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ABSTRACT

Previous studies have indicated that the pipe-surface-mounted helical strakes effectively 
reduce vortex-induced vibration (VIV) under a uniform flow application, particularly during 
the lock-in region. Since VIV experiments are time-consuming, observation is generated 
with an interval helical strakes parameter in pitch and height to lessen tedious procedures 
and repetitive post-processing analyses. The aforementioned result subset is insufficient 
for helical strakes design optimisation because the trade-off between the helical strakes 
dimension, lock-in region and flow velocity are non-trivial. Thus, a parametric model based 
on an improved recursive least squares (RLS) parameter estimation technique is proposed 
to define the statistical relationship between input, or strakes and pipe dimension, and 
output, or VIV amplitude ratio. As results suggested, revised RLS estimated VIV model 
demonstrated an optimal prediction with the highest coefficient of determination and 
lowest Integral Absolute Error. The feasibility of VIV parametric model was validated by 
embed into Genetic Algorithm (GA) as the fitness function to acquire a desirable helical 

strakes dimension with minimum VIV 
amplitude. The rapid generation of optimal 
helical strakes dimension which returned 
the highest VIV suppression implied a 
superior simulation method compared to the 
experimental outcome.

Keywords: Genetic algorithm, helical strakes, 
recursive least squares, vortex-induced vibration 
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INTRODUCTION

Vortex-induced vibration (VIV) is defined as the oscillation of a structure when subjected 
to the influence of fluids in motion. When synchronization between shedding vortex and 
structural natural frequency takes place, a unique occurrence, the lock-in region, results 
from VIV magnitude amplification (Chizfahm et al., 2018). This undesirable event 
generates excessive hydrodynamic, lift and drag force which leads to material property 
degradation. Consequently, equipment and accessories with a relatively high aspect ratio 
and low mass ratio, such as risers, airplane wings, and turbine blades, are prone to fatigue 
after exposure to VIV over a certain period. However, the aforementioned parts are critical 
components in the system as a whole; thus, undermining VIV development would limit 
basic component functionality, system efficiency, and contribute to disastrous incident.

In recent years, numerous research efforts have dedicated themselves to understanding 
the causes of VIV so as to minimize the effects on structural integrity. For example, a two 
degree higher-order nonlinear oscillator model was developed, aiming to perform VIV 
forecast for cylinders with respect to mass ratio and damping ratio (Kang et al., 2018). The 
model and parameter sensitivity were built on the fundamental Van der Pol equation, which 
had been validated with experimental outcomes. A  virtual damping–spring (VCK) based 
variable added mass system yield mean damped natural frequency approximately matched 
oscillating frequency while the phase between force and displacement levelled with VIV 
lock-in range resonance in perpendicular direction (Garcia & Bernitsas, 2018). The VCK-
based method is practical to find suitable mass increments for VIV suppression purposes.

On the other hand, a reduced order model deduced from a high-fidelity analysis of 
sectional pipe is employed for in-line and cross-flow oscillation measures (Stabile et 
al., 2018). Performance of the reduced order model is subjected to system-parameter 
identification to obtain full scale indication. Based on the Scale-Adaptive Simulation 
𝑘 − 𝜔 𝑆𝑆𝑇 − 𝑆𝐴𝑆  model, twisted design has been found capable of diverting 

hydrodynamic force with respect to cylinder length direction when compared to 
conventional square shapes (Wu et al., 2018). A novel image processing EFD/SVM has 
been proposed to detect and identify segments of VIV wake-patterns in a non-destructive 
manner for effective classification outcomes (Lin, 2018). By combining time domain and 
filtered VIV frequency responses, an improved semi-empirical predictor is established to 
track wave profiles regardless of steady uniform or turbulent flow (Ulveseter et al., 2018).

