PERTANIKA PROCEEDINGS

Home / Pertanika Proceedings / / J

 

J

J

Pertanika Proceedings, Volume J, Issue J, J

Keywords: J

Published on: J

J

  • Abdullah, N. A., Ramli, S., Mamat, N. H., Khan, S., & Gomes, C. (2017). Chemical and biosensor technologies for wastewater quality management. International Journal of Advanced Research and Publications, 1(6), 1-10.

  • Aliman, K. H. (2019, February 28). Tariff review may relieve Indah Water’s structural deficit. The Edge Markets Weekly. https://www.theedgemarkets.com/article/tariff-review-may-relieve-indah-waters-structural-deficit

  • Alketife, A. M., Judd, S., & Znad, H. (2017). Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris. Environmental Technology, 38(1), 94-102. https://doi.org/10.1080/09593330.2016.1186227

  • Alva, M. S., Luna-Pabello, V. M., Cadena, E., & Ortíz, E. (2013). Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresource Technology, 146, 744-748. https://doi.org/10.1016/j.biortech.2013.07.061

  • Beuckels, A., Smolders, E., & Muylaert, K. (2015). Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Research, 77, 98-106. https://doi.org/10.1016/j.watres.2015.03.018

  • Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88, 3425-3431. https://doi.org/10.1016/j.apenergy.2010.12.064

  • Cheah, W. Y., Show, P. L., Juan, J. C., Chang, J. S., & Ling, T. C. (2018). Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation. Energy Conversion and Management, 164, 188-197.

  • Cifuentes, A. S., González, M. A., Vargas, S., Hoeneisen, M., & González, N. (2003). Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biological Research, 36(3-4), 343-357. http://dx.doi.org/10.4067/S0716-97602003000300006

  • Deng, X. Y., Gao, K., Zhang, R. C., Addy, M., Lu, Q., Ren, H. Y., Chen, P., Liu, Y. H., & Ruan, R. (2017). Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production. Bioresource Technology, 243, 417-425. https://doi.org/10.1016/j.biortech.2017.06.141

  • Hach. (2021, November 19). Water analysis handbook. Hach. https://www.hach.com/wah

  • Huang, Y., Lou, C., Luo, L., & Wang, X. C. (2021). Insight into nitrogen and phosphorus coupling effects on mixotrophic Chlorella vulgaris growth under stably controlled nutrient conditions. Science of the Total Environment, 752, Article 141747. https://doi.org/10.1016/j.scitotenv.2020.141747

  • Kang, C. D., An, J. Y., Park, T. H., & Sim, S. J. (2006). Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochemical Engineering Journal, 31(3), 234-238. https://doi.org/10.1016/j.bej.2006.08.002

  • Kim, G., Mujtaba, G., & Lee, K. (2016). Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae, 31(3), 257-266. https://doi.org/10.4490/algae.2016.31.8.18

  • Kiran, B., Pathak, K., Kumar, R., & Deshmukh, D. (2014). Cultivation of Chlorella sp. IM-01 in municipal wastewater for simultaneous nutrient removal and energy feedstock production. Ecological Engineering, 73, 326-330. https://doi.org/10.1016/j.ecoleng.2014.09.094

  • Kotoula, D., Iliopoulou, A., Irakleous-Palaiologou, E., Gatidou, G., Aloupi, M., Antonopoulou, P., Fountoulakis, M. S., & Stasinakis, A. S. (2020). Municipal wastewater treatment by combining in series microalgae Chlorella sorokiniana and macrophyte Lemna minor: Preliminary results. Journal of Cleaner Production, 271, Article 122704. https://doi.org/10.1016/j.jclepro.2020.122704

  • Lam, M. K., Yusoff, M. I., Uemura, Y., Lim, J. W., Khoo, C. G., Lee, K. T., & Ong, H. C. (2017). Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 103,197-207. https://doi.org/10.1016/j.renene.2016.11.032

  • Ledda, C., Tamiazzo, J., Borinb, M., & Adani, F. (2016). A simplified process of swine slurry treatment by primary filtration and Haematococcus pluvialis culture to produce low cost astaxanthin. Ecological Engineering, 90, 244-250. http://dx.doi.org/10.1016/j.ecoleng.2016.01.033

  • Lee, S. H., Ahn, C. Y., Jo, B. H., Lee, S. A., Park, J. Y., An, K. G., & Oh, H. M. (2013). Increased microalgae growth and nutrient removal using balanced N:P ratio in wastewater. Journal of Microbiology and Biotechnology, 23(1), 92-98. https://doi.org/10.4014/jmb.1210.10033

