Home / Regular Issue / JTAS Vol. 31 (4) Jul. 2023 / JST-3746-2022

 

Extraction of Metalloporphyrins Using Subcritical Toluene-Assisted Thermally Stable Ionic Liquid

Nor Faizatulfitri Salleh, Suzana Yusup, Pradip Chandra Mandal and Muhammad Syafiq Hazwan Ruslan

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 4, July 2023

DOI: https://doi.org/10.47836/pjst.31.4.22

Keywords: 1-butyl-3-methylimidazolium octylsulfate, heavy metals, heavy oil upgrading, metalloporphyrins, subcritical toluene

Published on: 3 July 2023

Due to the depleting production of conventional petroleum, heavy oil is turned to as an alternative. However, the presence of trace nickel and vanadium in heavy oil poses problems for the refining process in producing lighter-end products. Such problems are its tendency to poison the catalyst, accumulate during distillation, and corrode the equipment. The objective of this work is to remove the metal porphyrins from model oil using the thermally stable ionic liquid 1-butyl-3-methylimidazolium octylsulfate, [BMIM][OS] assisted by subcritical toluene (above boiling point, 110.6°C and below a critical point, 318.6°C at 41.264 bar) in a novel attempt. The experiments were conducted at 150ºC to 210ºC under a mixing time of 30 to 90 minutes while the pressure was monitored. Four metal porphyrins are used: nickel etioporphyrin, nickel tetraphenylporphyrin, vanadium oxide etioporphyrin, and vanadium oxide tetraphenylporphyrin. The results show that more than 40% of removal is achieved for all metal porphyrins, which shows great potential for further technological improvement. The Nuclear Magnetic Resonance (NMR) shows that the ionic liquid did not decompose at the process temperature, which proves great stability. The extraction of metal porphyrins follows the second-order extraction model with an R2 of more than 0.98.

  • Agrawal, R., & Wei, J. (1984). Hydrodemetalation of nickel and vanadium porphyrins. 1. Intrinsic kinetics. Industrial & Engineering Chemistry Process Design and Development, 23(3), 505-514. https://doi.org/10.1021/i200026a017

  • Ali, S. A., Suboyin, A., & Haj, H. B. (2018). Unconventional and conventional oil production impacts on oil price - Lessons learnt with glance to the future. Journal of Global Economics, 06(1), Article 1000286. https://doi.org/10.4172/2375-4389.1000286

  • Ameur, Z. O., & Husein, M. M. (2012). Salting-out induced aggregation for selective separation of vanadyl-oxide tetraphenyl-porphyrin from heavy oil. Energy & Fuels, 26(7), 4420-4425. https://doi.org/10.1021/ef300482h

  • Bara, J. E., Camper, D. E., Gin, D. L., & Noble, R. D. (2010). Room-temperature ionic liquids and composite materials: Platform technologies for CO 2 capture. Accounts of Chemical Research, 43(1), 152-159. https://doi.org/10.1021/ar9001747

  • Bates, E. D., Mayton, R. D., Ntai, I., & Davis, J. H. (2002). CO2 capture by a task-specific ionic liquid. Journal of the American Chemical Society, 124(6), 926-927. https://doi.org/10.1021/ja017593d

  • Beni, A. A., & Esmaeili, A. (2020). Biosorption, an efficient method for removing heavy metals from industrial effluents: A review. Environmental Technology & Innovation, 17, Article 100503. https://doi.org/10.1016/j.eti.2019.100503

  • Bonné, R. L. C., van Steenderen, P., & Moulijn, J. A. (2001). Hydrogenation of nickel and vanadyl tetraphenylporphyrin in absence of a catalyst: A kinetic study. Applied Catalysis A: General, 206(2), 171-181. https://doi.org/10.1016/S0926-860X(00)00587-1

  • Castañeda, L. C., Muñoz, J. A. D., & Ancheyta, J. (2014). Current situation of emerging technologies for upgrading of heavy oils. Catalysis Today, 220-222, 248-273. https://doi.org/10.1016/j.cattod.2013.05.016

  • Chen, H. J., & Massoth, F. E. (1988). Hydrodemetalation of vanadium and nickel porphyrins over sulfided cobalt-molybdenum/alumina catalyst. Industrial & Engineering Chemistry Research, 27(9), 1629-1639. https://doi.org/10.1021/ie00081a012

  • Dávila, M. J., Aparicio, S., Alcalde, R., García, B., and Leal, J. M. (2007). On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid. Green Chemistry, 9(3), 221-232. https://doi.org/10.1039/B612177B.