A new VIV wake oscillator provides appropriate prediction by considering the 
Reynolds number, lock-in regions and peak-amplitude formulae as estimation functions 
(Gao et al., 2018). Parameter identification techniques have been applied to gain VIV 
amplitude, frequency, and phase lag from time domain vortex induced hydrodynamic force 
using computational fluid dynamics (CFD) simulation (Pigazzini et al., 2018). In order 
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to eliminate premature convergence in VIV modal space prediction, a non-iterative root 
search is selected to solve hydrodynamic force and dynamic response equations together 
without power-balance (Lu et al., 2018). GA has been adopted in Facchinetti variable 
optimization to allow greater efficiency in flow induced vibration energy harvesting (Ashok 
et al., 2018). For aeroelastic force modelling, positive curvature in circular structures has 
proven effective in cross-wind oscillation damping (Lupi et al., 2018). A hybrid Euler-
Van der Pol equation is coupled with the Newmark-beta method to explain VIV response 
of marine risers in three-dimensional space, including in-line, cross-flow, and structural 
dynamics (Komachi et al., 2018). The simulation is able to develop conclusions regarding 
stress-fatigue proportionality.

A VIV-related literature review demonstrates that extensive knowledge has been 
acquired over years of thoughtful investigation, ranging from experimental studies to 
numerical simulation modelling. The adopted countermeasure approaches involving 
product design modification in conjunction with suppression tools and excessive VIV 
value monitoring have proven to be useful. Nonetheless, modelling techniques require an 
understanding of sophisticated mathematical equations and posteriori-based assumptions. 
In addition, it is laborious to conduct exhaustive experiments in a repetitive manner. Due 
to VIV turbulent characteristics and various manipulating variables, obtaining a practical, 
universal solution is a tedious process.

As a result, the objective of this case study was to demonstrate a straightforward system 
identification methodology to identify VIV mathematical relationship. The simulation 
deployed VIV amplitude data collection when helical strakes acted as suppression tool 
for flexible risers (Quen et al., 2014). A feasible system identification technique was 
implemented to estimate unknown parameters with a target of fitting VIV curves given the 
strakes dimension input and flow velocity range. The particular method of improved RLS 
was selected due to its accuracy and iterative estimation update nature. The performance 
of the VIV model was validated using GA by means of a fitness function searching for 
optimal strakes dimension, which generated minimal VIV response. Section 2 describes 
the methodology of RLS in detail, following by experiment setup. Section 3 tabulates 
hindsight on simulation findings.

MATERIALS AND METHODS

The case study focused on VIV generated under uniform flow application, as experimented 
in (Quen et al., 2014). The controlled data measurement procedure is explained, followed 
by the presentation of novel parameter estimation technique and Matlab software simulation 
design.
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Experimental Setup

A poly vinyl chloride (PVC) cylinder was operated as the riser model with settings as 
detailed in Table 1. The highly flexible cylinder was designed to move freely in an axial 
direction at one end and in restricted torsion effect with universal joints at both ends. 
Detailed riser configurations can be found in Sanaati and Kato (2013).

Table 1 
Helical strakes and risers’ parameters

Outer diameter (D) 18 mm
Inner diameter (d) 13 mm
Length (L) 2.92 m
Pre-tension (T) 147 N
Bending stiffness (El) 9.0 Nm2

Spring stiffness (ks) 6.5 N/m
Cylinder axial stiffness (EA/L) 100 N/mm
Cylinder air weight 1.64 N/m
Total weight including internal water (m) 2.97 N/m
Mass ratio 1.17
Damping ratio (z) 0.028
Applied strakes’ height (h) 0.05D, 0.1D, 0.15D
Applied strakes’ pitch (p) 5D, 10D, 15D
Number of helix 3-start helical
Flow speed (U) 0.1-1.0 m/s
Subcritical Reynolds number range (Re) 1380-13,800
Natural frequency (fn) 2.92, 2.82, 2.82, 2.86, 2.85, 2.78

Figure 1. Schematic diagram of cylinder pipe with three-start helical strakes

The cylinder specimens were soaked at a 0.35 m depth from the water surface level 
in a basin of 100 m × 7.8 m × 4.35 m and were towed to create a uniform flow speed, 
U. To initiate a subcritical Reynolds number, U was regulated between 0.1 and 1.0 m/s, 
with a step increment of 0.03 m/s. As displayed in Figure 1, The strakes’ dimension was 
increased gradually from 0.05 to 0.15 times the cylinder diameter in height and 5 to 15 
times the cylinder diameter for pitch length, respectively. Hence, 25-cylinder towing speed 
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steps were repeated for six unique strakes combinations (N = 6). The strakes’ dimension 
range is defined based on laminar boundary layer thickness, as measured by Pohlausen’s 
approximation. For every strakes setup, the vibration response was recorded using a 
charge-coupled device (CCD) camera installed at the centre of the cylinder before being 
analysed by a motion-tracking software. Additionally, thorough experiment information 
can be obtained in Sanaati’s description (Sanaati, 2012).

