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ABSTRACT
The ability of a robot to plan its own motion seems pivotal to its autonomy, and that is why the motion planning 
has become part and parcel of modern intelligent robotics.  In this paper, about 100 research are reviewed and 
briefly described to identify and classify the amount of the existing work for each motion planning approach.  
Meanwhile, around 200 research were used to determine the percentage of the application of each approach.  
The paper includes comparative tables and charts showing the application frequency of each approach in the 
last 30 years.  Finally, some open areas and challenging topics are presented based on the reviewed papers.
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INTRODUCTION
A fundamental need in robotics is to have the algorithms that convert high level specifications of 
tasks from human into low-level descriptions movements.  The terms motion planning and trajectory 
planning are often used for these kinds of problems.  A classic version of motion planning problem, 
which is sometimes referred to as the piano mover’s problem, is defined as follows:

Let  be a robot system having k degree of freedom and free to move within two or three 
dimensional domain v which is bounded by various obstacles whose geometry is known to the 
system.  The motion planning problem for β is, given the initial and desired final placements of 
the system β, to determine whether a continuous motion from the initial placement to the final one 
exists during which β avoids collision with the known obstacles, and if so, to plan such a motion 
(Halperin, 1994).

In this pure formulation of the problem, the only interest is on the geometric aspects of the 
motion and ignores many issues, such as acceleration, speed, uncertainty or incompleteness in the 
geometric data, control strategies for executing the motion, etc. 

The basic issues and steps in any motion planning formulation are: Computation of 
Configuration, Object Representation, Approaches to Motion planning, Search Methods, and Local 
Optimization of motion (Hwang & Narendra, 1992).

From this early piano mover’s problem, motion planning has evolved to address a huge number 
of variations on the problem, allowing applications in areas such as animation of digital characters, 
surgical planning, automatic verification of factory layouts, mapping of unexplored environments, 
navigation of changing environments, assembly sequencing, and drug design.  New applications 
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bring new considerations that must be addressed in the design of motion planning algorithms.  In this 
review, after surveying about 200 papers in the field, the amount of existing works were collected 
and classified for future analysis.

In the following sections, each group of approaches are firstly introduced, and this is followed 
by an analysis of the amount of usages of each approach through different time sections.  Finally, 
based on the reviewed researches in the field of motion planning, the open areas and future challenges 
in this field are discussed.

MATERIAL AND METHODS
A considerable amount of research is available in the field of robot motion planning approaches.  
The discipline was launched in mid 60’s, but it was not until the work of Lozano and Wesley (1979) 
on spatial planning that motion planning drew most researchers’ attention.  The current developed 
methods are variations of a few general approaches, such as Bug Algorithms, Roadmap, Cell 
Decomposition, Potential Fields, Sampling-based motion planning, Kalman filtering, Heuristic 
Approaches and, Mathematical programming.  These methods are not necessarily mutually exclusive, 
and their combination is often used in developing a motion planner (Masehin & Amin Naseri, 2004; 
Dongbin & Jianqiang, 2006).  After surveying a total of 198 papers in the field (from 1980 to 2010), 
the amount of existing works for each approach was identified and classified.  In total, ninety seven 
papers were used to briefly describe each approach.  The following sections introduce each of these 
approaches and mention the most important works of each one.

Bug Algorithm
Even a simple planner can present interesting and difficult issues.  The Bug1 and Bug2 algorithms 
(Lumelsky & Stepanov, 1987) are among the earliest and simplest sensor-based planners with 
provable guarantees.  These algorithms assume the robot is a point operating in the plane with a 
contact sensor or a zero range sensor to detect obstacles.  When the robot has a finite range (non-zero 
range) sensor, the Tangent Bug algorithm (Kamon et al., 1996) is a Bug derivative that can then 
use that sensor information to find shorter paths to the goal.  The Bug and Bug-like algorithms are 
straightforward to implement.  Moreover, a simple analysis shows that their success is guaranteed, 
when possible.  These algorithms require two behaviours; namely, Motion to the Goal and Boundary 
Following.  It has been proven that the path length in Bug 1 and Bug 2 has the following condition:
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Where, d(qstart, qgoal) is the Euclidian distance between the start and goal, pi is the perimeter 
of the ith obstacle, n is the number of obstacles, and ni is the number of the intersection between 
M-line and the ith obstacle.