  • Davis, Jr., J. H. & Fox, P. A. (2003). From curiosities to commodities: Ionic liquids begin the transition. Chemical Communications, 11, 1209-1212, https://doi.org/10.1039/b212788a.

  • Dobler, D., Schmidts, T., Klingenhöfer, I., & Runkel, F. (2013). Ionic liquids as ingredients in topical drug delivery systems. International Journal of Pharmaceutics, 441(1-2), 620-627. https://doi.org/10.1016/j.ijpharm.2012.10.035

  • Elektorowicz, M., & Muslat, Z. (2008). Removal of heavy metals from oil sludge using ion exchange textiles. Environmental Technology, 29(4), 393-399. https://doi.org/10.1080/09593330801984290

  • Fadeev, A. G., & Meagher, M. M. (2001). Opportunities for ionic liquids in recovery of biofuels. Chemical Communications, 3, 295-296. https://doi.org/10.1039/b006102f

  • Fauzi, A. H. M., & Amin, N. A. S. (2012). An overview of ionic liquids as solvents in biodiesel synthesis. Renewable and Sustainable Energy Reviews, 16(8), 5770-5786. https://doi.org/10.1016/j.rser.2012.06.022

  • Fleischer, E. B. (1970). Structure of porphyrins and metalloporphyrins. Accounts of Chemical Research, 3(3), 105-112. https://doi.org/10.1021/ar50027a004

  • Germani, R., Mancini, M., Savelli, G., & Spreti, N. (2007). Mercury extraction by ionic liquids: Temperature and alkyl chain length effect. Tetrahedron Letters, 48(10), 1767-1769. https://doi.org/10.1016/j.tetlet.2007.01.038

  • Hijo, A. A. C. T., Maximo, G. J., Costa, M. C., Batista, E. A. C., & Meirelles, A. J. A. (2016). Applications of ionic liquids in the food and bioproducts industries. ACS Sustainable Chemistry & Engineering, 4(10), 5347-5369. https://doi.org/10.1021/acssuschemeng.6b00560

  • Huddleston, J. G., Willauer, H. D., Swatloski, R. P., Visser, A. E., & Rogers, R. D. (1998). Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction. Chemical Communications. 16, 1765-1766. https://doi.org/10.1039/A803999B

  • Hung, C. W., & Wei, J. (1980). The kinetics of porphyrin hydrodemetallation. 1. Nickel compounds. Industrial & Engineering Chemistry Process Design and Development, 19(2), 250-257. https://doi.org/10.1021/i260074a009

  • Ikyereve, R. E., Nwankwo, C., & Mohammed, A. (2014). Selective removal of metal ions from crude oil using synthetic zeolites. International Journal of Scientific and Research Publications, 4(5), 411-413.

  • Jiménez, A. E., & Bermúdez, M. D. (2007). Ionic liquids as lubricants for steel-aluminum contacts at low and elevated temperatures. Tribology Letters, 26(1), 53-60. https://doi.org/10.1007/s11249-006-9182-9

  • Karadas, F., Atilhan, M., & Aparicio, S. (2010). Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy & Fuels, 24(11), 5817-5828. https://doi.org/10.1021/ef1011337

  • Khaidzir, S., Masri A. N., Ruslan, M. S. H., & Mutalib, M. I. A. (2021). Ultrasonic-assisted technique as a novel method for removal of naphthenic acid from model oil using piperidinium-based ionic liquids. ACS Omega, 6(14), 9629-9637.