  • Li, F., Cai, M., Lin, M., Huang, X., Wang, J., Zheng, X., Wu, S., & An, Y. (2019). Accumulation of astaxanthin was improved by the nonmotile cells of Haematococcus pluvialis. BioMed Research International, 2019, Article 8101762. https://doi.org/10.1155/2019/8101762

  • Li, H., Zhang, Y., Liu, J., Shen, Z., Li, A., Ma, T., Feng, Q., & Sun, Y. (2019). Treatment of high-nitrate wastewater mixtures from MnO2 industry by Chlorella vulgaris. Bioresource Technology, 291(May), Article 121836. https://doi.org/10.1016/j.biortech.2019.121836

  • Ling, Y., Sun, L. P., Wang, S. Y., Lin, C. S. K., & Sun, Z. (2019). Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochemical Engineering Journal, 148, 162-169. https://doi.org/10.1016/j.bej.2019.05.012

  • Liu, Y., & Yildiz, I. (2019). Bioremediation of minkery wastewater and astaxanthin production by Haematococcus pluvialis. International Journal of Global Warming, 19(1-2), 145-157. https://doi.org/10.1504/IJGW.2019.101778

  • Loladze, I., & Elser, J. J. (2011). The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters, 14(3), 244-250. https://doi.org/10.1111/j.1461-0248.2010.01577.x

  • Lu, W., Wang, Z., Wang, X., & Yuan, Z. (2015). Cultivation of Chlorella sp. using raw diary wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology, 192, 382-388. https://doi.org/10.1016/j.biortech.2015.05.094

  • Nam, K., Lee, H., Heo, S. W., Chang, Y. K., & Han, J. I. (2017). Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production. Journal of Applied Phycology, 29(3), 1171-1178. https://doi.org/10.1007/s10811-016-0987-0

  • Odjadjare, E. C., Mutanda, T., Chen, Y. F., & Olaniran, A. O. (2018). Evaluation of pre-chlorinated wastewater effluent for microalgal cultivation and biodiesel production. Water, 10, 1-13. https://doi.org/10.3390/w10080977

  • Pacheco, D., Rocha, A. C. S., Garcia, A., Bóia, A., Pereira, L., & Verdelhos, T. (2021). Municipal wastewater: A sustainable source for the green microalgae Chlorella vulgaris biomass production. Applied Science, 11(5), 2207-2223. https://doi.org/10.3390/app11052207

  • Pan, M., Zhu, X., Pan, G., & Angelidak, I. (2021). Integrated valorization system for simultaneous high strength organic wastewater treatment and astaxanthin production from Haematococcus pluvialis. Bioresource Technology, 326, Article 124761. https://doi.org/10.1016/j.biortech.2021.124761

  • Podevin, M., Francisci, D. D., Holdt, S. L., & Angelidak, I. (2015). Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method. Journal of Applied Phycology, 27, 1415-1423. https://doi.org/10.1007/s10811-014-0468-2

  • Qi, M., Yang, Y., Zhang, X., Zhang, X., Wang, M., Zhang, W., Lu, X., & Tong, Y. (2020). Pollution reduction and operating cost analysis of municipal wastewater treatment in China and implication for future wastewater management. Journal of Cleaner Production, 253, Article 120003. https://doi.org/10.1016/j.jclepro.2020.120003

  • Ramsundar, P., Guldhe, A., Singh, P., & Bux, F. (2017). Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresource Technology, 227, 82-92. https://doi.org/10.1016/j.biortech.2016.12.037

  • Ren, Y., Deng, J., Huang, J., Wu, Z., Yi, Z., Bi, Y. G., & Chen, F. (2021). Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. Bioresource Technology, 340, Article 125736.

  • Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., & Nagappan, T. (2020). Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), 2-11. https://doi.org/10.1080/26388081.2020.1715256

  • Ryu, B. G., Kim, E. J., Kim, H. S., Kim, J., Choi, Y. E., & Yang, J. W. (2014). Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnology and Bioprocess Engineering, 19(2), 201-210. https://doi.org/10.1007/s12257-013-0250-3

  • Sato, H., Nagare, H., Huynh, T. N. C., & Komatsu, H. (2015). Development of a new wastewater treatment process for resource recovery of carotenoids. Water Science and Technology, 72(7), 1191-1197. https://doi.org/10.2166/wst.2015.330

