e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Abebe, A., Akseli, I., Sprockel, O., Kottala, N., & Cuitiño, A. M. (2014). Review of bilayer tablet technology. International Journal of Pharmaceutics, 461(1-2), 549-558. https://doi.org/10.1016/j.ijpharm.2013.12.028
Arifin, A., Gunawan, G., & Yani, I. (2022). Plagiarism and similarity checker of porous titanium alloy/hydroxyapatite composite using powder compaction route. Turnitin Universitas Sriwiajaya. https://repository.unsri.ac.id/66950/
Bellini, M., Walther, M., & Bodmeier, R. (2019). Evaluation of manufacturing process parameters causing multilayer tablets delamination. International Journal of Pharmaceutics, 570, Article 118607. https://doi.org/10.1016/j.ijpharm.2019.118607
Boonyongmaneerat, Y., & Schuh, C. A. (2006). Contributions to the interfacial adhesion in co- sintered bilayers. Metallurgical and Materials Transactions A, 37(5), 1435-1442. https://doi.org/10.1007/s11661-006-0088-9
Brewin, P. R., Coube, O., Doremus, P., & Tweed, J. H. (2008). Modelling of Powder Die Compaction (Vol. 329). Springer.
Canta, T., & Frunza, D. (2003). Friction-assisted pressing of PM components. Journal of Materials Processing Technology, 143-144, 645-650. https://doi.org/10.1016/S0924-0136(03)00475-8
Castrati, L., Mazel, V., Busignies, V., Diarra, H., Rossi, A., Colombo, P., & Tchoreloff, P. (2016). Comparison of breaking tests for the characterization of the interfacial strength of bilayer tablets. International Journal of Pharmaceutics, 513(1-2), 709-716. https://doi.org/10.1016/j.ijpharm.2016.10.005
Chang, S. Y., & Sun, C. C. (2019). Effect of particle size on interfacial bonding strength of bilayer tablets. Powder Technology, 356, 97-101. https://doi.org/10.1016/j.powtec.2019.07.100
Chávez, J., Jiménez Alemán, O., Flores Martínez, M., Vergara-Hernández, H. J., Olmos, L., Garnica-González, P., & Bouvard, D. (2020). Characterization of Ti6Al4V–Ti6Al4V/30Ta bilayer components processed by powder metallurgy for biomedical applications. Metals and Materials International, 26(2), 205-220. https://doi.org/10.1007/s12540-019-00326-y
Chen, W., Wang, J., Wang, S., Chen, P., & Cheng, J. (2020). On the processing properties and friction behaviours during compaction of powder mixtures. Materials Science and Technology (United Kingdom), 36(10), 1057-1064. https://doi.org/10.1080/02670836.2020.1747779
Cristofolini, I., Molinari, A., Pederzini, G., & Rambelli, A. (2018). From experimental data, the mechanics relationships describing the behaviour of four different low alloyed steel powders during uniaxial cold compaction. Powder Metallurgy, 61(1), 10-20. https://doi.org/10.1080/00325899.2017.1361507
Edosa, O. O., Tekweme, F. K., & Gupta, K. (2022). A review on the influence of process parameters on powder metallurgy parts. Engineering and Applied Science Research, 49(3), 433- 443.
El-Nasr, A. A., Saleh, A., & Alshennawy, A. A. (2020). Porosity measurement of iron oxide by using computer vision system. International Journal of Engineering Research and Technology, 13(4), 653-659.
Elsayed, M. M., Aboelez, M. O., Mohamed, M. S., Mahmoud, R. A., El-Shenawy, A. A., Mahmoud, E. A., Al-Karmalawy, A. A., Santali, E. Y., Alshehri, S., Elsadek, M. E. M., El Hamd, M. S., & Ramadan, A. E. H. (2022). Tailoring of rosuvastatin calcium and atenolol bilayer tablets for the management of hyperlipidemia associated with hypertension: a preclinical study. Pharmaceutics, 14(8), Article 1629.