A Performance Comparison of Bug Navigation Algorithms is provided in James and Bräunl 
(2007).

Potential Fields
The Potential Fields concept shown in Fig. 1 (Choset et al., 2005) was first introduced by Oussama 
Khatib (1986).  A potential function is a differentiable real-valued function U : Rm → R.  The value 
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of a potential function can be viewed as energy and hence, the gradient of the potential is force.  
The gradient is a vector which points in the direction that locally maximally increases U.
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A robot in the potential field method is treated as a point that is represented in the configuration 
space as a particle under the influence of an artificial potential field U whose local variations reflect 
the structure of the free space.

The potential function can be defined over free space as the sum of an Attractive potential 
pulling the robot towards the goal configuration and a Repulsive potential pushing the robot away 
from the obstacles (Latombe, 1991).

U q U q U qatt rep= +^ ^ ^h h h
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Fig. 1: Potential Fields, (a) Attractive Potential field near the goal, (b) Repulsive potential 
field near the obstacles, (c) Interaction between attractive and repulsive potential fields, and 

(d) the final path.
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The attractive (U1att (q)) and repulsive (Urep(q)) potential functions can be formulized as follows:
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Where ζ is a parameter used to scale the effect of the attractive potential, the Q* ∈ R factor 
allows the robot to ignore obstacles sufficiently far away from it and η can be viewed as a gain on 
the repulsive gradient.

Due to its low computational costs, the potential Fields method remains as a major path planning 
approach, especially when a high degree of freedom is involved (Hwang & Narendra, 1992).

Roadmaps
In the roadmap approach, the free Configuration space (Cfree), i.e. the set of feasible motions, is 
retracted, reduced to, or mapped onto a network of one-dimensional lines.  This particular approach 
is also called the retraction, skeleton, or highway approach.  The search for a solution is limited to 
the network, and motion planning becomes a graph-searching problem.  In this approach, motion 
planning is done in three steps; first, the robot is moved from its starting configuration to a point on 
the roadmap, using a canonical method; second, the robot is moved from goal configuration to a point 
on the roadmap likewise; and third, the two points on the roadmap are connected using lines in the 
roadmap.  The roadmap must represent all topologically distinct feasible paths in C-space (Hwang 
& Narendra, 1992).  Otherwise, the motion planning algorithm is not complete.  The well-known 
roadmaps are Visibility graph (Asano et al., 1985), Voronoi diagram (Osamu, 1989), Silhouette 
(Canny, 1988), Cell Decomposition (Keil & Sack, 1985), and the Subgoal Network (Faverjon & 
Toumassoud, 1987) (Fig. 2).

Sampling–Based Motion Planning
The Probabilistic Roadmap planner (PRM) (Kavraki et al., 1996) demonstrated the tremendous 
potential of the sampling-based methods.  PRM fully exploits the fact that it is cheap to check 
whether or not a single robot configuration is in Qfree.  PRM creates a roadmap in Qfree.  It uses rather 
coarse sampling to obtain the nodes of the roadmap and very fine sampling to obtain the roadmap 
edges, which are the free paths between node configurations.  After the roadmap has been generated, 
planning queries can be answered by connecting the user-defined initial and goal configurations 
to the roadmap and using the roadmap to solve the path-planning problem at hand.  Initially, node 
sampling in PRM was done using a uniform random distribution.  This planner is called basic PRM.  
It was observed that random sampling worked very well for a wide variety of problems (Owermars 
& Svestka, 1995) and ensured the probabilistic completeness of the planner (Kavaraki et al., 
1998).  However, it was also observed by Kavaraki (1995) that random sampling is only a baseline 
sampling for PRM and many other sampling schemes are useful and also bound to be efficient for 
many planning problems as the analysis of the planner revealed.  Today, these sampling schemes 
range from importance sampling in areas that during the course of calculations are found difficult 
to explore, to deterministic sampling such as quasirandom sampling and sampling on a grid.