  • Kumano, M., Yabutani, T., Motonaka, J., & Mishima, Y. (2006). Recovery and extraction of heavy metal ions using ionic liquid as green solvent. International Journal of Modern Physics B, 20(25n27), 4051-4056. https://doi.org/10.1142/S0217979206040842

  • Liu, C. Z., Wang, F., Stiles, A. R., & Guo, C. (2012). Ionic liquids for biofuel production: Opportunities and challenges. Applied Energy, 92, 406-414. https://doi.org/10.1016/j.apenergy.2011.11.031

  • Mandal, P., & Alias, M. A. (2017). Investigation of asphaltene under subcritical water treatment. International Journal of Materials, Mechanics and Manufacturing, 5(1), 11-15. https://doi.org/10.18178/ijmmm.2017.5.1.279

  • Mandal, P. C., Goto, M., & Sasaki, M. (2014). Removal of nickel and vanadium from heavy oils using supercritical water. Journal of the Japan Petroleum Institute, 57(1), 18-28. https://doi.org/10.1627/jpi.57.18

  • Mandal, P. C., Wahyudiono, Sasaki, M., & Goto, M. (2011). Nickel removal from nickel-5,10,15,20-tetraphenylporphine using supercritical water in absence of catalyst: A basic study. Journal of Hazardous Materials, 187(1-3), 600-603. https://doi.org/10.1016/j.jhazmat.2011.01.059

  • Mandal, P. C., Wahyudiono, Sasaki, M., & Goto, M. (2012a). Non-catalytic vanadium removal from vanadyl etioporphyrin (VO-EP) using a mixed solvent of supercritical water and toluene: A kinetic study. Fuel, 92(1), 288-294. https://doi.org/10.1016/j.fuel.2011.07.002

  • Mandal, P. C., Wahyudiono, Sasaki, M., & Goto, M. (2012b). Nickel removal from nickel etioporphyrin (Ni-EP) using supercritical water in the absence of catalyst. Fuel Processing Technology, 104, 67-72. https://doi.org/10.1016/j.fuproc.2011.07.004

  • Manjare, S., & Dhingra, K. (2019). Supercritical fluids in separation and purification: A review. Materials Science for Energy Technologies, 2(3), 463-484. https://doi.org/10.1016/j.mset.2019.04.005

  • Moniruzzaman, M., Tahara, Y., Tamura, M., Kamiya, N., & Goto, M. (2010). Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chemical Communications, 46(9), Article 1452. https://doi.org/10.1039/b907462g

  • Monti, D., Egiziano, E., Burgalassi, S., Chetoni, P., Chiappe, C., Sanzone, A., & Tampucci, S. (2017). Ionic liquids as potential enhancers for transdermal drug delivery. International Journal of Pharmaceutics, 516(1-2), 45-51. https://doi.org/10.1016/j.ijpharm.2016.11.020

  • Muhammad, N., Elsheikh, Y. A., Mutalib, M. I. A., Bazmi, A. A., Khan, R. A., Khan, H., Rafiq, S., Man, Z., & khan, I. (2015). An overview of the role of ionic liquids in biodiesel reactions. Journal of Industrial and Engineering Chemistry, 21, 1-10. https://doi.org/10.1016/j.jiec.2014.01.046

  • Painter, P., Veytsman, B., & Youtcheff, J. (2015). Guide to asphaltene solubility. Energy & Fuels, 29(5), 2951-2961. https://doi.org/10.1021/ef502918t

  • Qu, J., Blau, P. J., Dai, S., Luo, H., & Meyer, H. M. (2009). Ionic liquids as novel lubricants and additives for diesel engine applications. Tribology Letters, 35(3), 181-189. https://doi.org/10.1007/s11249-009-9447-1

  • Ramdin, M., de Loos, T. W., & Vlugt, T. J. H. (2012). State-of-the-art of CO2 capture with ionic liquids. Industrial & Engineering Chemistry Research, 51(24), 8149-8177. https://doi.org/10.1021/ie3003705

  • Rana, M. S., Sámano, V., Ancheyta, J., & Diaz, J. A. I. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 86(9), 1216-1231. https://doi.org/10.1016/j.fuel.2006.08.004

  • Salehizadeh, H., Mousavi, M., Hatamipour, S., & Kermanshahi, K. (2007). Microbial demetallization of crude oil using Aspergillus sp.: Vanadium oxide octaethyl porphyrin (VOOEP) as a model of metallic petroporphyrins. Iranian Journal of Biotechnology, 5(4), 226-231.

