89(8), 740-748. https://doi.org/10.1016/j.fuproc.2008.01.007
Mardhiah, H. H., Ong, H. C., Masjuki, H. H., Lim, S., & Pang, Y. L. (2017). Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Conversion and Management, 144, 10-17. https://doi.org/10.1016/j.enconman.2017.04.038
Meçabih, Z. (2016). Characterization of pillared clay by SEM-EDX. Journal of Multidisciplinary Engineering Science and Technology, 3(6), 5107-5109.
Melero, J. A., Iglesias, J., & Morales, G. (2009). Heterogeneous acid catalysts for biodiesel production: Current status and future challenges. Green Chemistry, 11(9), 1285-1308. https://doi.org/10.1039/b902086a
Nata, I. F., Putra, M. D., Irawan, C., & Lee, C. K. (2017). Catalytic performance of sulfonated carbon-based solid acid catalyst on esterification of waste cooking oil for biodiesel production. Journal of Environmental Chemical Engineering, 5(3), 2171-2175. https://doi.org/10.1016/j.jece.2017.04.029.
Ngawosuan, K., Jr Goodwin, J. G., & Prasertdha, P. (2016). A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renewable Energy, 86, 262-269. https://doi.org/10.1016/j.renene.2015.08.010
Ofoefule, A. U., Esonye, C., Onukwuli, O. D., Nwaeze, E., & Ume, C. S. (2019). Modeling and optimization of African pear seed oil esterification and transesterification using artificial neural network and response surface methodology comparative analysis. Industrial Crops and Products, 140, Article 111707. https://doi.org/10.1016/j.indcrop.2019.111707
Ravindra, R. T., Kaneko, S., Endo, T., & Lakhsmi, R. S. (2013). Spectroscopic characterization of bentonit. Journal of Laser, Optics & Photonics, 4(3), 1-4.
Sangar, S. K., Lan, C. S., Razali, S. M., Farabi, M. S. A., & Taufiq-Yap, Y. H. (2019). Methyl ester production from palm fatty acid distillate (PFAD) using sulfonated cow dung-derived carbon-based solid acid catalyst. Energy Conversion and Management, 196, 1306-1315. https://doi.org/10.1016/j.enconman.2019.06.073
Suminta, S., & Las, T. (2018). Smoothing of mordenite crystal cage structure and natural klinoptilolite by rietveld method. Indonesian Journal of Material Science, 7(2), 73-78. https://doi.org/10.17146/jsmi.2006.7.2.5004S
Tariq, M., Ali, S., Ahmad, F., Ahmad, M., Zafar, M., Khalid, N., & Khan, M. A. (2011). Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Processing Technology, 92, 336-341. https://doi.org/10.1016/j.fuproc.2010.09.025
Trombettoni, V., Lanari, D., Prinsen, P., Luque, R., Marrocchi, A., & Vaccaro, L. (2018). Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production. Progress in Energy and Combustion Science, 65, 136-162. https://doi.org/10.1016/j.pecs.2017.11.001
Vargas, E. M., Neves, M. C., Tarelho, L. A. C., & Nunes, M. I. (2019). Solid catalysts obtained from wastes for FAME production using mixtures of refined palm oil and waste cooking oils. Renewable Energy, 136, 873-883. https://doi.org/10.1016/j.renene.2019.01.048
William., Sanjaya, J., Taslim., Herawan, T., & Rivani, M. (2016). Optimization of biodiesel manufacturing process from distillate palm fatty acids (ALSD) and dimethyl carbonate (DMC) using Novozymes 435 catalyst. Journal Chemical Enggeenering USU, 5(1), 13-19. https://doi.org/10.32734/jtk.v5i1.1519
Wilson, K., & Lee, A. F. (2012). Rational design of heterogeneous catalysts for biodiesel synthesis. Catalysis Science and Technology, 2(5), 884-897. https://doi.org/10.1039/c2cy20038d
Xu, B., Ren, J., Liu, X., Guo, Y., Gou, Y., Lu, G., & Wang, Y. (2010). Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catalysis Communication, 11, 629-632. https://doi.org/10.1016/j.catcom.2010.01.010
ISSN 1511-3701
e-ISSN 2231-8542