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ABSTRACT

Clonal selection algorithm and discrete Hopfield neural network are extensively employed 
for solving higher-order optimization problems ranging from the constraint satisfaction 
problem to complex pattern recognition. The modified clonal selection algorithm is a 
comprehensive and less iterative immune-inspired searching algorithm, utilized to search 
for the correct combination of instances for Very large-scale integrated (VLSI) circuit 
structure. In this research, the VLSI circuit framework consists of Boolean 3-Satisfiability 
instances with the different complexities and number of transistors are considered. Hence, 
a hybrid modified clonal selection algorithm with discrete Hopfield neural network is 
well developed to optimize the configuration of VLSI circuits with different number of 
electronic components such as transistors as the instances. Therefore, the performance 
of the developed hybrid model was assessed experimentally with the standard models, 
HNNVLSI-3SATES and HNNVLSI-3SATGA in term of circuit accuracy, sensitivity, 
robustness and runtime to complete the verification process. The results have demonstrated 
the developed model, HNNVLSI-3SATCSA produced a minimum error (consistently 
approaching 0), better accuracy (more than 80%) and faster computational time (less 
than 125 seconds) against changes in the complexity in term of the number of transistors. 

Furthermore, the developed hybrid model is 
able to minimize the computational burden 
and configurational noises for the variant of 
VLSI circuits.

Keywords: 3-Satisfiability problem, clonal selection 
algorithm, genetic algorithm; Hopfield neural 
network; VLSI circuit
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INTRODUCTION

The unprecedented growth of hybrid computational approach combining neural network 
and the nature-inspired algorithm has benefited various applications such as in the circuit 
verification, face recognition, path optimization and many more (Erdener & Ozoguz, 2016; 
Jain et al., 2018; Elhoseny et al., 2018). The bombardments of hybrid verification model 
are fueled by the complexities of the problem as the industrial demand is challenging 
in this era. The conventional production of binary transistor units in Very Large-Scale 
Integration (VLSI) circuit requires an effective hybrid model to verify for any early fault 
due to power dissipation during the production (Constantinescu, 2003). Hence, the VLSI 
design with early verification will improve the performance of the VLSI configuration 
itself as the complexities are dependent on the number of transistors embedded in the 
system. We will propose a VLSI verification model by hybridizing the modified clonal 
selection algorithm (CSA) and Hopfield neural network (HNN) with the different number 
of bipolar transistors combination. The VLSI verification process tends to be tedious, due 
to the extensive searching process in the response to complexities (Kumar et al., 2018).

According to Mansor et al. (2016), the VLSI circuit can be configured into Boolean 
2-Satisfiability (2-SAT) and its higher order counterpart, 3-Satisfiability (3-SAT) logic 
form by representing the literals as a single unit of bipolar transistors. The results were 
encouraging with the circuit accuracy above 90 % for the different number of transistors. 
However, according to Global VLSI circuit perspective, it was observed that the method 
proposed by Mansor et al. (2016) required modification in terms of training algorithm 
to obtain a better result. The work of Zaruba et al. (2016) utilizing the nature-inspired 
algorithm which was an artificial bee colony (ABC) in optimizing VLSI design has been 
the motivation to venture the robust nature-inspired algorithm. In addition, Kumar et al. 
(2018) had successfully applied the adaptive particle swarm optimization in improving 
VLSI optimization. The 3-Satisfiability was chosen for this work due to the reducibility 
feature especially for the higher-order combinatorial problem. The work of Rai et al. (2018) 
discussed the reduction in polynomial 3-SAT for solving the Sudoku puzzle. 

Recently, a renowned immune-inspired algorithm, called clonal selection algorithm 
(CSA) has been utilized in various optimization problems ranging from the social media 
metrics, routing problem and pattern recognition. Basically, the CSA serves as other 
meta-heuristic or searching approach, probably effective than the standard standalone 
evolutionary algorithm such as a genetic algorithm (GA). Nevertheless, CSA is apparently 
different than GA, with the normalization and hypermutation will take place. The pioneer 
work of CSA has been coined by Layeb et al. (2010). Therefore, the modified clonal 
selection is selected due to the capability to work in tandem with discrete Hopfield neural 
network to tackle the logic programming such as Maximum k-Satisfiability problem 
(Mansor et al., 2017). The recent work by Zhang et al. (2019) had highlighted the ability 
of CSA with modified combinatorial recombinant in solving the various numerical 
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optimization problem. The results obtained were acceptable to support the effectiveness 
of CSA in solving the optimization problem. Since the VLSI circuit verification can be 
regarded as an optimization problem, this work motivates us to venture this approach. 
Then, Avatefipour and Nafisian (2018) proposed the modified CSA as a feature selection 
paradigm to predict the load consumption with minimum error and iterations. The work 
has demonstrated better performance metrics when CSA is deployed as a feature selection 
approach. The effectiveness of CSA has been a motivation in modeling cell formation and 
verification problems (Karoum & Elbenani, 2017). Pursuing that, Schmidt et al. (2017) had 
applied CSA in internet traffic classification, which was a common problem in computer 
sciences. Cai et al. (2015) utilized CSA in order to detect the community in a complex 
network. In addition, CSA is applied widely in higher scale hydrothermal scheduling 
problem (Swain et al., 2011). Since most of the work focus on the implementation of CSA 
in solving optimization directly, there is limited work on combining CSA with a neural 
network as a single model. The effectiveness of CSA will be able to boost the capability 
of HNN during training and retrieval stage. Thus, we will combine CSA with HNN in 
verifying VLSI circuit in 3-SAT form.