Favrot, N., Besson, J., Colin, C., & Delannay, F. (1999). Cold Compaction and Solid-State Sintering of WC-Co-Based Structures: Experiments and Modeling. Journal of the American Ceramic Society, 82(5), 1153-1161. https://doi.org/10.3390/pharmaceutics14081629
Grigoriev, S. N., Dmitriev, A. M., Korobova, N. V., & Fedorov, S. V. (2019). A cold-pressing method combining axial and shear flow of powder compaction to produce high-density iron parts. Technologies, 7(4), 2-17. https://doi.org/10.3390/technologies7040070
Hasan, M., Zhao, J., Huang, Z., Wei, D., & Jiang, Z. (2019). Analysis and characterization of WC- 10Co and AISI 4340 steel bimetal composite produced by powder-solid diffusion bonding. The International Journal of Advanced Manufacturing Technology, 103(9), 3247-3263. https://doi.org/10.1007/s00170-019-03709-y
Kulkarni, H., & Dabhade, V. V. (2019). Green machining of powder-metallurgy-steels (PMS): An overview. Journal of Manufacturing Processes, 44, 1-18. https://doi.org/10.1016/j.jmapro.2019.05.009
Masooth, P. H. S., Bharathiraja, G., Jayakumar, V., & Palani, K. (2022). Microstructure and mechanical characterisation of ZrO2 reinforced Ti6Al4V metal matrix composites by powder metallurgy method. Materials Research Express, 9(2), Article 020003. https://doi.org/10.1088/2053-1591/ac5352
Mihalcea, E., Vergara-Hernández, H. J., Jimenez, O., Olmos, L., Chávez, J., & Arteaga, D. (2021). Design and characterization of Ti6Al4V/20CoCrMo− highly porous Ti6Al4V biomedical bilayer processed by powder metallurgy. Transactions of Nonferrous Metals Society of China, 31(1), 178- 192. https://doi.org/10.1016/S1003-6326(20)65486-3
Ojo-kupoluyi, O. J., Tahir, S. M., Hanim, M. A., Anuar, M. S., & Dele-Afolabi, T. T. (2019). Investigating the effect of sintering temperature on the microstructure and hardness of cemented tungsten carbide/steel bilayer. IOP Conference Series: Materials Science and Engineering, 469(1), Article 012020. https://doi.org/10.1088/1757-899X/469/1/012020
Radchenko, A. K. (2004). Mechanical properties of unsintered pressings. I. phenomenological relations for unsintered pressing strength. Powder Metallurgy and Metal Ceramics, 43(9), 447-460. https://doi.org/10.1007/s11106-004-0003-0
Rajab, M., & Coleman, D. S. (1985). Density distributions in complex shaped parts made from iron Powders. Powder Metallurgy, 28(4), 207-216.
Rowe, J. M., & Nikfar, F. (2017). Modeling approaches to multilayer tableting. In P. Pandey & R. Bharadwaj (Eds.), Predictive Modeling of Pharmaceutical Unit Operations (pp. 229-251). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100154-7.00009-0
Santos, T. D. E. D. S., Regiani, I., Rocha, R. J., & Rocco, J. A. F. F. (2018). Copper/iron brake friction for military aircraft application. Journal of Aerospace Technology and Management, 10, Article e2018. https://doi.org/10.5028/jatm.v10.834
Sinka, C. (2007). Modelling powder compaction. KONA Powder and Particle Journal, 25, 4-22. https://doi.org/10.14356/kona.2007005
Sopchak, N. D., & Misiolek, W. Z. (2000). Density gradients in multilayer compacted iron powder parts. Materials and Manufacturing Processes, 15(1), 65-79. https://doi.org/10.1080/10426910008912973
Thomazic, A., Guennec, Y. L., Kamdem, Y., Pascal, C., Chaix, J. M., Doremus, P., Imbault, D., Bouvard, D., & Doré, F. (2010, October 10-14). Fabrication of bimaterial components by conventional powder metallurgy. [Paper presentation]. In Proceedings of the International Powder Metallurgy World Congress & Exhibition, Florence, Italy.
Wang, J. Z., Qu, X. H., Yin, H. Q., Yi, M. J., & Yuan, X. J. (2009). High velocity compaction of ferrous powder. Powder Technology, 192(1), 131-136. https://doi.org/10.1016/j.powtec.2008.12.007
Wang, L., Wang, D., Huang, S., Guo, X., Wan, G., Fan, J., & Chen, Z. (2019). Controllable shape changing and tristability of bilayer composite. ACS Applied Materials & Interfaces, 11(18), 16881-16887. https://doi.org/10.1021/acsami.8b21214
Yohannes, B., Gonzalez, M., Abebe, A., Sprockel, O., Nikfar, F., Kiang, S., & Cuitiño, A. M. (2017). Discrete particle modeling and micromechanical characterization of bilayer tablet compaction. International Journal of Pharmaceutics, 529(1-2), 597-607. https://doi.org/10.1016/j.ijpharm.2017.07.032
Yuan, X., Qu, X., Yin, H., Feng, Z., Tang, M., Yan, Z., & Tan, Z. (2021). Effects of sintering temperature on densification, microstructure and mechanical properties of al-based alloy by high-velocity compaction. Metals, 11(2), Article 218. https://doi.org/10.3390/met11020218
Yusoff, S. M., Tahir, S. M., Hanim, M. A. A., Supeni, E. E., & Anuar, M. S. (2021). Fabrication and evaluation of density distribution in green bilayer iron powder compact. Materials and Manufacturing Processes, 36(6), 660-667. https://doi.org/10.1080/10426914.2020.1854474
Zadeh, H. K. (2010). Finite Element Analysis and Experimental Study of Metal Powder Compaction. Queen’s University.
ISSN 1511-3701
e-ISSN 2231-8542