Vibration amplitude for strakes application was examined in contrast to the bare 
cylinder baseline amplitude ratio. The comparison is expressed using amplitude ratio 
(AR), and reduced velocity (Vr). The AR is defined as the normalisation of the standard 
deviation of time series vibration amplitude reading with respect to the outer diameter of 
the cylinder (AR = Aσ/D). The reduced velocity, Vr = U/fnD , indicates the scaling of 
uniform cylinder towing speed, U, as a function of its natural frequency and outer diameter. 
Based on 25 regular step intervals of U, the Vr values are pre-set within a range of 1.909 
and 17.755. Dimensionless AR and Vr indications are chosen as the variables for y-axis 
and x-axis respectively. Therefore, the AR value represents induced vibration weightage to 
the corresponding reduced velocity. The presented amplitude ratio versus reduced velocity 
measurement is an appropriate VIV reduction instrument when cylinder diameter variation 
is of concern.

System Identification Technique: Recursive Least Square Parameter Estimation

The least squares (LS) technique was developed by C. F. Gauss initially to estimate planet 
orbital motion (Young, 2011). In present, LS has evolved to estimate a fitting curve through 
measurement points. The fitting curve is described as a line which contains a minimal sum 
squared error when compared to available measurement points. For example, given the 
nth order difference equation, as below: 

𝑦0𝑘 = 𝑎1𝑥𝑘1 + 𝑎2𝑥𝑘2 + ⋯+ 𝑎𝑛𝑥𝑘𝑛    (1)

where output y0k is the summation of n number of parameter α multiply input data 
x for kth data observation. Reorganizing Equation 1 into a stacked equation for linearity 
purpose provides:

𝑦0𝑘 = 𝑥𝑘1 𝑥𝑘2  ⋯  𝑥𝑘𝑛  𝛼1 𝛼2   ⋮  𝛼𝑛  = 𝜑𝑘𝑇𝜃   (2)

For kth observation, 𝜑𝑘𝜖𝑅𝑛 is denoted as the regressor vector with n input data while 
θ is regarded as parameter vector. Both regressor vector and parameter vector comprises 
of n real number elements. If the data observation is repeated for N iteration time, the 
Equation 2 can be summarised in Equation 3 for k = 1,2, ... , N – 1,N:

𝑦0𝑘 = 𝑎1𝑥𝑘1 + 𝑎2𝑥𝑘2 + ⋯+ 𝑎𝑛𝑥𝑘𝑛
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𝑌0 ≈ 𝛷𝜃    (3)

where 𝑌0𝜖𝑅𝑁 represents a vector consists of N stacked real number output signals, 
𝑦0𝑘 while input data matrix, 𝛷𝜖𝑅𝑁×𝑛  is the combination of N row of regressor vector, 
𝜑𝑘. However, due to uncertainties such as measurement errors and inconsistency, output 
generally possesses noise sequence, 𝑒𝑘. Equation 3 becomes 𝑌 = 𝛷𝜃+ 𝑒, where Y is the 
summation of 𝑌0 and stacked error vector, e. A cost function, V with argument θ is then 
introduced to minimise curve fitting error (Equation 4):

𝑉 𝜃 = 1
2
∑ 𝜀𝑘2𝑁
𝑘=1 = 1

2
𝜀𝑇𝜀 = 1

2
𝜀 2    (4)

where ε is the residual of model output. Thus, LS optimization was achieved via sum 
squared error minimisation, as presented in Söderström and Stoica (2002).

𝑎𝑟𝑔min
𝜃

𝑉 𝜃  = 1
2
𝑌 −𝛷𝜃 𝑇 𝑌− 𝛷𝜃

                             =
1
2 𝑌𝑇𝑌 −𝑌𝑇𝛷𝜃 − 𝜃𝑇𝛷𝑇𝑌+ 𝜃𝑇𝛷𝑇𝛷𝜃  (5)

Minimum error value is obtained by setting a partial derivative of Equation 5 to zero:

𝜕𝑉 𝜃
𝜕𝜃

= −𝛷𝑇𝑌+𝛷𝑇𝛷𝜃      (6)

Then, rearranging input and output in Equation 6 provides the LS estimated parameter 
solution, 𝜃�:

𝜃� = 𝛷𝑇𝛷 −1𝛷𝑇𝑌      (7)

Noting that 𝛷𝑇𝛷 −1 is known as covariance matrix P. Equation 7 can be modified 
recursively over N observations, if elements for 𝑘 = 1, 2, … ,𝑁 − 1,𝑁 observation are 
known.