In order to test the capability of CSA with HNN, we compare with the standard genetic 
algorithm (GA) and exhaustive search (ES). The genetic algorithm is a standard nature 
inspired searching algorithm, inspired by the Darwin theory. The standard algorithm of 
GA being used in this work is based on the studies done by Aiman and Asrar (2015) and 
Kasihmuddin et al. (2016). The effectiveness of GA in optimizing the weight in Multi-
Criteria recommender system. This work has been coined by Kaur and Ratnoo (2019). 
Additionally, the exhaustive search is a primitive searching algorithm by deploying 
“enumerate and test” procedure in attaining the solution. In this work, the basis of 
exhaustive search is based on Mansor et al. (2016) and Kasihmuddin et al. (2017a). The 
ability of Hopfield neural network as a dynamic network especially to store the important 
information is the motivation of this research. Theoretically, Hopfield Neural Network is 
a class of recurrent neural network with sturdy capability in learning, acceptable memory, 
storage and mimics our biological brain system (Rojas, 2013). HNN was proposed by 
Hopfield (1982) to be utilized as a tool to solve notable combinatorial optimization problem 
and constraint satisfaction problem. In fact, HNN is an approach in artificial intelligence 
that demonstrates high-level learning behavior such as effective learning and retrieval 
mechanism. Since traditional HNN is prone to a few drawbacks (Gee et al., 1993), logic 
programming was embedded in HNN as a single intelligent unit (Abdullah, 1992). The 
effectiveness of HNN in VLSI verification has been demonstrated in the work of Mansor et 
al. (2016). The results were generally good, but the modifications need to be made to make 
it better. The main weaknesses of the work are the training method should be effective to 
truncate any circuit miss and errors especially if the number of transistors gets higher. In 
order to overwhelm the problem in complex VLSI circuit verification, the effectiveness 
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of the proposed hybrid model will be simulated by using VLSI circuit with a different 
combination of transistors.

The work is organized as follows. The materials and method discuss about VLSI circuit, 
Boolean 3 Satisfiability representation, 3SAT Programming in Hopfield Neural Network, 
Clonal Selection Algorithm in VLSI Configuration and Implementation. In the following 
section, the results and discussions are enclosed briefly. In the final section, the concluding 
remarks are included to summarize the output of the work. 

MATERIALS AND METHOD

Very Large-Scale Integration (VLSI) Circuit

The Boolean logic is the building block of the Boolean circuit units, utilized in various 
electronic components in the market. In theory, Very Large-Scale Integration (VLSI) can be 
defined as an amalgamation of an array of bipolar transistors to form an integrated circuit 
(IC) to be utilized in various devices (Kumar et al., 2018). The transistor plays an integral 
role as an automatic switch or controller for a specific IC. Due to the complexities of the 
devices, the VLSI circuit verification became tedious as the circuit structural configuration 
loss and defect might occur without any early alarm. 

According to Mansor et al. (2016), the conventional paradigm to configure the VLSI 
circuit by translating then circuit structure (transistors configuration) into a Conjunctive 
Normal Form (CNF) instances. The weakness of this method is the circuit structural 
configuration loss, specifically if the circuit components are getting higher in number. 
Therefore, a VLSI circuit inspired by the Boolean circuit is suggested by considering the 
3-SAT instances. The HNNVLSI-3SATCSA model shall magnify the early error or fault 
in the VLSI circuit. 

According to Figure 1, the configuration of the bipolar transistor was constructed 
by representing its Boolean 3-SAT representation. The single clauses of 3-SAT logic are 

Figure 1. Schematic diagram of VLSI circuit (Mansor et al., 2016)
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represented by a unit consisting of 3 bipolar transistors. Hence, the task of verifying the 
correct output is basically dependent on the number of transistors. The full implementation 
has been coined by Mansor et al. (2016). However, we verified the capability of CSA 
algorithm during the training phase to speed up the process per execution especially when 
dealing with more transistors. 

Boolean 3 Satisfiability Representation

Implicit knowledge is hard to be represented in standard mathematical formulation (Sun 
et al., 2007). The conversion from implicit information to explicit representation can be 
done efficiently by formulating Boolean Satisfiability (SAT). SAT has been applied in 
different areas of electronic automation and functional verification (Kanj et al., 2017). 
With respect to VLSI application, any abstract circuit can be represented in terms of SAT 
formulation for which the output value needs to be validated. The resulting formulation 
will be mapped onto an instance of SAT. Given a set of assignment that represents the 
state of each component, the aim is to find the assignment of the component that satisfy 
the output circuit. Boolean Satisfiability (SAT) is a problem of deciding if there is a truth 
assignment that makes the Boolean function to be true. Any n-SAT problem with n > 2 
where n is the number of variable, the problem can be reduced to 3-SAT (Shazli & Tahoori, 
2010). In this paper, the systematic form of SAT will be formulated. The properties of SAT 
that ensembles 3-SAT logical rule are as follows: 

The SAT formula comprises of an array of n variables, 𝑧1 ,𝑧2, … . ,𝑧𝑛, 𝑧 ∈ −1,1  inside 
each clause. Since n = 2, any SAT clauses will strictly consist of 3 variable/clause. 

