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ABSTRACT

Fine resolution (hourly rainfall) of rainfall series for various hydrological systems is 
widely used. However, observed hourly rainfall records may lack in the quality of data and 
resulting difficulties to apply it. The utilization of Bartlett-Lewis rectangular pulse (BLRP) 
is proposed to overcome this limitation. The calibration of this model is regarded as a 
difficult task due to the existence of intensive estimation of parameters. Global optimization 
algorithms, named as artificial bee colony (ABC) and particle swarm optimization (PSO) 
were introduced to overcome this limitation. The issues and ability of each optimization 
in the calibration procedure were addressed. The results showed that the BLRP model 
with ABC was able to reproduce well for the rainfall characteristics at hourly and daily 
rainfall aggregation, similar to PSO. However, the fitted BLRP model with PSO was able 
to reproduce the rainfall extremes better as compared to ABC.
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INTRODUCTION

In many regions, the rainfall data are 
recorded based on the daily time step. 
However, many hydrological studies and 
designs require a fine-scale data, such as 
hourly rainfall rather than daily rainfall 
(Debele et al., 2007; Vanhaute et al., 2012a). 
Therefore, it is necessary to obtain a fine-
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scale data (e.g. hourly time step) from the higher time scale (e.g. daily time step) and this 
transformation is named as disaggregation. Many disaggregation theories were developed 
for this purpose such as Poisson cluster-based models (Rodriguez-Iturbe et al., 1987), 
Markov chain models (Hutchinson, 1990; Sansom 1998) and semi-empirical models. The 
scope of this study is limited to Bartlett–Lewis Rectangular Pulses (BLRP), which utilizes 
the stochastic models based on the Poisson cluster. 

Pui et al. (2009) stated that the BLRP model was developed for the simulation of 
rainfall and was modified to disaggregate rainfall. Intensive studies were conducted in 
many regions, which included the United States (Velghe et al., 1994; Rodriguez-Iturbe et 
al., 1987), United Kingdom (Abdellatif et al., 2013), Australia (Hansen 1982), New Zealand 
(Cowpertwait et al., 2007) and Africa (Smithers et al., 2002). Based on these studies, it was 
revealed that the use of the BLRP model in matching the statistical properties including 
the extremes of the rainfall for a wide range of temporal scales was a success. Recently, 
the application of the BRLP model was extensively studied in Malaysia. Hanaish et al. 
(2013) evaluated two types of BLRP, namely the original and modified BLRP models in 
Peninsular Malaysia. The findings of their study found that the modified BLRP fitted well 
with Malaysia’s rainfall condition as compared to the original BLRP model. Yusop et al. 
(2014) also studied the use of the BLRP model in the centre of Peninsular Malaysia and 
found that the BLRP model was able to disaggregate hourly to 48 hours rainfall that closely 
matched the observed series. However, both studies suggest that the model is not able to 
disaggregate well the extreme rainfall for the Malaysia region. 

Since the BLRP model is complex to calibrate due to the application of the formulation 
of stochastic approaches, there was no previous studies in Malaysia [including the research 
by Hanaish et al. (2013) and Yusop et al. (2014)] and only a few studies worldwide, which 
had been conducted to find and/or to optimize the calibration of the BLRP model. Therefore, 
an evaluation of the recent optimization algorithm towards the calibration of the BLRP 
model becomes the main focus to improve the fitness of this model in this study, especially 
to the humid tropical region like in Malaysia. 

Generally, in order to obtain the fitness of the BLRP model to an observed series, the 
generalized method of moments is applied (Rodriguez-Iturbe et al., 1987; Cowpertwait et 
al., 1996; Verhoest et al., 1997). This method is implemented by fitting the BLRP model 
to the observed rainfall characteristics at different aggregation levels. Therefore, function 
of the model parameters is expressed based on the derivation of the analytical expression 
of an expected value (Rodriguez-Iturbe et al., 1987). Verhoest et al. (1997) reported that 
the calibration of BLRP was a burdensome process due to the existence of multiple local 
minima. The local search techniques in which sub-optimal solution was applied to the 
optimization problem failed to overcome these local minima. Vanhaute et al. (2012a) stated 
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that global optimization approaches were expected to be more accurate in searching the 
BLRP parameters compared to the local search techniques. 