PRM was conceived as a multiple-query planner.  When PRM is used to answer a single query, 
some modifications are made: the initial and goal configurations are added to the roadmap nodes 
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Fig. 2: Roadmaps; (a) Visibility graph, (b) Voronoi diagram, (c) Cell decomposition, 
(d) Silhouette, (e) Subgoal networks
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and the construction of the roadmap is done incrementally and stopped when the query at hand can 
be answered.  However, PRM may not be the fastest planner to be used for single queries.  There 
are some other sampling-based planners that are particularly effective for single-query planning, 
including the Expansive-Spaces Tree planner (EST) (Hsu, 2000) and the Rapidly-exploring Random 
Tree planner (RRT) (Kuffner & LaValle, 2000).  These planners exhibit excellent experimental 
performance.

A combination of the above methods is also possible and desirable in many cases.  The 
Sampling-Based Roadmap of Trees (SRT) planner (Bekris et al., 2003) constructs a PRM-style 
roadmap of single-query-planner trees.  It has been observed that for very difficult path planning 
problems, single-query planners need to construct large trees in order to find a solution.  In some 
cases, the cost of constructing a large tree may be higher than the cost of constructing a roadmap 
of with SRT.  This illustrates the distinction between the multiple-query and single-query planning, 
and its importance.

Despite their simplicity, which is exemplified in the basic PRM planner, the sampling-based 
planners are capable of dealing with robots with many degrees of freedom and with many different 
constraints.  Among other, the sampling-based planners can take into account kinematic and dynamic 
constraints (Hsu et al., 2002), closed-loop kinematics (Han & Amato 2001), stability constraints 
(Kuffner et al., 2001), reconfigurable robots (Fitch et al., 2003), energy constraints (Lamiraux & 
Kavaraki 2001), contact constraints (Ji & Xiao, 2001), visibility constraints (Danner & Kavaraki 
2000) and others.  Clearly, some planners are better at dealing with specific types of constraints than 
the others.  For example, EST and RRT planners are particularly useful for problems that involve 
kinematic and dynamic constraints. 

Meanwhile, PRM, EST, RRT, SRT, and their variants have changed the way path planning 
is performed for high-dimensional robots.  They have also paved the way for the development of 
planners for problems beyond basic path planning (Choset et al., 2005).

Kalman Filtering
Heretofore, the planner has been assumed to have the access to either an exact geometric description 
of its environment or a suite of sensors (e.g. sonar) that provide perfect information about the 
environment.  In this part, cases for which the robot’s knowledge of the world derives from 
measurements provided by imperfect, noisy sensors are first to be considered.  The Kalman filter is 
one of the most useful estimation tools available today.  In other words, the Kalman filtering provides 
a recursive method of estimating the state of a dynamical system in the presence of noise (Maybeck, 
1990).  A key feature of the Kalman filter is that it simultaneously maintains the estimates of both 
the state vector and the estimate error covariance matrix (P) which are equivalent to saying that 
the output of a Kalman filter is a Gaussian probability density function (PDF) with the mean and 
covariance P.  In the context of localization, the Kalman filter output is then a distribution of likely 
robot positions instead of a single position estimate.  As such, the Kalman filter is a specific example 
of a more general technique known as the probabilistic estimation techniques (Choset et al., 2005).

Mathematical Programming
The mathematical programming approach represents the requirement of obstacle avoidance with 
a set of inequalities on the configuration parameters.  Motion planning is then formulated as a 
mathematical optimization problem that finds a curve between the start and goal configurations 
minimizing a certain scalar quantity.  Since such an optimization is non-linear and has many 
inequality constraints, a numerical method is used to find the optimal solution.  Reiswijk et al. (1992) 