A set of k clauses connected by AND Ú( )Ú˄( ) in a 3-SAT formula as follows: 
∃𝑘:𝐹 = 𝑐1˄ 𝑐2˄…˄ 𝑐𝑘 .       

A set of lk ,i  literals and each clause ck , ∀1 ≤ 𝑘 ≤ 𝑚,𝑐𝑘 = (𝑙𝑘,1˅𝑙𝑘,2˅𝑙𝑘,3) which consists 
of only literals combined by the logic operator OR Ú( )Ú˅( ). 

The literals can be the variable itself or the negation of the variable.
∀1 ≤ 𝑘 ≤ 𝑚,≤ 𝑖 ≤ 3: 𝑙𝑘,𝑖 = 𝑧𝑝 or 𝑙𝑘,𝑖 = ¬𝑧𝑝 for 1 ≤ 𝑝 ≤ 𝑛.

The 3-SAT formula is usually specified in product of sums or conjunctive normal form 
or CNF. Typical example of 3-SAT formula are as follows:

𝑃 = (¬𝐴˅𝐵˅𝐶)˄(¬𝐷˅𝐸˅𝐹)(¬𝐺˅𝐻˅𝐼)   (1)

If the state of each variable reads  𝐴 = 𝐷 = 𝐸 = 𝐹 = 1, 𝐵 = 𝐶 = −1, P becomes 
unsatisfiable. Several studies formulated (Prasad et al., 2005) various methods to find the 
consistent assignment that makes P became satisfiable. The problem with the proposed 
method is the complexity of the backtracking algorithm. This algorithm demands more 
conflict analysis towards the SAT formulation before the correct assignment can be 
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generated. Thus, the complexity of the algorithm increases with the number of 3-SAT 
variables. These limitation motivates researchers (Martinez-Rios, 2017, Kasihmuddin et 
al., 2017b & Layeb, 2012) to emplore intelligent metaheuristic method to find the correct 
assignments. In this paper, the clonal selection metaheuristics is proposed to find consistent 
interpretation of 3-SAT formulaton.

3SAT Programming in Hopfield Neural Network

There is a number of ways of organizing bipolar input data. Generally, the element will be 
arranged in a single layer of N  neurons that influence each other with external bias. One of 
the most powerful single layer neural network is Hopfield Neural Network (HNN). In HNN, 
each neuron represents the solution of the constraint optimization problem and the quality 
of the solution increase with the decrease of the energy function. In this case, if the energy 
function of HNN decreased to absolute minima, HNN reached optimal solution. Several 
studies implemented (Wang & Hong, 2019) Hebbian learning during the learning phase 
of HNN. Ideally, this learning rule produced optimal synaptic weight that asynchronously 
update the state of the neurons. In reality, conventional HNN prone to several weaknesses 
such as low storage capacity (Agliari et al., 2013) and easy to be trapped in local minima 
solution (Yang et al., 2016). Several studies indicated that the usage of logical rule during 
learning phase of HNN could increase the accuracy of the models (Sathasivam, 2010). In 
this paper, transistor configuration is tranformed to 3SAT logical rule.

𝑇1 ,𝑇2,𝑇3, 𝑇4, … … , 𝑇𝑁 → 𝑃3𝑆𝐴𝑇 ,𝑇𝑖 ∈ −1,1    (2)

𝑇𝑖 ∈ −1,1  signifies “off” and “on” of the transistor. The cost function EPCircuit
 of the 

logical rule in HNN is given by

𝐸𝑃𝐶𝑖𝑟𝑐𝑢𝑖𝑡 = ��𝑀𝑖𝑗,𝑘 = 3
𝑘

𝑗=1

𝑁𝐶

𝑖=1

   (3)     

where NC  is denoted by the number of clause containing transistors and Mij  is the 
inconsistency of the clause iC  given by

𝑀𝑖𝑗 =
 
1
2 1− 𝑇𝑥 ,𝑖𝑓 ¬𝑥

 
1
2 1 + 𝑇𝑥 ,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (4)

where ¬𝑥 is the negation of literal in 3SAT clause. Generally, the local field of the 
HNN-3SAT is given as follows
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 (5)

where Qij  is the synaptic weight from unit j  to i . Qi
1( ) , Qij

2( ) , Qijk
3( )  are the 

first, second and third order neuron connection. Tj  is the state of unit j  and 𝜉 is 
the threshold of unit i. The connection in HNN-3SAT has no connection with itself 
Qii = Qjj = Qkk = Qiii = Qjjj = Qkkk = 0 . It is necessary to examine the quality of the 
neuron state produced in equation (5). The Lypunov energy function for the PCircuit  is 
given as follows