In this study, two recent global optimization algorithms, which are artificial bee colony 
(ABC) and particle swarm optimization (PSO), were adopted. The PSO algorithm was 
developed by Kennedy and Eberhart (1995) and this algorithm is the population-based 
stochastic optimization techniques, in which inspired by social behavior of bird flocking. 
PSO is successfully applied in many applications (Eberhart & Yuhui, 2001). As the 
concern of the author, only a few studies on the PSO algorithm are applied with the BLRP 
model. Vanhaute et al. (2012a) presented and tested four global optimizations (Downhill 
Simplex Method, Simplex-Simulated Annealing, Particle Swarm Optimization and Shuffled 
Complex Evolution) for their capability to calibrate the BLRP model. Their findings 
suggested that the global optimizations were providing promising results in calibrating 
the BLRP model, in which it could disaggregate daily rainfall very well. Vanhaute et al. 
(2012b) extended their previous study (Vanhaute et al., 2012a) to improve the quality of 
disaggregation results on the extreme of rainfall using the global optimization methods. 
Both studies found that the performances of each global optimization were varying to 
each other and the PSO showed a promising tool for estimation of the BLRP parameters.

The ABC model was proposed by Karaboga (2005) and this algorithm was also the 
population-based stochastic optimization techniques, similar to PSO. This algorithm 
adopted the foraging behavior of honey bee swarm. The ABC model does not have any 
background application in this field (Karaboga et al., 2012), but it shows a very good 
performance in solving classical benchmark equations and other forms of applications. 
Therefore, the evaluation of the performance of ABC and PSO with the BLRP model 
becomes a platform of continuity in future studies. 

Therefore, the objective of this study is to propose the use of the ABC algorithm in 
the estimation of the parameters of BLRP and to compare its performance according to the 
disaggregation results with the PSO model. The selected stations in Peninsular Malaysia 
are used to evaluate those methods. In the following sections, the materials and methods 
are presented and followed with the results and the discussions of this study. Next, the 
conclusions and recommendations are presented.

MATERIAL AND METHODS

Study Area and Data

Four rainfall stations were selected in Peninsular Malaysia to represent four regions with 
various climatic conditions. The locations and details of each station are shown in Figure 
1 and Table 1, respectively. Generally, the rainfall occurrence of Peninsular Malaysia is 
influenced mostly by two monsoons, named as the south-west monsoon (from May to 
August) and the north-east monsoon (from November to February), with the two inter 
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monsoons. During the south-west monsoon, Regions 1 (Alor Setar) and 3 (Melaka) receives 
heavy rainfall. Otherwise, those regions are the driest part of the Peninsular during the 
north-east monsoon period. Both regions are less influenced by the north-east monsoon 
because the regions are blocked by the Titiwangsa Range.

Figure 1. Location of rainfall stations

Table 1
Details and description of rainfall stations

Region ID Name of Station
Location

Period
Lat (oN) Long (oE)

1 6108001 Alor Setar 6.11 100.85 2001-2012
2 3833002 Kuantan 3.81 103.33 2001-2012
3 2528012 Melaka 2.29 102.49 1991-2000
4 1437116 Johor Bahru 1.47 103.75 2002-2012

The hourly and daily rainfall data were obtained from the Department of Irrigation 
and Drainage Malaysia (DID) and their detail periods are illustrated in Table 1. All stations 
contained smaller missing data (<5%), and the missing data were filled with the expectation-
maximization algorithm using PASW software. Before the rainfall data series were applied, 
the homogeneity of rainfall time series data was tested. In this study, the Pettitt, SNHT, 
Buishand, and von Neumann tests were applied to the annual rainfall series of each station. 
Results revealed that the graph produced for each test was almost a straight line and no 
breakpoints were detected. The p-value for each test was also computed using the Monte 
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Carlo simulation in order to enhance the reliability of the tests. The p-value was greater 
than the significance level alpha (α=0.05) were obtained. Therefore, the assumption that 
the rainfall data series are homogenized is accepted.