𝑃𝑘−1 = 𝑃𝑘−1−1 +𝜑𝑘𝜑𝑘𝑇     (8)
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𝜃�𝑘−1 = 𝑃𝑘−1�𝜑𝑖𝑦𝑖

𝑘−1

𝑖=1

� 𝜑𝑖𝑦𝑖 =
𝑘−1

𝑖=1
𝑃𝑘−1−1 𝜃�𝑘−1

𝜃�𝑘 = 𝑃𝑘 𝑃𝑘−1−1 𝜃�𝑘−1 +𝜑𝑘𝑦𝑘     (9)

By updating Equation 8 into Equation 9, the one-step ahead prediction using RLS is 
obtained:

𝜃�𝑘 = 𝑃𝑘 𝑃𝑘−1 +𝜑𝑘𝜑𝑘𝑇 𝜃�𝑘−1 + 𝜑𝑘𝑦𝑘
      = 𝜃�𝑘−1 + 𝑃𝑘𝜑𝑘 𝑦𝑘− 𝜑𝑘𝑇𝜃�𝑘−1    (10)

where 𝑦𝑘 −𝜑𝑘𝑇𝜃�𝑘−1  is denoted as one-step ahead prediction error and is the 
correction gain updated from gain vector Lk denoted by expansion of Equation 8 with 
matrix inversion lemma (Hostetter, 1987):

𝐿𝑘 = 𝑃𝑘−1𝜑𝑘 1 +𝜑𝑘𝑇𝑃𝑘−1𝜑𝑘
−1

    (11)

𝑃𝑘 = 𝑃𝑘−1 − 𝐿𝑘𝜑𝑘𝑇𝑃𝑘−1     (12)

The notable difference between LS and RLS is that LS consider stacked regressor 
vector and targeted output simultaneously, as explained in Equation 7, whilst RLS perform 
parameter estimation fine-tuning over N iterations. The recursive update algorithm offers an 
advantage over standard LS by using less bulky dataset and better convergence, particularly 
with complex dataset problems accompanied by limited data sampling N. By means of 
a less bulky dataset, RLS only require an estimated parameter vector from the previous 
iteration and input and output data from the current observation to perform a parameter 
estimation and correction gain update (refer to Equation 10, 11 and 12). However, the 
iterative update algorithm requires additional computational effort as compared to the LS 
estimation in Equation 7 (Wang & Ding, 2013). 

Recent RLS development comprises measuring the dynamic behaviour of excavators 
with rotational inertia (Oh & Seo, 2018), motion synchronisation controller fine-tuning 
for gimbal systems (Lee & Jung, 2018), battery pack insulation fault detection for electric 
vehicles (EVs) (Tian et al., 2018), time-dependent Surface Processes and Acoustic 
Communication Experiment (SPACE08) underwater communication channel tracking 
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with a graphical model (Yellepeddi & Preisig, 2018), and estimation of disturbance signal 
embedded in active vibration control (AVC) feedback mechanisms for a closed-loop 
damping system model (Oveisi et al., 2018).

Recursive Least Square Parameter Estimation Simulation Integrated Development 
Environment

The VIV experiment dataset is subject to LS and RLS simulations using Matlab software 
R2019a. For every step of Vr, parameter estimation techniques generate 𝜃�  by observing 
AR experiment results of six unique strake dimensions (N = 6) as output and n matching 
strakes dimension input. In other words, LS and RLS estimate n weighting coefficients 
corresponding to every Vr with the target of simulate actual AR  value with minimal squared 
error. The estimated parameter vector is designed to contain two elements in accordance 
with strakes’ height and pitch dimensions. When the 𝜃� desired is identified, only the strake 
dimension is needed to simulate AR  as predicted output, 𝑦� .

