Home / Regular Issue / JTAS Vol. 31 (1) Jan. 2023 / JST-3462-2022

 

Ammonia-Nitrogen Reduction in Low Strength Domestic Wastewater by Polyvinyl Alcohol (PVA) Gel Beads

Nordin Sabli and Norzarina Zakaria

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 1, January 2023

DOI: https://doi.org/10.47836/pjst.31.1.30

Keywords: Ammonia-nitrogen, biofilm carrier, COD, domestic wastewater, polyvinyl alcohol (PVA)

Published on: 3 January 2023

This study aimed to evaluate the efficacy of polyvinyl alcohol (PVA) gel beads as an immobilized biofilm carrier to enhance the reduction rate of Ammonia-Nitrogen (NH3-N) and Chemical Oxygen Demand (COD) in domestic wastewater. Laboratory scale reactors were developed to assess the reduction levels of ammonia-nitrogen and COD with and without PVA gel beads using optimal and non-optimal treatment mode settings based on operation procedures from the sewage treatment plant in Taman Kajang Utama, Selangor. The treatment method used is an activated sludge sequencing batch reactor with a treatment cycle duration of 288 minutes. The findings showed the ammonia-nitrogen reduction by non-optimal treatment mode is more effective, with a reduced rate of 62.96% to 65.71% compared to optimal treatment mode with a reduced rate of 30.94% and treatment without PVA gel beads (optimal and non-optimal) with a reduced rate of 32.41% to 47.85%. The ammonia-nitrogen reduction rate using PVA gel beads for non-optimal treatment mode was significantly increased from 17.86% to 18.82% and complied with ammonia-nitrogen reduction parameter 10mg/L, Standard A of Environmental Quality (Sewage) Regulations 2009 (EQSR 2009). The rate of COD reduction using the non-optimal treatment mode was also more stable, with a reduced rate of 70.68%. It was also found that the COD reduction rate using PVA gel beads for the non-optimal mode was better than the optimal mode, which was 70.68% compared to 42.0%, and both treatment modes complied with COD reduction parameters 120mg/L, Standard A of EQSR 2009.

  • Bouabidi, Z. B., El-Naas, M. H., & Zhang, Z. (2019). Immobilization of microbial cells for the biotreatment of wastewater: A review. Environmental Chemistry Letters, 17, 241-257. https://doi.org/10.1007/s10311-018-0795-7

  • Bueno, R. F., Piveli, R. P., Campos, F., & Sobrinho, P. A. (2018). Simultaneous nitrification and denitrification in the activated sludge systems of continuous flow. Environmental Technology, 39(20), 2641-2652. https://doi.org/10.1080/09593330.2017.1363820

  • Curtin, K., Duerre, S., Fitzpatrick, B., Meyer, P., & Ellefson, N. (2011). Biological nutrient removal. Minnesota Pollution Control Agency. https://www.pca.state.mn.us/sites/default/files/wq-wwtp8-21.pdf

  • El-Naas, M. H., Mourad, A. H. I., & Surkatti, R. (2013). Evaluation of the characteristics of polyvinyl alcohol (PVA) as matrices for the immobilization of Pseudomonas putida. International Biodeterioration and Biodegradation, 85, 413-420. https://doi.org/10.1016/j.ibiod.2013.09.006

  • Hanafiah, Z. M., Mohtar, W. H. M. W., Hasan, H. A., Jensen, H. S., Abdullah, M. Z., & Husain, H. (2019). Diversification of temporal sewage loading concentration in tropical climates. IOP Conference Series: Earth and Environmental Science, 264, Article 012026. https://doi.org/10.1088/1755-1315/264/1/012026

  • Herlina, N., Turmuzi Lubis, M., Husin, A., & Putri, I. (2019). Studies on decreasing chemical oxygen demand (COD) on artificial laundry wastewater using anaerobic-aerobic biofilter dipped with bio ball media. MATEC Web of Conferences, 276, Article 06015. https://doi.org/10.1051/matecconf/201927606015