𝐻𝑃𝐶𝑖𝑟𝑐𝑢𝑖𝑡 = −
1
3 � � � 𝑄𝑖𝑗𝑘

3
𝑁

𝑘=0,𝑘≠𝑖≠𝑗

𝑇𝑖𝑇𝑗𝑇𝑘

𝑁

𝑗=0,𝑗≠𝑖≠𝑘

−
1
2

𝑁

𝑖=0,𝑖≠𝑗≠𝑘

� � 𝑄𝑖𝑗
2 𝑇𝑖𝑇𝑗

𝑁

𝑗=0,𝑗≠𝑖

−�𝑄𝑖
1

𝑁

𝑖=0

𝑇𝑖

𝑁

𝑖=0,𝑖≠𝑗

        (6)

Synaptic weight of HNN-3SAT will be obtained by comparing  equation (3) and (6). 
Due to the symmetrical property of HNN, Lyapunov energy function always converge to 
minimum energy. Since the energy value of each clause in 3SAT is always constant, the 
separation of global and local minimum energy is defined with energy threshold y . 

𝐻𝑃𝐶𝑖𝑟𝑐𝑢𝑖𝑡
𝑚𝑖𝑛 −𝐻𝑃𝐶𝑖𝑟𝑐𝑢𝑖𝑡 ≤ 𝜓      (7)       

Plotting the final state of neuron in HNN-3SAT as heights on a 2D state-space place 
creates a landscape of hills and valleys. Lypunov energy function will develop a neuron 
state that are locally stable. In this case, global solution corresponds to the correct transistor 
configuration. 

Clonal Selection Algorithm in VLSI Configuration 

Creating a functional VLSI model is important before it can be physically manufactured. 
Thousands of transistors will be simulated inside a single circuit board before it is ready 
for experimentation. Due to mathematical complexity in deciding the valid VLSI model 
such as Castañeda et al. (2018), the usage of metaheuristics will find the optimal solution 
in acceptable time range. Unfortunately, the inherent problems of VLSI configuration 
simulation are exacerbated in an exponential manner as the number of transistors increases 
linearly. Only a few works has attempted to simulate the VLSI configuration by using 
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evolutionary metaheuristics algorithm (Laudis et al., 2018 & Kumar et al., 2018). These 
metaheuristics have been converted to binary representation. Pursuing that, the most 
popular evolutionary algorithm used is binary genetic algorithm. Although binary GA has 
a successful theoretical a practical history that arguably stretches further back compared to 
recent metaheuristics, binary GA prone to limitation such as initial solution convergence. 
Kasihmuddin et al. (2017b) argued that during the first few hundreds generation of 
crossover, only mutation would reduce the similarity of the candidate solution. This finding 
shows that the solution quality of GA (during the first few generation) is almost similar to 
conventional exhaustive search method. 

This poses an important question, what if we could fully utilize the directional 
mutation behavior of the GA? Artificial Immune System (AIS) algorithm has evolved as a 
prolific metaheuristic technique that improve the main weaknesses in binary GA. AIS was 
introduced by Farmer et al. (1986) by systematically model the solution search according 
to Jerne’s Immune network theory. Due to the nature of the immune system, AIS can be 
described as a distributed solution network which consist of functional B-Cell. Any massive 
and diverse population in B-Cells represent a massive space search of solutions that tends 
to global solutions. In this paper, each B-Cell is represented with a bipolar string which 
is a possible configuration of transistors. Bipolar string of 1 and -1 will be represented as 
“on” and “off” respectively. Our approach is to create a functional VLSI model that has 
the following objective function:

EPCircuit
= 0       (8)

The following steps represent the algorithm of AIS embedded to HNN:
Step 1: B-cells Initialization. 100 B-cells, Bij  are initialized. Each B-cell contains 

bipolar value that represent the configuration of transistors in VLSI. The formulation of 
initialization is as follows

𝐵𝑖𝑗 = � 1     ,𝑟𝑎𝑛𝑑 0,1 ≥ 0.5
 −1    ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   , 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 100 (9)

Step 2: B-cell Affinity Computation. The affinity of every B-cells would be computed. 
The affinity measures the sum of satisfied PCircuit  that contains set of transistors.

𝑎𝑓𝑓𝑖 = � 𝐶𝑖𝑗

𝑁𝐶

𝑖=1,𝑗=1

      (10)
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𝐶𝑖𝑗 = �
1,  𝐸𝐵𝑖 ,𝑗˄𝐵2˄𝐵3 = 0

−1,  𝐸𝐵𝑖 ,𝑗˄𝐵2˄𝐵3 ≥ 0
    (11)

where 𝐸𝐵𝑖 ,𝑗˄𝐵2˄𝐵3  
is the cost function of clause Cij . 

Step 3: Cloning of B-cells. Based on step 2, top 5 B-cells with the (highest affinity 
value) were chosen. Roulette wheel selection (Goldberg & Deb, 1991) would identify 
B-cell with the most affinity value in order to proceed with the cloning phase.