Bartlett-Lewis Rectangular Pulse

Description of the BLRP Model. The basic structure of the BLRP model assumes the 
storm arrivals (T) developed in a Poison process with λ. Every single of T is tailed by the 
cell origins (t) under the Poison process with rate β. The new cell origins after the duration 
of period (s) is generated by exponential distributed with rate γ. Then, the cell origins are 
paired with the rainfall cell. Duration (W) and depth (X) are randomly extracted from 
the exponential distributions with parameters η and 1/µx, respectively. These continuous 
processes will develop a rainfall series.

In this study, the modified BLRP model was used. This model allows the average cell 
duration to vary between storm by letting the parameter η following a Gamma distribution 
of shape and parameters of α and ν. This situation leads by the generation of E[η]=α/ν and 
Var[η]=α/ν2, with α>1 to show the expected duration to be finite. The model also applied 
κ =β/η and φ=γ/η, which were introduced by Rodriguez-Iturbe et al. (1987). 

Two parameters gamma with mean (μx) and standard deviation (σx) can be distributed 
with the value of X. Therefore, the number of cells per storm can be expressed as μc=1+ 
k/φ. In total, the BLRP model contains 7 parameters (λ, K, φ, α, v, μx and σx) that need to 
be estimated. The details of estimation process are discussed in the following section.

Estimation of BLRP Parameters. The estimation of BLRP parameters in this study 
is based on generalized method of moments, in which the minimum value between the 
observed and simulated rainfall properties was identified. The estimation was based on 
the monthly basis and the objective function f(x) can be expressed as:

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝑓 𝑥 =  ∑ 𝑤𝑖 𝑀𝑖
′ − 𝑀𝑖 𝑥 2𝑘

𝑖=1 (1)

where, x is the parameter vector, wi is the positive weight, 𝑀𝑖
′ is the vector of observed 

values, 𝑀𝑖(𝑥) is the vector of expected values, and k is the defined statistical properties 
of rainfall to the BLRP parameters. wi is set as 1, following the rules set by Velghe et al. 
(1994). This study used an alternative f(x) that was introduced by Cowpertwait et al. (2007) 
and Eq (1) is revised as follows:

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝑓 𝑥 = ∑ 𝑀𝑖 𝑥
𝑀𝑖
′ − 1

2
+ 𝑀𝑖

′

𝑀𝑖 𝑥
− 1

2
𝑘
𝑖=1 (2)

The list of k applied in this study includes the mean (𝐸 𝑌𝑖
(ℎ) ), variance (𝑣𝑎𝑟 𝑦𝑖

ℎ ), , 
autocorrelation for lag-1hour (𝑐𝑜𝑣 𝑌𝑖

ℎ ,𝑌𝑖+𝑗
ℎ ) and the probability of rainfall days (p(h’)). 
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The list of k can be defined as (Rodriguez-Iturbe et al., 1988):

𝐸 𝑌𝑖
(ℎ) = 𝜆ℎ𝜇𝑥

1+𝜅 𝜙�
𝛼−1

(3)

𝑣𝑎𝑟 𝑦𝑖
ℎ = 2𝐴1 𝛼 − 3 ℎ𝜈2−𝛼− 𝜈3−𝛼 + 𝑣 + ℎ 3−𝛼 −

2𝐴2 𝜙 𝛼− 3 ℎ𝑣2−𝛼 − 𝜈3−𝛼 + 𝜈 +𝜙ℎ 3−𝛼 (4)

𝑐𝑜𝑣 𝑌𝑖
ℎ ,𝑌𝑖+𝑗

ℎ = 𝐴1 𝜈 + 𝑗 + 1 ℎ 3−𝛼 − 2 𝜈 + 𝑗ℎ 3−𝛼 + 𝑣 + 𝑗 − 1 ℎ 3−𝛼 − 𝐴2{[𝜈+

𝑗 + 1 𝜙ℎ]3−𝛼 − 2 𝜐 + 𝑗𝜙ℎ 3−𝛼 + 𝜈 + 𝑗 − 1 𝜙ℎ 3−𝛼}

(5)

𝑝 ℎ ′ = 𝑒𝑥𝑝 −𝜆ℎ− 𝜆𝜇𝑇 + 𝜆𝐺𝑝∗ 0,0
𝜙+𝜅 𝜈

𝜈+ 𝜅+𝜙 ℎ

𝛼−1

𝜙+𝜅
(6)

where;