  • Santos, R. G., Loh, W., Bannwart, A. C., & Trevisan, O. V. (2014). An overview of heavy oil properties and its recovery and transportation methods. Brazilian Journal of Chemical Engineering, 31(3), 571-590. https://doi.org/10.1590/0104-6632.20140313s00001853

  • Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A., Sathishkumar, K., Madhavan, J., & Rahman, P. K. S. M. (2019). Integrated remediation processes toward heavy metal removal/recovery from various environments - A review. Frontiers in Environmental Science, 7, 1-15. https://doi.org/10.3389/fenvs.2019.00066

  • Siriwardana, A. I. (2015). Industrial applications of ionic liquids. In A. A. J. Torriero (Ed.), Electrochemistry in Ionic Liquids (pp. 563-603). Springer International Publishing. https://doi.org/10.1007/978-3-319-15132-8_20

  • Sowmiah, S., Srinivasadesikan, V., Tseng, M. C., & Chu, Y. H. (2009). On the chemical stabilities of ionic liquids. Molecules, 14(9), 3780-3813. https://doi.org/10.3390/molecules14093780

  • Sun, X., Luo, H., & Dai, S. (2012). Ionic liquids-based extraction: A promising strategy for the advanced nuclear fuel cycle. Chemical Reviews, 112(4), 2100-2128. https://doi.org/10.1021/cr200193x

  • Tavakoli, O., & Yoshida, H. (2005). Effective recovery of harmful metal ions from squid wastes using subcritical and supercritical water treatments. Environmental Science & Technology, 39(7), 2357-2363. https://doi.org/10.1021/es030713s

  • Trucillo, P., Campardelli, R., Scognamiglio, M., & Reverchon, E. (2019). Control of liposomes diameter at micrometric and nanometric level using a supercritical assisted technique. Journal of CO2 Utilization, 32, 119-127. https://doi.org/10.1016/j.jcou.2019.04.014

  • Vancov, T., Alston, A. S., Brown, T., & McIntosh, S. (2012). Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy, 45, 1-6. https://doi.org/10.1016/j.renene.2012.02.033

  • Visser, A. E., Swatloski, R. P., Reichert, W. M., Davis Jr., J. H., Rogers, R. D., Mayton, R., Sheff, S., & Wierzbicki, A. (2001). Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chemical Communications, 1, 135-136. https://doi.org/10.1039/b008041l

  • Wang, S., Xu, X., Yang, J., & Gao, J. (2011). Effect of the carboxymethyl chitosan on removal of nickel and vanadium from crude oil in the presence of microwave irradiation. Fuel Processing Technology, 92(3), 486-492. https://doi.org/10.1016/j.fuproc.2010.11.001

  • Welter, K., Salazar, E., Balladores, Y., Márquez, O. P., Márquez, J., & Martínez, Y. (2009). Electrochemical removal of metals from crude oil samples. Fuel Processing Technology, 90(2), 212-221. https://doi.org/10.1016/j.fuproc.2008.09.004

  • Yuan, J., Yang, Y., Zhou, X., Ge, Y., & Zeng, Q. (2019). A new method for simultaneous removal of heavy metals and harmful organics from rape seed meal from metal-contaminated farmland. Separation and Purification Technology, 210, 1001-1007. https://doi.org/10.1016/j.seppur.2018.09.056

  • Zhao, X., Xu, C., & Shi, Q. (2015). Porphyrins in heavy petroleums: A review. In C. Xu & Q. Shi (Eds.), Structure and Modeling of Complex Petroleum Mixtures (Vol. 168: pp. 39-70). Springer International Publishing. https://doi.org/10.1007/430_2015_189

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST-3746-2022

Download Full Article PDF

Share this article

Related Articles