𝑁𝐵𝑖 =
𝑎𝑓𝑓𝑖
∑𝑎𝑓𝑓𝑖

× 𝛽       (12)

where N Bi
 is a number of newly produced B-cells population and β  is the predefined 

number of clone population.
Step 4: Normalization of B-Cells. The antibodies exist in a memory response achieve 

a higher average affinity than those of the initial primary response (maturation of the 
immune response). Hence the normalized affinity of each B-cell, aff Biwill be calculated 
based on the following:

𝑎𝑓𝑓𝐵𝑖 =
𝑎𝑓𝑓𝐵𝑖 −min 𝑎𝑓𝑓𝐵𝑖

max 𝑎𝑓𝑓𝐵𝑖 −𝑚𝑖𝑛 𝑎𝑓𝑓𝐵𝑖
    (13)

where max 𝑎𝑓𝑓𝐵𝑖 ≠ 𝑚𝑖𝑛 𝑎𝑓𝑓𝐵𝑖  because B-cell that achieved 𝑎𝑓𝑓𝐵𝑖 = 𝑚ax 𝑎𝑓𝑓𝐵𝑖  will 
automatically exit the algorithm via step 2. Normalization of B-Cell is crucial in AIS 
because it defines the rigorousness of mutation during the next step.

Step 5: Somatic Hypermutation. Local maxima (non-improving B-cell) is potentially 
disrupted the local search process. In this step, somatic hypermutation is implemented by 
flipping the state of B-Cell based on the following formula

𝑁𝐵𝑖 =
1
𝜂 𝑎𝑓𝑓 𝑁𝑖 + 1− 𝑎𝑓𝑓 𝑁𝑖 0.01   (14)

where NBi  denotes the number of mutation in B-cell i and 𝜂  refers to the number 
of variables. The affinity of the B-cells was calculated by using equation (10). The best 
B-cells were selected as the candidate cell and stored into the memory cell. In this case, 
this memory cell would be retrieved to combat pathogenic attacks. This step is required 
to reduce the similarity index among the antibodies. In our context, any satisfied VLSI 
configuration would be stored in CAM to be recalled by the network.
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Implementation

The implementation of hybrid models in VLSI reconfiguration are:

Step 1. The 3-SAT clauses were translated and transformed into Boolean algebra. 
Basically, the clauses would form a formula that would determine the overall 
satisfiability. In VLSI circuits, the clauses denote the different set of bipolar transistors. 

Step 2. Identify a neuron to each ground neuron. 

Step 3. Initialize the entire synaptic weights to zero.

Step 4. Derive a cost function that is related with negation of all 3-SAT clauses. For 

instance, X =
1
2

1+ SX( )  and X =
1
2

1Ú SX( ) . SX = 1 (True) and SX = Ú1 (False). 

Multiplication represents CNF and addition represents DNF.

Step 5. Compare the cost function with energy function to attain the values of synaptic 
weight. (Abdullah, 1992).

Step 6. Check clauses satisfaction by using ES (Mansor et al., 2016), GA (Kasihmuddin 
et al, 2017a) and the modified CSA. Hence, the satisfied clauses will be stored. In VLSI 
circuits, the satisfied transistors configuration will be stored as content addressable 
memory.

Step 7. Randomize the states of the neurons. The network undergoes sequences of 
network relaxation via Sathasivam method (Sathasivam, 2010).

Step 8. Find the corresponding local field of the state. If the final state is stable for 5 
runs, we consider it as final state.

Step 9. Compute the corresponding final energy of the final state by using Lypunov 
equation. Validate whether the final energy obtained is a global minimum energy or 
local minima. In VLSI circuit, the final energy will determine correct configuration 
of the circuit. 

Step 10. The RMSE, MAE, SSE, circuit accuracy and circuit runtime are calculated 
the VLSI circuit with different number of transistors per execution.

The implementation of VLSI verification models, HNNVLSI-3SATCSA, HNNVLSI-
3SATES and HNNVLSI-3SATGA was carried out via Microsoft Visual Basic C++ 2013 
for Windows 10. Similar processing system and CPU would be used in every execution to 
avoid possible bad sector. In addition, it would make the comparison to be fair and square.  

RESULTS AND DISCUSSIONS

As compared to the previous VLSI verification method by utilizing HNN as coined by 
Mansor et al. (2016), this simulation had been developed by using modified clonal selection 

− −
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algorithm (CSA) as the training algorithm. The comparison would be made with the other 
algorithms such as exhaustive search (ES) and genetic algorithm (GA). The hybrid VLSI 
verification model proposed is HNNVLSIA-3SATCSA and would be compared with 
HNNVLSI-3SATES and HNNVLSI-3SATGA. The simulation had been restricted until 
the number of transistors was 108 for simplicity. 