𝐴1 = 𝜆𝜇𝑐𝜐𝛼

𝛼−1 𝛼−2 𝛼−3
𝐸 𝑋2 + 𝜅𝜙𝜇𝑥2

𝜙2−1
(7)

𝐴2 = 𝜆𝜇𝑐𝜅𝜇𝑥2𝜐𝛼

𝜙2 𝜙2−1 𝛼−1 𝛼−2 𝛼−3
(8)

In these equations, X is the cell depth, i is the current time, j is the lag-1 time, and T 
is the data set of selected k of various time scale.

The study performs at aggregation levels of 1 hour and 1 day. As discussed previously, 
the BLRP parameters were distributed in the different probabilities. The range of values 
for those parameters are shown in Table 2.

Table 2
Boundary constraints of parameters used at the four sites

Parameter Lower Limit Upper Limit
λ (mm/day) 0 0.1
κ = β/η 0 20
φ = γ/η 0 1
α 1 20
ν (day) 0 20
μx (mm/day) 0 99
σx (mm/day) 0 99
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Hyetos. The current BLRP model is not able to derive a synthetic disaggregation of 
hourly rainfall series independently. Therefore, Hyetos developed by Koutsoyiannis and 
Onof (2001), which utilized the BLRP model for rainfall disaggregation was applied in 
this study. This model itself was not able to estimate the BLRP parameters. Therefore, 
global optimization approaches were used to fit the model and it will be discussed in the 
following section.

Based on the Hyetos model, the first step is to distribute the total daily observed rainfall 
to hourly rainfall based on the wet days using the BLRP parameters. Each distribution or 
group of wet days are finalised until its arrangement matches the arrangement of observed 
daily rainfall with a tolerance distance (dt) and dt is defined as;

𝑑𝑡 = ∑ 𝑙𝑛 𝑍𝑖+0.1
𝑍�𝑖+0.1

2
𝐿
𝑖=1

0.5
(9)

where, Zi and 𝑍̅𝑖 are the observed and simulated total daily rainfall and L is the length 
of arrangement wet days.

The next step is to adjust the disaggregated hourly rainfall (Xs) produced from the first 
step. This adjustment is to ensure that the new disaggregated rainfall (𝑋�𝑠) is consistent with 
the given total daily rainfall (N). The adjustment is written as:

𝑋𝑠 = 𝑋�𝑠
𝑁

∑ 𝑋�𝑠24
1

,   s=1,2, …,24.    (10)

Optimization of BLRP using ABC and PSO

Estimation of the BLRP parameters (Equations 3-6) is a cumbersome task. Artificial bee 
colony (ABC) and particle swarm optimization (PSO) are introduced to tackle this task. 
The description and details of each optimization will be discussed in detail in the following 
section. To utilize both optimization methods, the possible solution of BLRP parameters 
are needed to organize for both, ABC and PSO. Size of possible solution need to be similar 
for both optimizations and this expression can be written as:

   (11)

where, Particle = [λ, κ, φ, α, ν, μx] is the set of BLRP parameters, Solution is the possible 
solution and NS or N is the size of Solution. For these optimizations, μx = σx 

Description of ABC. Artificial bee colony (ABC) algorithm was introduced by Karaboga 
(2005) and it is applied in many optimization applications (Karaboga et al., 2012). This 
algorithm was inspired by the honeybee foraging behavior and three types of honeybee are 
introduced: employed, onlookers and scouts. Inside the ABC algorithm, the food source 
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collected by honeybee is an analogy to the possible solution to the optimization problem. 
The fitness of the objective solution is represented by the position of the food source. The 
number of the employed and onlooker bees is set as equal to the number of solutions in 
the population. 

For the beginning of ABC, population of NP solutions is random initial, where NP is 
the size of population. The number of food source (NS) is introduced, where NS = NP/2. 
Each solution, xi (i=1,2,3, …, NS) is a n-dimensional vector. Then, all honeybees are 
performing a cyclic search, based on the given rules.