A Review on Robot Motion Planning Approaches 

21Pertanika J. Sci. & Technol. Vol. 20 (1) 2012

implemented a method of planning geometrical trajectories for two cooperating robots in an assembly 
cell.  A trajectory of robot joints in joint-interpolated space is partitioned into separate convex or 
concave sub-paths by Sinha and Ho (1992).  In this way, they abstract the trajectory in such a way 
that it becomes smoother for piecewise trajectories, and the information amount required to describe 
a path reduces drastically.  Delaplace et al. (1992) implemented vision-sensor-based information 
to a real world tricycle robot.  A closed-loop control system is used to maintain the distance of 
the robot and a straight or curved trajectory.  Papanikolopoulos and Khoshla (1992) suggested a 
method to solve the robotic visual tracking problem by combining linear quadratic Gaussian control 
technique with the optical flow technique of vision-based motion tracking.  Meanwhile, Sinha and 
Benmounah (1992) computed a safe path from the start to goal points by applying the trigonometric 
calculations of angles, along with the steering wheel of the robot which must be orientated.  Reiswijk 
et al. (1992) proposed a new approach to optimize pre-calculated trajectories in joint space.  They 
focused on a simultaneous integration of time-optimal curve, and thus benefited from a parallel 
execution which reduced computational time.  An initial path which possibly has collision with 
obstacles is iteratively improved by performing a dynamic programming search in a sub-manifold 
of the C-space containing the current path in (Barraquand & Ferbach, 1993).  Gifford and Murphy 
(1996) applied dynamic programming by triangulating the workspace and finding the shortest paths 
through vertex-nodes.  Habibi et al. (2007) presented a novel algorithm for path planning of point 
robots in 2D known environment using binary integer programming.

Heuristic Approaches
The aforementioned conventional approaches suffer from many drawbacks, such as high time 
complexity in high dimensions, and trapped in local minima, which make them inefficient in 
practice.  On the other hand, it is proven that the path planning problem is NP-complete (Canny, 
1988).  Therefore, probabilistic algorithms have been developed, including Probabilistic Roadmaps 
and Rapidly-exploring Random Trees, with high-speed implementation as their major advantages.  
Other related approaches in motion planning are Level set and Linguistic Geometry.  To fix the 
local minima problem, many heuristic and Meta-heuristic algorithms are used in motion planning, 
such as the combination of the Simulated Annealing technique and Potential Fields.  Other related 
approaches include Neural Network (Zhu & Yang, 2006), Genetic Algorithms (Quingfu et al., 2007), 
Simulated Annealing (Manousakis et al., 2005), Ant Colony Optimization (Mohamad et al., 2006), 
Particle Swarm Optimization (Saska et al., 2006), Stigmergy (Cazangi et al., 2006), Wavelet Theory 
(Pai & Reissel, 1998), Tabu Search (Masehian & Amin Naseri, 2004) and Fuzzy Logic (Lee & Wu, 
2003).  Heuristic algorithms do not guarantee to find a solution, but if they do, are likely to do so 
much faster than deterministic methods.

RESULTS AND DISCUSSIONS
A total of ninety seven papers were surveyed in this research, covering a sufficient depth of works 
in the robot motion planning field for the time span of 1980 to 2010.  One hundred and ninety 
eight papers were considered so as to provide different comparisons among these approaches.  At 
the same time, the researchers also tried to bring together major applications of conventional and 
heuristic techniques in the literature and to come to conclusions about the nature and the course 
of research in motion planning discipline.  The motion planning algorithms were started by some 
simple methods, and after a while, some more complex methods were also developed.  After that, 
the heuristic methods were developed to increase the effectiveness and efficiency of the solutions.  
As illustrated in Fig. 3 (considering a total of 198 papers), the application of the heuristic methods 
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was increased due to their success in coping with the problems of combinatorial explosion and 
local minima.  As shown in Fig. 3, the 80th decade was the climax period for the conventional 
methods and, the appearance period for the heuristic methods.  Meanwhile, the 90th decade was 
the descent time for the conventional approaches and improvement of the heuristic ones.  The last 
10 years (2001-2010) were the climax period for the heuristic methods, and the appearance period 
for the compound and meta-heuristic methods.  Some studies which are in this field include those 
by Masehian and Amin Naseri (2004) and Dongbin and Jianqiang (2006).  It seems that in the 
near future, the application of the heuristic approaches will decline, whereas the application of the 
compound and meta-heuristic methods will improve in order to achieve some better solutions in 
shorter time and lesser cost, but with more effectiveness and efficiency.

Tables 1-3 and Fig. 4-5 represent the percentage of each approach and compare these approaches 
together.  In total, about 25% of the papers are related to conventional approaches and 75% to 
heuristic approaches.  The severe different between the portions of the conventional and heuristic 
methods indicates the rate of interest to the heuristic methods, according to their ability to decrease 
the time and error.

Table 1 (considering a total of 198 papers) shows the portions of the surveyed major methods 
in detail.  As given in Table 1, it is indicated that research were mostly done in the fields of fuzzy 
logic, neural networks and genetic algorithms, whereas fewer studies were conducted in the areas 
of visibility graph and cell decomposition.