The root mean square error (RMSE) and mean absolute error (MAE) recorded by 
the developed model, HNNVLSI-3SATCSA are presented in Figure 2 and Figure 3 to 

Figure 2. RMSE for the HNNVLSI-3SAT models

Figure 3. MAE for the HNNVLSI-3SAT models
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be compared to other two counterparts, HNNVLSI-3SATES and HNNVLSI-3SATGA. 
Figure 2 and Figure 3 demonstrate the ability of our proposed model in verifying the 
circuit configuration during training phase without consuming the additional iterations 
and errors in generating fit strings as VLSI combinations. Thus, this emphasizes the 
supremacy of the somatic hypermutation operator in CSA that allows the VLSI circuits to 
be verified accurately without undergoing multiple unnecessary iterations and processes. 
The solutions will be improved directly via the effective flipping mechanism (Layeb, 
2012) to obtain the feasible VLSI circuit combinations. Hence, fewer iterations will allow 
the model to attain faster convergence, resulting in minimum RSME and MAE obtained 
by HNNVLSIA-3SATCSA. HNNVLSI-3SATES is performed apparently poor due to 
the “trial and enumerate” procedure in attaining the correct VLSI circuit combinations. 
Additionally, HNNVLSI-3SATGA is still acceptable for the lower number of transistors as 
the non-fit strings need to be improved before undergoing the mutation operator (Aiman 
& Asrar, 2015).

Figure 4 shows the sum of squared error (SSE) recorded by the models in VLSI 
verification. Generally, it can be deduced that as the number of transistors increases, the 
accumulation of errors also increases. The accumulation of the errors can be magnified by 
observing the SSE for different execution. The significant differences can be seen when 
the number of transistors is between 63 to 108. From that point, the developed model, 
HNNVLSI-3SATCSA outperforms HNNVLSI-3SATES and HNNVLSI-3SATGA in term 
of sensitivity towards any incoming errors. Thus, the error during the training phase of the 
VLSI verification can be reduced by the optimization operators employed by CSA such as 
normalization of affinity and somatic hypermutation. In fact, the effectiveness of somatic 
hypermutation in improving the solutions has been coined by Layeb (2012) and Mansor 
et al. (2017). On the contrary, the ES algorithm deploys the tedious iteration processes 
before attaining the feasible solutions. Then, GA worked well but required early fitness 
and undergoing crossover and mutation. 

Figure 5 manifests the circuit accuracy when the simulation is carried out by using 
different models. The circuit accuracy is calculated by the number of correct configurations 
of VLSI circuit after the retrieval phase. The proposed model, HNNVLSI-3SATCSA has 
recorded the accuracy between 95%-100% for the different number of transistors. The results 
delineate the performance of the developed model as compared with HNNVLSI03SATES 
and HNN-3SATGA in generating the correct VLSI circuits at the end of every execution. 
The reason lies in the efficiency of CSA in modeling and verifying the VLSI circuits without 
the interferences of massive errors and iterations. Apart from that, the proposed model is 
apparently worked well when the number of transistors was 108 compared to the other 
counterparts. Relatively high circuit accuracy demonstrates that HNNVLSI-3SATCSA 
has a greater stability when more transistors are introduced. In addition, better accuracy 
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Figure 4. SSE for the HNNVLSI-3SAT models

Figure 5. Circuit accuracy (%) for the HNNVLSI-3SAT models

will improve the functionality of normal VLSI circuit as the complexity increases. The 
robust training algorithm will exponentially lower the complexity of the whole VLSI 
verification processes. The conventional approach, HNNVLSI-3SATES has recorded the 
lowest accuracy due to the ineffectiveness of generating the fit VLSI combinations and 
reduced the number of correct VLSI configurations generated at the end of the execution. 

Figure 6 demonstrates the circuit runtime recorded by HNNVLSI-3SATCSA, 
HNNVLSI-3SATGA, and HNNVLSI-3SATES by using different combinations of the 
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Figure 6. Circuit runtime for the HNNVLSI-3SAT models

transistor. Based on the circuit runtime, HNNVLSI-3SATCSA completes the VLSI 
verification faster than HNNVLSI-3SATGA and HNNVLSI-3SATES. Theoretically, the 
training process by ES requires extra training time due to the trial and error process in 
attaining the correct VLSI configurations. Therefore, the entire non-fit strings that resemble 
the VLSI combinations will collapse if any one of the clauses is not satisfied. On the 
contrary, the GA will enhance the training process but require early population adjustment 
together with crossover and mutation. The procedure will reduce the time taken to check the 
VLSI circuit as compared to ES. However, when compared with CSA, the correct non-fit 
VLSI circuit can be improved with the robust hypermutation operator without the need to 
reset the whole combinations. Thus, HNNVLSI-3SATCSA experienced less computation 
burden during the training processes as compared to the other two approaches. Thus, the 
developed model is more robust than the other two counterparts. The faster circuit runtime 
together with better accuracy is essentially needed in VLSI circuit verification in order to 
avoid any miss and power dissipation. The results have improved the VLSI verification 
paradigm done by Mansor et al. (2016) and Kumar et al. (2018).

CONCLUSION

This work was largely motivated from industrial application point of view where we clearly 
identified a need for model verification by using neural network ensembles as decision 
support system. We have presented our proposed algorithms, namely HNNVLSI-3SATCSA 
model and the conventional models, HNNVLSI-3SATGA and HNNVLSI-3SATES to check 
the VLSI circuit accuracy if the number of transistors gets higher. It had been shown by the 
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computer simulations that both models that incorporated with HNN were able to retrieve 
the desired output as the traditional VLSI models did. However, it was identified that 
HNNVLSI-3SATCSA outperformed the other models in terms of accuracy and robustness 
of the techniques in VLSI configuration. Hence, the proposed models are supported by 
the solid agreement of RMSE, MAE, SSE, circuit accuracy and circuit runtime obtained. 
Thus, our hybrid paradigm can be further integrated to solve and model more complicated 
electronics problem. Future research topics are to deal with other variant of HNN such as 
Mutation HNN (Hu et al., 2011), memristor HNN (Liu et al., 2018) and genetic optimized 
HNN (Jayashree & Kumar, 2019).