The update solution (𝑣𝑖
𝑗) is modified by an employed bee that produces a modification 

on the position of solution based on the local information and tests the fitness value of the 

new solution. The 𝑣𝑖
𝑗

generated from the old solution (𝑥𝑖
𝑗)  can be expressed as:

𝑣𝑖
𝑗 = 𝑥𝑖

𝑗 +∅𝑖𝑗 𝑥𝑖
𝑗 − 𝑥𝑘

𝑗     (12)

where k ∈ {1, 2,…,NS} and j ∈ {1, 2,…, n} are random indexes, k is different from i,   
∅𝑖𝑗 is a uniformly distributed random number in the range of -1 to 1.

 Provided that the update solution of the new solution is better than the previous 
solution, the old solution is replaced with the new solution. Otherwise, the old solution is 
applied. The employed bees return to their centre (hive) and share this information with the 
onlooker bees. In the next step, the onlooker bee selects one of the new solution sources 
based on the fitness value. The probability of a solution source (pi) that will be selected by 
the onlooker bees can be expressed as:

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖𝑁𝑆
𝑗=1

     (13)

where, fiti is the fitness value of solution source i, which is proportional to the objective 
function value of the solution (in the BLRP model, please refer to Eq. 2).

After the solution source is selected, each onlooker bee searches a new solution source 
in the neighborhood of that source by using Eq. 11. The new solution source is identified 
by the greedy selection to evaluate its fitness. If a position cannot be improved due to limit 
cycles, that solution source is abandoned.  The employed bee becomes a scout bee and the 
solution sources are replaced with an updated solution found by the scout bee. If the scout 
bees discover the abandoned solution (𝑥𝑖

𝑗) and replace it with xi, it can be expressed as:

𝑥𝑖
𝑗 = 𝑥𝑚𝑖𝑛

𝑗 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥
𝑗 − 𝑥𝑚𝑖𝑛

𝑗 �    (14)

where, 𝑥𝑚𝑎𝑥
𝑗 and 𝑥𝑚𝑖𝑛

𝑗 are upper and lower bonds (Table 2) of 𝑥𝑖
𝑗, and rand (0,1) is a 

uniform distribution number in between 0 to 1.
The whole process will be repeated until the maximum iterations or it achieves the 

objective function. 
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Description of PSO. Particle swarm optimization (PSO) consists of a variable set 
named as swarm of the random variables and named as particles. Each particle represents 
the possible solution to the optimization problem. This algorithm uses the movement and 
velocity of particles for the search space of global optimum state. In each iteration, PSO 
collects the local optimum and evaluate it with the global optimum value. Generally, the 
PSO algorithm can be described into three main stages, which are; 1) position and velocity 
of swarms are initiated; 2) position of swarms is evaluated; and 3) position and velocity 
of swarms are updated (Shamsudin et al., 2013; Salami et al., 2018). 

In the initial stage, the swarm initial of position (𝑥𝑜𝑖 )  and velocity (𝑣𝑜𝑖) stages are 
created randomly within the search space in a certain particle i, with i =1, 2, ..., N. This 
stage is written as:

𝑥0𝑖 = 𝑥𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 (15)

𝑣0𝑖 = 𝑥𝑚𝑖𝑛+𝑟𝑎𝑛𝑑 𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
∆𝑡

(16)

where, xmin and xmax are the lowest and highest values of x respectively (Table 2) and  
∆𝑡 is the time duration of swarm position.

For the second stage, the position xi of a particle is improved (𝑥𝑘+1𝑖 ) by increasing its 
speed vector (vi) to the previous position. It can be defined as:

𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 + 𝑣𝑘+1𝑖 ∆𝑡       (17)

where, 𝑣𝑘+1𝑖 ∆𝑡 is the added velocity vector, and k and k +1 represents the previous 
and subsequent iteration step respectively.

For the final stage (velocity update), the updated swarm velocity (𝑣𝑘+1𝑖 )  is revised 
with the best position (pi) and the global best (pg) becomes a reference. This revision can 
be expressed as:

𝑣𝑘+1𝑖 = 𝑤𝑣𝑘𝑖 + 𝑐1𝑟𝑎𝑛𝑑
𝑝𝑖−𝑥𝑘

𝑖

∆𝑡
+ 𝑐2𝑟𝑎𝑛𝑑

𝑝𝑔−𝑥𝑘
𝑖

∆𝑡
(18)

𝑤 = 𝑤1 −𝑤2
𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
+𝑤2 (19)

where, c1 and c2 are the positive acceleration constants, w is the inertia weight and rand 
is the random component. In this study, the maximum number of iterations (itermax) was 
1000 and the initial (w1) and final (w2) weights were 0.9 and 0.4, respectively.