  • How, S. W., Lim, S. Y., Lim, P. B., Aris, A. M., Ngoh, G. C., Curtis, T. P., & Chua, A. S. M. (2018). Low-dissolved-oxygen nitrification in tropical sewage: An investigation on potential, performance and functional microbial community. Water Science and Technology, 77(9), 2274-2283. https://doi.org/10.2166/wst.2018.143

  • How, S. W., Sin, J. H., Wong, S. Y. Y., Lim, P. B., Aris, A. M., Ngoh, G. C., Shoji, T., Curtis, T. P., & Chua, A. S. M. (2020). Characterization of slowly-biodegradable organic compounds and hydrolysis kinetics in tropical wastewater for biological nitrogen removal. Water Science and Technology, 81(1), 71-80. https://doi.org/10.2166/wst.2020.077

  • Jimenez, J., Dursun, D., Dold, P., Bratby, J., Keller, J., & Parker, D. (2011). Simultaneous nitrification-denitrification to meet low effluent nitrogen limits: Modeling, performance and reliability. Proceedings of the Water Environment Federation, 2010(15), 2404-2421. https://doi.org/10.2175/193864710798158968

  • Jin, Y., Wang, D., & Zhang, W. (2016). Treatment of high-strength ethylene glycol wastewater in an expanded granular sludge blanket reactor: Use of PVA-gel beads as a biocarrier. SpringerPlus, 5, Article 856. https://doi.org/10.1186/s40064-016-2409-9

  • Khanh, D., Quan, L., Zhang, W., Hira, D., & Furukawa, K. (2011). Effect of temperature on low-strength wastewater treatment by UASB reactor using poly (vinyl alcohol)-gel carrier. Bioresource Technology, 102(24), 11147-11154. https://doi.org/10.1016/j.biortech.2011.09.108

  • Khanitchaidecha, W., Nakaruk, A., Koshy, P., & Futaba, K. (2015). Comparison of simultaneous nitrification and denitrification for three different reactors. BioMed Research International, 2015, Article 901508. https://doi.org/10.1155/2015/901508

  • Kim, E. J., Kim, H., & Lee, E. (2021). Influence of ammonia stripping parameters on the efficiency and mass transfer rate of ammonia removal. Applied Sciences, 11(1), Article 441. https://doi.org/10.3390/app11010441

  • Krishnamoorthi, S., Banerjee, A., & Roychoudhury, A. (2015). Immobilized enzyme technology: Potentiality and Prospects Review. Enzymology and Metabolism, 1(1), 1-11.

  • Li, H., Liu, Q., Yang, P., Duan, Y., Zhang, J., & Li, C. (2021). Encapsulation of microorganisms for simultaneous nitrification and denitrification in aerobic reactors. Journal of Environmental Chemical Engineering, 9(4), Article 105616. https://doi.org/10.1016/j.jece.2021.105616

  • Li, J., Peng, Y., Gu, G., & Wei, S. (2007). Factors affecting simultaneous nitrification and denitrification in an SBBR treating domestic wastewater. Frontiers of Environmental Science and Engineering in China, 1, 246-250. https://doi.org/10.1007/s11783-007-0042-0

  • Ni, B. J., Pan, Y., Guo, J., Virdis, B., Hu, S., Chen, X., & Yuan, Z. (2017). Denitrification processes for wastewater treatment. In I. Moura, J. J. G. Moura, S. R. Pauleta & L. B. Maia (Eds.), Metalloenzymes in Denitrification: Applications and Environmental Impacts (pp. 368-418). The Royal Society of Chemistry. https://doi.org/10.1039/9781782623762-00368

  • Pham, D. V., & Bach, L. T. (2014). Immobilized bacteria by using PVA (Polyvinyl alcohol) crosslinked with Sodium sulfate. International Journal of Science and Engineering, 7(1), 41-47. https://doi.org/10.12777/ijse.7.1.41-47

