J
Pertanika Proceedings, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Akid, A. S. M, Hossain, S., Munshi, M. I. U., Elahi, M. M. A., Sobuz, M. H. R., Tam, V. W. Y., & Islam, M. S. (2021). Assessing the influence of fly ash and polypropylene fiber on fresh, mechanical and durability properties of concrete. Journal of King Saud University - Engineering Sciences, 33, 1-11. https://doi.org/10.1016/j.jksues.2021.06.005
Abbas, A. G. N., Aziz, F. N. A. A., Abdan, K., Nasir, N. A. M., & Huseien, G. F. (2022). A state-of-the-art review on fibre-reinforced geopolymer composites. Construction and Building Materials, 330, Article 127187. https://doi.org/10.1016/j.conbuildmat.2022.127187
Alengaram, U. J., Mahmud, H., & Jumaat, M. Z. (2010). Comparison of mechanical and bond properties of oil palm kernel shell concrete with normal weight concrete. International Journal of Physical Sciences, 5(8), 1231-1239.
ASTM C 805-02. (2002). Standard test method for rebound number of hardened concrete C 805. United States: American Society for Testing and Material. https://www.academia.edu/14787775/Standard_Test_Method_for_Rebound_Number_of_Hardened_Concrete
ASTM C1202. (2012). Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. American Society for Testing and Materials https://doi.org/10.1520/C1202-12.2
ASTM C1585-13. (2013). Standard test method for measurement of rate of absorption of water by hydraulic cement concretes. ASTM International, 41(147), 1-6. https://doi.org/10.1520/C158513.2
ASTM C597-09. (2010). Standard test method for pulse velocity through concrete. Annual Book of ASTM Standards. American Society for Testing and Materials. https://www.studocu.com/row/document/dogu-akdeniz-universitesi/civil-engineering/kupdfnet-astm-c-597-02-ultrasonic-pulse-velocity/36387906
Awal, A. S. M. A., & Mohammadhosseini, H. (2016). Green concrete production incorporating waste carpet fiber and palm oil fuel ash. Journal of Cleaner Production, 137, 157-166. https://doi.org/10.1016/j.jclepro.2016.06.162
Babafemi, A. J., & Olusola, K. O. (2012). Influence of curing media on the compressive strength of Palm Kernel Shell (PKS) concrete. International Journal of Recent Research and Applied Studies, 13(1), 180-185.
BS EN 12390-3. (2009). Testing hardened concrete - Part 3 : Compressive strength of test specimens. https://www.thenbs.com/PublicationIndex/documents/details?Pub=BSI&DocID=288816
BS EN 12390-5. (2009). Testing hardened concrete - Part 5 : Flexural strength of test specimens. https://kupdf.net/download/bs-en-12390-5-2009-part-5-flexural-strength-of-test-specimens_58caa120dc0d60ab1033902f_pdf
BS EN 12390-6. (2009). Testing hardened concrete - Part 6 : Tensile splitting strength of test specimens. https://pdfcoffee.com/bs-en-12390-6-2009-testing-hardened-concrete-part-6-tensile-splitting-strength-of-test-specimens-pdf-free.html
BS EN 12390-8. (2009). Testing hardened concrete - Part8: Depth of penetration of water under pressure. British Standard. https://pdfcoffee.com/bs-en-12390-8-3-pdf-free.html
Guan, W., Qi, Q., Zhang, Z., & Nan, S. (2020). Effect of sand particle size on microstructure and mechanical properties of gypsum-cemented similar materials. Materials, 13(3), 1-16. https://doi.org/10.3390/ma13030765
Huda, M. N., Jumat, M. Z. Bin, & Islam, A. B. M. S. (2016). Flexural performance of reinforced oil palm shell & palm oil clinker concrete (PSCC) beam. Construction and Building Materials, 127, 18-25. https://doi.org/10.1016/j.conbuildmat.2016.09.106
Joshi, P., & Chan, C. (2002). Rapid chloride permeability testing. Concrete Construction - World of Concrete, 47(12), 37-43.
Karakoç, M. B., Türkmen, I., Maraş, M. M., Kantarci, F., & Demirboğa, R. (2016). Sulfate resistance of ferrochrome slag based geopolymer concrete. Ceramics International, 42(1), 1254-1260. https://doi.org/10.1016/j.ceramint.2015.09.058
Khan, M. M. H., Guong Wei, L., Deepak, T. J., & Nair, S. (2016). Use of oil palm shell as replacement of coarse aggregate for investigating properties of concrete. International Journal of Applied Engineering Research, 11(4), 2379-2383.