RESULTS AND DISCUSSION

Parameter Estimation of BLRP using ABC and PSO

Figure 2 shows the list of optimum estimation of BLRP parameters using the ABC and PSO 
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algorithms for the selected rainfall stations in Peninsular Malaysia. The mean, variance, 
autocorrelation for lag-1hour (AC Lag-1h) and the probability of rainfall days (proportion 
dry) of the observed hourly and daily rainfalls were calculated as an input parameter for 
BLRP and optimized using ABC and PSO. The values were derived on a monthly basis. The 
studied rainfall properties are similar to the properties of rainfall studied by Cowpertwait et 
al. (2007) and Yusop et al. (2014), but the difference is in the aspect of aggregation levels 
(in this study the limit is between 1 and 24 hours). This limit is chosen as a way to reduce 
the extensive calculation. From the figure, all parameters do not show an identical value 
of estimated parameters between each station and the type of optimization method. The 
estimated parameters were randomly estimated within the range of the studied boundary 
constraints (Table 2). For ABC optimization, the study found that the estimated parameters 
were near to the value of the studied boundary constraints. It is also obviously seen that 
λ estimate by ABC is 0.1mm/day for almost all of the months for each station. In terms 
of PSO’s estimation, the figure shows that the estimated parameters are well randomly 
estimated within the range of studied boundary constraints.

Figure 2. Global estimated BLRP parameters using ABC and PSO for each parameter
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The minimum of the objective function (f(x)) for each month can also be referred to as 
detailed in Figure 3. The closer f(x) value to 0, the fitter the BLRP model. Based on Figure 
3, it is clearly seen that the ABC and PSO algorithms give almost similar values. The range 
of f(x) is between 0.4260 and 13.8882, with the highest recorded f(x) can be obtained from 
Melaka, with the values of 13.8882 and 13.5263 for ABC and PSO, respectively.

Figure 2. (Continued)

0

2

4

6

8

10

12

14

16

ABC PSO ABC PSO ABC PSO ABC PSO

Alor Setar Kuantan Melaka Johor Bahru

f(x
)

Figure 3. Comparison between the optimum of minimum objective function (f(x)) of the ABC and PSO

Generation of Disaggregated Hourly Rainfall Series using Hyetos

Performance of ABC and PSO to Disaggregate Temporal Rainfall Distribution. 
Figures 4-7 illustrate the comparison of the performance of Hyetos to simulate hourly 
rainfall using the optimum parameters generated by the ABC and PSO approaches for 
the studied stations. Four statistical hourly rainfalls are used, named as mean, standard 
deviation (SD), autocorrelation lag-1h and proportion of dry days. In general, the Hyetos 
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model using the parameters from ABC and PSO was able to capture the observed rainfall. 
In term of SD, both algorithms were slightly able to show a good agreement between the 
observed and disaggregated rainfall. However, the study found that some stations were 
unable to perform well in capturing the autocorrelation lag-1h and proportion of dry days.  
The stations in Kuantan and Melaka were able to capture all rainfall statistical properties 
very well. However, the studied approaches slightly overestimated the autocorrelation 
lag-1h and proportion dry for the most months in the Alor Setar and Johor Bahru stations. 
Nonetheless, the results can still be accepted because the range of differences is not large. 
Studies by Hanaish et al. (2011), Hanaish et al. (2013), Abdellatif et al. (2013), and Yusop 
et al. (2014) also provided similar results. Like this study, findings of those studies were 
also not able to fit the autocorrelation lag-1hour and proportion of dry days perfectly.  