ACKNOWLEDGEMENT

This research is supported by Universiti Sains Malaysia and Fundamental Research Grant 
Scheme (FRGS) (203/PMATHS/6711689) by Ministry of Higher Education Malaysia.

REFERENCES
Abdullah, W. A. T. W. (1992). Logic programming on a neural network. International Journal of Intelligent 

Systems, 7(6), 513-519.

Agliari, E., Barra, A., De Antoni, A., & Galluzzi, A. (2013). Parallel retrieval of correlated patterns: From 
Hopfield networks to Boltzmann machines. Neural Networks, 38, 52-63.

Aiman, U., & Asrar, N. (2015). Genetic algorithm based solution to SAT-3 problem. Journal of Computer 
Sciences and Applications, 3(2), 33-39.

Avatefipour, O., & Nafisian, A. (2018). A novel electric load consumption prediction and feature selection model 
based on modified clonal selection algorithm. Journal of Intelligent and Fuzzy Systems, 34(4), 2261-2272.

Cai, Q., Gong, M., Ma, L., & Jiao, L. (2015). A novel clonal selection algorithm for community detection in 
complex networks. Computational Intelligence, 31(3), 442-464.

Castañeda, O., Goldstein, T., & Studer, C. (2018). VLSI designs for joint channel estimation and data detection 
in large SIMO wireless systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(3), 
1120-1132.

Constantinescu, C. (2003). Trends and challenges in VLSI circuit reliability. IEEE Micro, 23(4), 14-19.

Elhoseny, M., Tharwat, A., & Hassanien, A. E. (2018). Bezier curve based path planning in a dynamic field 
using modified genetic algorithm. Journal of Computational Science, 25, 339-350.

Erdener, Ö., & Ozoguz, S. (2016). A new neuron and synapse model suitable for low power VLSI 
implementation. Analog Integrated Circuits and Signal Processing, 89(3), 749-770.

Farmer, J. D., Packard, N. H., & Perelson, A. S. (1986). The immune system, adaptation, and machine learning. 
Physica D: Nonlinear Phenomena, 22(1-3), 187-204.

Gee, A. H., Aiyer, S. V., & Prager, R. W. (1993). An analytical framework for optimizing neural networks. 
Neural Networks, 6(1), 79-97.



Saratha Sathasivam, Mustafa Mamat, Mohd. Asyraf Mansor and Mohd Shareduwan Mohd Kasihmuddin

242 Pertanika J. Sci. & Technol. 28 (1): 227 - 243 (2020)

Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. 
In G. J. E. Rawlins (Ed.), Foundations of genetic algorithms (Vol. 1, pp. 69-93). San Mateo, CA: Morgan 
Kaufmann Publishers, Inc. 

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. 
Proceedings of the National Academy of Sciences, 79(8), 2554-2558.

Hu, L., Sun, F., Xu, H., Liu, H., & Zhang, X. (2011). Mutation Hopfield neural network and its applications. 
Information Sciences, 181(1), 92-105.

Jain, N., Kumar, S., Kumar, A., Shamsolmoali, P., & Zareapoor, M. (2018). Hybrid deep neural networks for 
face emotion recognition. Pattern Recognition Letters, 115, 101-106.

Jayashree, J., & Kumar, S. A. (2019). Evolutionary correlated gravitational search algorithm (ECGS) with 
genetic optimized hopfield neural network (GHNN)–A hybrid expert system for diagnosis of diabetes. 
Measurement, 145, 551-558.

Kanj, I., Thilikos, D. M., & Xia, G. (2017). On the parameterized complexity of monotone and antimonotone 
weighted circuit satisfiability. Information and Computation, 257, 139-156.

Karoum, B., & Elbenani, Y. B. (2017). A clonal selection algorithm for the generalized cell formation problem 
considering machine reliability and alternative routings. Production Engineering, 11(4-5), 545-556.

Kasihmuddin, B. M., Shareduwan, M., Mansor, B., Asyraf, M., & Sathasivam, S. (2016). Genetic Algorithm 
for Restricted Maximum k-Satisfiability in the Hopfield Network. International Journal of Interactive 
Multimedia and Artificial Intelligence, 4(2), 52-60.

Kasihmuddin, M. S. M., Mansor, M. A., & Sathasivam, S. (2017a). Hybrid Genetic Algorithm in the Hopfield 
Network for Logic Satisfiability Problem. Pertanika Journal of Science and Technology, 25(1), 139-152.

Kasihmuddin, M. S. M., Sathasivam, S., & Mansor, M. A. (2017b). Hybrid genetic algorithm in the Hopfield 
network for maximum 2-satisfiability problem. In U. Wagenknecht, P. Potschke, S. Wiessner & M. Gehde 
(Eds.), AIP Conference Proceedings (Vol. 1870, No. 1, p. 050001). Melville, NY: AIP Publishing.