  • Rahimi, S., Modin, O., & Mijakovic, I. (2020). Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnology Advances, 43, Article 107570. https://doi.org/10.1016/j.biotechadv.2020.107570

  • Rajpal, A., Srivastava, G., Bhatia, A., Singh, J., Ukai, Y., & Kazmi, A. A. (2021). Optimization to maximize nitrogen removal and microbial diversity in PVA-gel based process for treatment of municipal wastewater. Environmental Technology and Innovation, 21, Article 101314. https://doi.org/10.1016/j.eti.2020.101314

  • Rodríguez-Gómez, L. E., Rodríguez-Sevilla, J., Hernández, A., & Álvarez, M. (2021). Factors affecting nitrification with nitrite accumulation in treated wastewater by oxygen injection. Environmental Technology, 42(5), 813-825. https://doi.org/10.1080/09593330.2019.1645742

  • Rodziewicz, J., Ostrowska, K., Janczukowicz, W., & Mielcarek, A. (2019). Effectiveness of nitrification and denitrification processes in biofilters treating wastewater from de-icing airport runways. Water (Switzerland), 11(3), Article 630. https://doi.org/10.3390/w11030630

  • Ruscalleda Beylier, M., Balaguer, M. D., Colprim, J., Pellicer-Nàcher, C., Ni, B. J., Smets, B. F., Sun, S. P., & Wang, R. C. (2011). Biological nitrogen removal from domestic wastewater. Comprehensive Biotechnology, 6, 329-340. https://doi.org/10.1016/B978-0-08-088504-9.00533-X

  • Services, N. W. C. (2016). Section 3 sewage characteristics and effluent discharge requirements. Malaysian Sewage Industry Guidelines, 4, 27-34.

  • Singh, N. K., Singh, J., Bhatia, A., & Kazmi, A. A. (2016). A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment. Water Science and Technology, 73(1), 113–123. https://doi.org/10.2166/wst.2015.466

  • Sun, S. P., Nàcher, C. P. I., Merkey, B., Zhou, Q., Xia, S. Q., Yang, D. H., Sun, J. H., & Smets, B. F. (2010). Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios: A review. Environmental Engineering Science, 27(2), 111–126. https://doi.org/10.1089/ees.2009.0100

  • Suruhanjaya Perkhidmatan Air Negara. (2016). Section 2 Planning, Material and Design. https://www.span.gov.my/article/view/malaysian-sewerage-industry-guidelines-msig

  • Trygar, R. (2009). Nitrogen Control in Wastewater Treatment Plants (2nd Ed.). TREECo Center.

  • Tuyen, N. V., Ryu, J. H., Yae, J. B., Kim, H. G., Hong, S. W., & Ahn, D. H. (2018). Nitrogen removal performance of anammox process with PVA-SA gel bead crosslinked with sodium sulfate as a biomass carrier. Journal of Industrial and Engineering Chemistry, 67, 326-332. https://doi.org/10.1016/j.jiec.2018.07.004

  • Water Environment Federation. (2007). Chapter 22: Biological nutrient removal processes. https://enviro2.doe.gov.my/ekmc/wp-content/plugins/download-attachments/includes/download.php?id=200697

  • Wang, Y., Liu, Y., Feng, M., & Wang, L. (2018). Study of the treatment of domestic sewage using PVA gel beads as a biomass carrier. Journal of Water Reuse and Desalination, 8(3), 340-349. https://doi.org/10.2166/wrd.2017.181

  • Zhang, S., Chen, J., Yuan, J., & Wang, G. (2021). Response of simultaneous nitrification-denitrification to do increments in continuously aerated biofilm reactors for aquaculture wastewater treatment. Water Practice and Technology, 16(4), 1067-1077. https://doi.org/10.2166/wpt.2021.062

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST-3462-2022

Download Full Article PDF

Share this article

Related Articles