Figure 4. Properties of hourly rainfall for Alor Setar

Figure 5. Properties of hourly rainfall for Kuantan
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Figure 6. Properties of hourly rainfall for Melaka

Figure 5. (Continued)

Figure 7. Properties of hourly rainfall for Johor Bahru
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Performance of ABC and PSO to Disaggregate Extreme Rainfall. Figure 8 illustrates 
the evaluation of the capability of BLRP to replicate the observed extreme values of 
rainfall. An hourly annual maximum (AM) as the extreme rainfall indices is applied and 
fitted with the Gumbel’s distribution. The relationship between AM intensity and return 
period (T) can be defined as:

𝑥𝑇 = 𝑥̅+ 𝐾𝑇𝑠      (20)

where, xT is AM intensity at T, 𝑥̅ is the average of AM data series, KT is the frequency 
factor, and s is the standard deviation of AM data series. Since this study applied Gumbel’s 
distribution, KT values are calculated for different return periods using this distribution. 
Therefore, KT can be written as:

𝐾𝑇 = −
6
𝜋 0.5772 + 𝑙𝑛 𝑙𝑛

𝑇
𝑇 − 1   (21)

In general, it is suggested that the BLRP model optimized using ABC and PSO is not 
able to capture well the observed extremes at the hourly scale. However, in Melaka and 
Johor Bahru, the approaches were able to capture slightly the observed extremes value. For 
the Alor Setar station (Figure 8a), it showed that both optimization methods were unable 
to provide fitted parameters to be used by the BLRP model in order to give a satisfactory 
result in capturing the extreme rainfall. This situation may happen due to the tropical 
regions of the rainfalls in Malaysia, which is mainly convective and the rains are produced 
by a sudden burst with high intensities of rainfall and the duration of rainfall is short.  In 
terms of optimization algorithms, the PSO seems to perform slightly well by replicating 
near to the observed extremes value as compared to the ABC algorithm. Although both 
models are able to give a similar optimum possible solution, the converged towards it 
is different. The ABC algorithm is poor in the aspect of exploitation ability to reach the 
optimum solution as compared to PSO. The study also found that the search for the optimal 
parameters of the optimization methods requires most efforts for ABC, in which needs a 
large exploration of the search space (maximum of number of iterations) to find optimum 
solutions. Those converged results are similar with other research, which applied the ABC 

Figure 7. (Continued)
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and/or PSO within their own case study such as Zhu and Kwang (2010), Jia et al. (2011), 
and Hossain and El-shafie (2013).

Figure 8. Return level plots of the annual maximum (AM) intensity of hourly rainfall series in a) Alor Setar, 
b) Kuantan, c) Melaka, and d) Johor Bahru

CONCLUSION

This study proposed a further improvement on the calibration process of the Bartlett-Lewis 
rectangular pulse (BLRP) with applications of the artificial bee colony (ABC) and particle 
swarm optimization (PSO). Historical rainfall data from four selected stations in Peninsular 
Malaysia were used for this study. 

In the calibration of the BLRP model, estimation of the BLRP parameters was 
addressed. Those parameters were obtained by using a combination of different moments 
generated from four statistical properties of hourly and daily rainfalls. The optimized 
parameters obtained from the ABC and PSO algorithms were discovered that the different 
combinations of parameters were directed to identical results. Both models are also able to 
match the rainfall properties. Although ABC is claimed to much reliable in finding optimal 
solutions (Karaboga & Akay, 2009; Akay & Karaboga, 2012), the result is different with 
the application of the BLRP model with the PSO, in which it is able to find the optimal 
solution much better as compared to the ABC algorithm.

Hyetos was used to regenerate the statistical and extreme properties by utilizing the 
optimized BLRP parameters. In general, the statistical properties obtained from Hyetos 
with the parameters optimized by ABC and PSO are able to give a satisfactory agreement 
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between the simulated and observed hourly data. The model does not have the ability to 
match the extreme rainfall. However, some stations namely Melaka and Johor Bahru are 
able to slightly match the extreme rainfall. In terms of optimization algorithm in matching 
extreme rainfall, the study found that the BLRP parameters optimized by PSO can nearly 
replicate the extreme rainfall as compared to the ABC algorithm. 

Further study is required to improve the quality of the BLRP model especially for 
rainfall events model, which involves extreme rainfalls. Effect of the alternative function 
towards the performance of the model in reproducing the rainfall series and its extremes 
can be applied in the future study.
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