Table 2 and Fig. 4 (considering a total of 50 papers in the field of Conventional approaches) 
provide a more detailed analysis on the conventional approaches and their relative application in 
robot motion planning.  As presented in this table, about 32% of the research was done in the field 
of mathematical programming.

Table 3 and Fig. 5 (considering a total of 148 papers in the field of heuristic approaches) show 
a more detailed analysis on the heuristic approaches and their relative application in robot motion 

92.7%

31.3%

23.1%

68.8%

76.9%

80’s 90’s 00-10

Classic Heuristic

7.3%

Fig. 3: A Comparison of the conventional and heuristic algorithms
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planning.  It is important to note that the Fuzzy logic is the most researched approach in the field.  
The complexities of the modern systems emphasize the type of imprecision rather than randomness.  
Even in a fully automated system, the critical parametric changes have to be made by a human 
expert, who usually expresses his control and diagnostic strategies linguistically as a set of heuristic 
decision rules.  Fuzzy logic, as a mathematical tool to handle uncertainties, has been used to model 
the systems that are hard to define precisely.  As a methodology, the fuzzy set theory incorporates 
imprecision and subjectivity into the model formulation and solution process.  Therefore, the fuzzy 
logic has the most portions among the heuristic methods for robot motion planning.

TABLE 1 
 A Comparison of major motion planning approaches

Approach
10 year periods (from 1980 up to now)

Total
80’s (%) 90’s (%) 00-10 (%)

BUG algorithms 18.18 2.13 2.50 3.92
Visibility graph 9.09 2.13 0.00 1.96
Voronoi diagram 18.18 0.00 2.50 2.94
Silhouette 18.18 2.13 0.00 2.94
Subgoal networks 9.09 2.13 0.00 1.96
Cell decomposition 9.09 2.13 0.00 1.96
Potential fields 9.09 4.26 0.00 2.94
Mathematical programming 0.00 17.02 2.50 8.82
Neural networks 9.09 14.89 12.50 12.75
Genetic algorithm 9.09 12.77 15.00 12.75
Simulated annealing 0.00 6.38 5.00 4.90
Ant colony optimization 0.00 6.38 12.50 7.84
Particle swarm optimization 0.00 4.26 12.50 5.88
Stigmergy 0.00 2.13 5.00 2.94
Wavelets 0.00 4.26 2.50 2.94
Tabu 0.00 4.26 2.50 3.92
Fuzzy 9.09 14.89 27.50 18.63

TABLE 2 
Conventional approaches in motion planning

Approach 80’s (%) 90’s (%) 00-10 (%) Total (%)

BUG algorithms 20 0.7 33 14.3
Visibility graph 10 0.7 0 7.1
Voronoi diagram 10 0 33 10.7
Silhouette 10 0.7 0 10.7
Subgoal networks 10 0.7 0 7.1
Cell decomposition 10 0.7 0 7.1
Potential fields 10 1.4 0 10.7
Mathematical programming 0 95.1 33 32.1
Total 100 100 100 100
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CURRENT ISSUES AND CHALLENGES IN THE FIELD OF MOTION PLANNING
According to the papers that were reviewed in this paper and the comparisons made between the 
different approaches in the field of robot motion planning, it is clear that some algorithms are 
more useful, and thus, there are better opportunities to do some research about them.  As shown in 
Tables 1-3, these approaches are fuzzy logic, neural networks, genetic algorithm and mathematical 
programming.  On the other hand, it seems that each approach, especially the conventional ones, 

TABLE 3 
Heuristic approaches in motion planning.

Approach 80’s (%) 90’s (%) 00-10 (%) Total (%)

Neural networks 33.3 21.2 13.2 17.6
Genetic algorithm 33.3 18.2 15.8 17.6
Simulated annealing 0.0 9.1 5.3 6.8
Ant colony optimization 0.0 9.1 13.2 10.8
Particle swarm optimization 0.0 6.1 13.2 9.5
Stigmergy 0.0 3.0 5.3 4.1
Wavelets 0.0 6.1 2.6 4.1
Tabu search 0.0 6.1 2.6 4.1
Fuzzy logic 33.3 21.2 28.9 25.7
Total 100 100 100 100

Mathematical 
programming

Potential 
fields

Cell 
decomposition

Subgoal 
networks

Visibility graph

Voronoi diagram

Silhouette

BUG algorithms

Fig. 4: The portion of each conventional approach
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Fig. 5: The portion of each heuristic approach

suffer from many drawbacks.  In order to improve the efficiency of these approaches, one of the 
best ways is to combine some of them together.