Kaur, G., & Ratnoo, S. (2019). Adaptive genetic algorithm for feature weighting in multi-criteria recommender 
systems. Pertanika Journal of Science & Technology, 27(1), 123-141.

Kumar, S. V., Rao, P. V., Sharath, H. A., Sachin, B. M., Ravi, U. S., & Monica, B. V. (2018, In Press). Review 
on VLSI design using optimization and self-adaptive particle swarm optimization. Journal of King Saud 
University-Computer and Information Sciences.

Laudis, L. L., Shyam, S., Jemila, C., & Suresh, V. (2018). MOBA: multi objective bat algorithm for 
combinatorial optimization in VLSI. Procedia Computer Science, 125, 840-846.

Layeb, A. (2012). A clonal selection algorithm based tabu search for satisfiability problems. Journal of Advances 
in Information Technology, 3(2), 138-146.

Layeb, A., Deneche, A. H., & Meshoul, S. (2010). A new artificial immune system for solving the maximum 
satisfiability problem. In N. García-Pedrajas, F. Herrera, C. Fyfe, J. M. Benítez & M. Ali (Eds.), Trends 
in Applied Intelligent Systems (pp. 136-142). Berlin, Heidelberg: Springer.



HNN based Modified Clonal Selection Algorithm for VLSI Verification

243Pertanika J. Sci. & Technol. 28 (1): 227 - 243 (2020)

Liu, S., Yu, Y., Zhang, S., & Zhang, Y. (2018). Robust stability of fractional-order memristor-based Hopfield 
neural networks with parameter disturbances. Physica A: Statistical Mechanics and its Applications, 
509, 845-854.

Mansor, M. A. B., Kasihmuddin, M. S. B. M., & Sathasivam, S. (2017). Robust Artificial Immune System in 
the Hopfield network for Maximum k-Satisfiability. International Journal of Interactive Multimedia and 
Artificial Intelligence, 4(4), 63-71.

Mansor, M. A., Kasihmuddin, M. S. M., & Sathasivam, S. (2016). VLSI circuit configuration using satisfiability 
logic in Hopfield network. International Journal of Intelligent Systems and Applications (IJISA), 8(9), 
22-29.

Martinez-Rios, F. (2017). A new hybridized algorithm based on population-based simulated annealing with an 
experimental study of phase transition in 3-SAT. Procedia Computer Science, 116, 427-434.

Prasad, M. R., Biere, A., & Gupta, A. (2005). A survey of recent advances in SAT-based formal verification. 
International Journal on Software Tools for Technology Transfer, 7(2), 156-173.

Rai, D., Chaudhari, N. S., & Ingle, M. (2018). Polynomial 3-SAT Reduction of Sudoku Puzzle. International 
Journal of Advanced Research in Computer Science, 9(3), 194-197.

Rojas, R. (2013). Neural networks: A systematic introduction. Heidelberg, Germany: Springer-Verlag.

Sathasivam, S. (2010). Upgrading logic programming in Hopfield network. Sains Malaysiana, 39(1), 115-118.

Schmidt, B., Al-Fuqaha, A., Gupta, A., & Kountanis, D. (2017). Optimizing an artificial immune system 
algorithm in support of flow-Based internet traffic classification. Applied Soft Computing, 54, 1-22.

Shazli, S. Z., & Tahoori, M. B. (2010). Using boolean satisfiability for computing soft error rates in early 
design stages. Microelectronics Reliability, 50(1), 149-159.

Sun, R., Zhang, X., Slusarz, P., & Mathews, R. (2007). The interaction of implicit learning, explicit hypothesis 
testing learning and implicit-to-explicit knowledge extraction. Neural networks, 20(1), 34-47.

Swain, R. K., Barisal, A. K., Hota, P. K., & Chakrabarti, R. (2011). Short-term hydrothermal scheduling using 
clonal selection algorithm. International Journal of Electrical Power and Energy Systems, 33(3), 647-656.

Wang, H., & Hong, M. (2019). Supervised Hebb rule based feature selection for text classification. Information 
Processing and Management, 56(1), 167-191.

Yang, G., Wu, S., Jin, Q., & Xu, J. (2016). A hybrid approach based on stochastic competitive Hopfield neural 
network and efficient genetic algorithm for frequency assignment problem. Applied Soft Computing, 39, 
104-116.

Zaruba, D., Zaporozhets, D., & Kureichik, V. (2016). Artificial bee colony algorithm-a novel tool for VLSI 
placement. In A. Abraham, S. Kovalev, V. Tarassov, & V. Snášel (Eds.), Proceedings of the First 
International Scientific Conference “Intelligent Information Technologies for Industry”(IITI’16) (pp. 
433-442). Cham, Switzerland: Springer.

Zhang, W., Gao, K., Zhang, W., Wang, X., Zhang, Q., & Wang, H. (2019). A hybrid clonal selection algorithm 
with modified combinatorial recombination and success-history based adaptive mutation for numerical 
optimization. Applied Intelligence, 49(2), 819-836.