Lim, S. K., Tan, C. S., Chen, K. P., Lee, M. L., & Lee, W. P. (2013). Effect of different sand grading on strength properties of cement grout. Construction and Building Materials, 38, 348-355. https://doi.org/10.1016/j.conbuildmat.2012.08.030
Maghfouri, M., Shafigh, P., & Aslam, M. (2018). Optimum oil palm shell content as coarse aggregate in concrete based on mechanical and durability properties. Advances in Materials Science and Engineering, 2018, Article 4271497. https://doi.org/10.1155/2018/4271497
Manjunath, R., Narasimhan, M. C., & Umesha, K. M. (2019). Studies on high performance alkali activated slag concrete mixes subjected to aggressive environments and sustained elevated temperatures. Construction and Building Materials, 229, Article 116887. https://doi.org/10.1016/j.conbuildmat.2019.116887
Mannan, M. A., Alexander, J., Ganapathy, C., & Teo, D. C. L. (2006). Quality improvement of oil palm shell (OPS) as coarse aggregate in lightweight concrete. Building and Environment, 41(9), 1239-1242. https://doi.org/10.1016/j.buildenv.2005.05.018
Mannan, M. A., & Ganapathy, C. (2004). Concrete from an agricultural waste-oil palm shell (OPS). Building and Environment, 39(4), 441-448. https://doi.org/10.1016/j.buildenv.2003.10.007
Mannan, M. A., & Ganapathy, C. U. (2002). Engineering properties of concrete with oil palm shell as coarse aggregate. Construction and Building Materials, 16, 29-34. https://doi.org/10.1016/S0950-0618(01)00030-7
Mo, K. H., Alengaram, U. J., Jumaat, M. Z., & Yap, S. P. (2015). Feasibility study of high volume slag as cement replacement for sustainable structural lightweight oil palm shell concrete. Journal of Cleaner Production, 91, 297-304. https://doi.org/10.1016/j.jclepro.2014.12.021
Mo, K. H., Yeoh, K. H., Bashar, I. I., Alengaram, U. J., & Jumaat, M. Z. (2017). Shear behaviour and mechanical properties of steel fibre-reinforced cement-based and geopolymer oil palm shell lightweight aggregate concrete. Construction and Building Materials, 148, 369-375. https://doi.org/10.1016/j.conbuildmat.2017.05.017
Momoh, E. O., & Osofero, A. I. (2019). Behaviour of oil palm broom fibres (OPBF) reinforced concrete. Construction and Building Materials, 221, 745-761. https://doi.org/10.1016/j.conbuildmat.2019.06.118
Muthusamy, K., Zulkepli, N. A., & Mat Yahaya, F. (2013). Exploratory study of oil palm shell as partial sand replacement in concrete. Research Journal of Applied Sciences, Engineering and Technology, 5(7), 2372-2375. https://doi.org/10.19026/rjaset.5.4667
Nadh, V. S., Krishna, C., Natrayan, L., Kumar, K. M., Nitesh, K. J. N. S., Raja, G. B., & Paramasivam, P. (2021). Structural behavior of nanocoated oil palm shell as coarse aggregate in lightweight concrete. Journal of Nanomaterials, 2021, Article 4741296. https://doi.org/10.1155/2021/4741296
Olanipekun, E. A., Olusola, K. O., & Ata, O. (2006). A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates. Building and Environment, 41(3), 297-301. https://doi.org/10.1016/j.buildenv.2005.01.029
Qasem, A. A., Almekhlafi, M. A., & Yahaya, F. M. (2021). The effect of palm oil fuel clinker powder and cockleshell powder as cement replacement on durability properties of the concrete mortar. IOP Conference Series: Earth and Environmental Science, 682(1), Article 012037. https://doi.org/10.1088/1755-1315/682/1/012037
Rahman, F. F., Prakoso, W. A., Tjahjono, E., Sentosa, B. O. B., & Orentilize, M. (2020). Load-displacement response of oil palm shell concrete compressive test using digital image correlation. IOP Conference Series: Earth and Environmental Science, 498(1), 012037. https://doi.org/10.1088/1755-1315/498/1/012037
Stanish, K. D., Hooton, R. D., & Thomas, M. D. (1997). Testing the chloride penetration resistance of concrete : A literature review. Transportation Research Board. https://trid.trb.org/view/690568
Sutherland, W. J., Barnard, P., Broad, S., Clout, M., Connor, B., Cote, I. M., Dicks, L. V., Doran, H., Entwistle, A. C., Fleishman, E., Fox. M., Gaston, K. J., Gibbons, D. W., Jiang, Z., Keim, B., Lickorish, F. A., Markillie, P., Monk, K. A., Pearce-Higgins. J. W., … & Ockendon, N. (2017). A 2017 horizon scan of emerging issues for global conservation and biological diversity. Trends in Ecology and Evolution, 32(1), 31-40. https://doi.org/10.1016/j.tree.2016.11.005
Teo, D. C. L., Mannan, M. A., & Kurian, V. J. (2006). Structural concrete using oil palm shell (OPS) as lightweight aggregate. Turkish Journal of Engineering and Environmental Sciences, 30(4), 251-257.
Teo, D. C. L., Mannan, M. A., Kurian, V. J., & Ganapathy, C. (2007). Lightweight concrete made from oil palm shell (OPS): Structural bond and durability properties. Building and Environment, 42(7), 2614-2621. https://doi.org/10.1016/j.buildenv.2006.06.013
Ting, T. Z. H., Rahman, M. E., & Lau, H. H. (2020). Sustainable lightweight self-compacting concrete using oil palm shell and fly ash. Construction and Building Materials, 264, Article 120590. https://doi.org/10.1016/j.conbuildmat.2020.120590
Tripathi, M., Sahu, J. N., Ganesan, P., Monash, P., & Dey, T. K. (2015). Effect of microwave frequency on dielectric properties of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS. Journal of Analytical and Applied Pyrolysis, 112, 306-312. https://doi.org/10.1016/j.jaap.2015.01.007
UNEP. (2019). Sand and sustainability: Finding new solutions for environmental governance of global sand resources. United Nations Environment Programme. https://wedocs.unep.org/20.500.11822/28163