  • Shah, M. M. R. (2019). Astaxanthin production by microalgae Haematococcus pluvialis through wastewater treatment: Waste to resource. In S. Gupta & F. Bux (Eds.), Application of microalgae in wastewater treatment (pp. 17-39). Springer. https://doi.org/10.1007/978-3-030-13909-4_2

  • Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science, 7, Article 531. https://doi.org/10.3389/fpls.2016.00531

  • Sipaúba-Tavares, L. H., Berchielli-Moraisa, F. A., & Scardoeli-Truzzia, B. (2015). Growth of Haematococcus pluvialis Flotow in alternative media. Brazilian Journal of Biology, 75(4), 796-803. https://doi.org/10.1590/1519-6984.23013

  • Tan, X., Meng, J., Tang, Z., Yang, L., & Zhang, W. (2020). Optimization of algae mixotrophic culture for nutrients recycling and biomass/lipids production in anaerobically digested waste sludge by various organic acids addition. Chemosphere, 244, Article 125509. https://doi.org/10.1016/j.chemosphere.2019.125509

  • Tao, R., Kinnunen, V., Praveenkumar, R., Lakaniemi, A. M., & Rintala, J. A. (2017). Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge. Journal of Applied Phycology, 29(6), 2845-2856. https://doi.org/10.1007/s10811-017-1175-6

  • Thomas, D. G., Minj, N., Mohan, N., & Rao, P. H. (2016). Cultivation of microalgae in domestic wastewater for biofuel applications - An upstream approach. Journal of Algal Biomass Utilization, 7(1), 62-70.

  • Trivedi, T., Jain, D., Mulla, N. S. S., Mamatha, S. S., Damare, S. R., Sreepada, R. A., Kumar, S., & Gupta, V. (2019). Improvement in biomass, lipid production and biodiesel properties of a euryhaline Chlorella vulgaris NIOCCV on mixotrophic cultivation in wastewater from a fish processing plant. Renewable Energy, 139(3), 326-335. https://doi.org/10.1016/j.renene.2019.02.065

  • Umamaheswari, J., Kavitha, M. S., & Shanthakumar, S. (2020). Outdoor cultivation of Chlorella pyrenoidosa in paddy-soaked wastewater and a feasibility study on biodiesel production from wet algal biomass through in-situ transesterification. Biomass and Bioenergy, 143, Article 105853. https://doi.org/10.1016/j.biombioe.2020.105853

  • Wang, F., Gao, B., Wu, M., Huang, L., & Zhang, C. (2019). A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35. Algal Research, 39, Article 101466. https://doi.org/10.1016/j.algal.2019.101466

  • Wang, Y., Guo, W., Yen, H. W., Ho, S. H., Lo, Y. C., Cheng, C. L., Ren, N., & Chang, J. S. (2015). Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology, 198, 619-625. https://doi.org/10.1016/j.biortech.2015.09.067

  • Wen, Y., He, Y., Ji, X., Li, S., Chen, L., Zhou, Y., Wang, M., &Chen, B. (2017). Isolation of an indigenous Chlorella vulgaris from swine wastewater and characterization of its nutrient removal ability in undiluted sewage. Bioresource Technology, 243, 247-253. https://doi.org/10.1016/j.biortech.2017.06.094

  • Whitton, R., LeMével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371-378. https://doi.org/10.1016/j.watres.2015.12.054

  • Wiel, J. B. V., Mikulicz, J. D., Boysen, M. R., Hashemi, N., Kalgren, P., Nauman, L. M., Baetzold, S. J., Powell, G. G., He, H., & Hashemi, N. N. (2017). Characterization of Chlorella vulgaris and Chlorella protothecoides using multi-pixel photon counters in a 3D focusing optofluidic system. RSC Advance, 7, 4402-4408. https://doi.org/10.1039/C6RA25837A

  • Wu Y. H., Yang, J., Hu, H. Y. & Yu, Y. (2013). Lipid-rich microalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent. Ecological Engineering, 60, 155-159. https://doi.org/10.1016/j.ecoleng.2013.07.066

  • Wu, L. F., Chen, P. C., & Lee, C. M. (2013). The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. International Biodeterioration and Biodegradation, 85, 506-510. https://doi.org/10.1016/j.ibiod.2013.05.016

  • Zhang, L., Lu, H., Zhang, Y., Li, B., Liu, Z., Duan, N., & Liu, M. (2016). Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater. Journal of Applied Phycology, 28(2), 1031-1039. https://doi.org/10.1007/s10811-015-0640-3

ISSN

e-ISSN 3083-9475

Article ID

J

Download Full Article PDF

Share this article

Recent Articles