The overall paradigm of the most practical motion planners has seven main elements 
(Ahirkencheikh & Seireg, 1994), namely, Discretization of configuration space, Collision detection, 
Search Mechanism, Uncertainty, Completeness, Time and Local minima.  There are some areas 
in motion planning which seem to have come to an end.  For example, Potential-fields-Based 
approaches are well understood and that one should not simply report yet another minor variant 
of it, unless, of course, it has some significant contribution as is the case with harmonic potentials 
(Gupta & Del Pobil, 1998).

After analyzing the existing researches in the field of motion planning, the following new 
intellectual challenges, new applications, and emerging issues for motion planning are proposed:

• A crucial open issue: How does motion planning interact with perception and control modules?  
How can we merge the geometric model-based approaches with the reactive sensor-based 
approaches?

• Dealing with a partially unknown environment calls for the use of input from the real world.  
Online sensor-based motion planning should integrate vision and motion planning.  This raises 
another important issue, i.e., How do we combine sensing with motion planning in an incremental 
way?  This issue has recently received some attention.

• The new emerging field of micro-scale robots will present fertile ground and novel issues for 
motion planning research.  At such microscopic scales, thermodynamical laws will need to be 
taken into account.
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• New applications should be explored to keep this field alive.  The motion planning-type algorithms 
have a great application potential in virtual prototyping, mechanical design and ergonomics.  
CAD tools are becoming increasingly inexpensive and common.  There are possible applications 
of the motion planning-type algorithms in consumer technology, including computer animation 
and virtual reality.

• The advent of the so-called service robotics applications poses new major challenges.  Since 
planning is a prediction of the future, dealing with incompleteness, error in information robustness 
in uncertainty will become key issues in practical motion planning.

• Since motion planning is just a part of the humans interaction system with the world, an open 
future direction is how to integrate motion planning approaches with the other related problems, 
such as grasp planning, manipulation, and fine motion planning.

Each of the existing approaches for the motion planning has its own advantages and drawbacks.  
This is because each algorithm is for a specific goal and considers the priority among different 
performance criteria.  There are several measures for the performance of an algorithm, such as time 
for path traversal, velocity of manipulator links or joint, energy, actuator forces and proximity of 
obstacles.  A mathematical comparison between the time complexity and path length of some of 
the main algorithms is provided in Table 4.

TABLE 4
A mathematical comparison

Approach Advantage Disadvantage

Potential fields Real-Time Not complete
Cell decomposition Complete, Sound Heavy computation, time 
Visibility graph Complete and yields minimum 

length paths
Heavy computation, generates 

semi-free paths to the obstacles, 
time

Voronoi diagram Complete and generates roadmap 
with maximum distance

Possibly inefficient paths, time

Heuristic approaches Les time, parallel search Not complete, not sound
Exact cell decomposition Complete Heavy computation, time
Approximate cell 

decomposition
Sound and useful when only 

a coarse representation of 
workspace is available

Not complete

Bug 1 Complete Long paths, time
Bug 2 Complete Long paths, time

CONCLUSION
In this paper, after analyzing about 150 papers in the field of robot motion planning approaches, 
the amount of the existing works for each approach has been identified and classified.  This 
paper divides the motion planning algorithms into two major groups, namely, the Conventional 
Approaches and Heuristic Approaches.  The conventional approaches are BUG Algorithms, 
Roadmap, Cell Decomposition, Potential Fields, and, Mathematical programming, whereas the 
heuristic approaches include the Neural Network, Genetic Algorithms, Particle Swarm Optimization, 
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Ant Colony, Stigmergy, Wavelet Theory, Fuzzy Logic and Tabu Search.  After a brief introduction 
of each approach, the important works in each field were presented.  A complete discussion of the 
portion of each approach in the field of robot motion planning is also presented, including different 
comparative figures and charts.
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