It is worth mentioning that estimated parameter elements are assigned as zero during 
standard LS and RLS initialisation to avoid bias. Alternatively, for improved RLS, the 
LS estimated parameter vector is set up as the initial estimated parameter instead of zero 
vector, 𝜃�𝑅𝐿𝑆,𝑁=1 = 𝜃�𝐿𝑆. The argument is that the additional parameter re-evaluation stage 
could provide faster convergence, especially for current VIV dataset with limited amount 
of observation data N. Standard estimation performance indicators such as coefficient of 
determination 𝑅𝑇

2  and integral absolute error (IAE) are measured to quantify the output 
variation between estimation model simulation and VIV experiment dataset.

Lastly, the most probable AR  estimation model is substituted as the GA fitness function 
in Matlab software. The GA platform performs a heuristic search for the minimum of a 
given function. For VIV case studies specifically, GA is responsible for discovering optimal 
strakes input dimensions, which yield minimal fitness function output AR . The minimal 
fitness function output criterion includes both the minimum global maxima AR  value over 
Vr range, and minimum average AR  value.

The desirable estimated parameter is updated into Equation 3 prior the simulation as 
a fitness function for Matlab syntax ga. The input variables for ga fitness function are 
the strakes’ pitch and height. All unique strakes’ input combinations within the search 
boundary are considered as potential solutions. A heuristically defined strakes dimension 
which simulate unprecedented minimum global maxima and average AR  is selected as the 
optimal strakes candidate and benchmark for the next GA iteration. The GA iterative process 
is terminated when the following condition is met: either there has been no improvement 
over a predetermined period cycle or the target value has been achieved. The iterative 
simulation process overview is exhibited in Figure 2. The simulation results and discussion 
are presented in the next section.
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RESULTS AND DISCUSSION

First, improved RLS, standard RLS, and LS simulated outputs are compared to actual 
experiment results with identical strakes’ dimensions by employing standard estimation 
measures: 𝑅𝑇

2  and IAE. 𝑦�  is the simulated output and y is the actual output. The next step 
includes embedding the estimation model with the highest accuracy as GA fitness function 
to identify optimal strakes’ dimensions with minimal AR  response. 

Table 2 
Model efficacy for parameter estimation techniques

Strakes dimension
( )
( )

2
2

2

ˆ
TR

y y
y y
−

=
−

∑
∑

( )ŷ y
IAE

N
−

= ∑

Setting Pitch Height LS and RLS Improved RLS LS and RLS Improved RLS
1 0 0 80.8% 40.3% 0.063 0.111
2

3

4

5

6

5*D

10*D

10*D

15*D

10*D 

0.1*D

0.05*D

0.1*D

0.1*D

0.15*D

86.4%

85.9%

19.1%

-380.7%

82.3%

88.1%

97.4%

73.1%

-139.0%

95.0%

0.031

0.034

0.038

0.033

0.021

0.026

0.014

0.021

0.027

0.013

Update 
regressor vector, 

th

Refine 
correction gain, 

th

Fine tune 
estimated 

parameters, th

Revise 
covariance 
matrix, th

Genetic 
Algorithm 
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Machines Learning Optimisation

Optimal 
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Figure 2. RLS parameter estimation iterative process for Machine Learning Optimisation
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Table 2 depicts the efficacy results using three parameter estimation techniques: LS, 
RLS and improved RLS. The closer the model performance is to 100 percent 𝑅𝑇

2  and 
zero IAE, the more representative the estimated parameter is in reflecting actual output. 
Overall, for six strakes’ dimension settings, apart from bare cylinder, the improved RLS 
method provides better 𝑅𝑇

2  and IAE indication. This observation is likely caused by the 
RLS algorithm trade-off of bare cylinder AR  tracking accuracy for cylinder with additional 
strakes. Although LS and RLS sufficiently simulated AR  with a majority 𝑅𝑇

2  over 80% 
and IAE lower than 0.04, an improved RLS is still capable of enhancing the efficacy by 
minor fine-tuning of the estimated parameter. 

Figure 3. AR versus Vr for setting: 1

Figure 4. AR versus Vr for setting: 2
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Figure 5. AR versus Vr for setting: 3

Figure 6. AR versus Vr for setting: 4

Figure 7. AR versus Vr for setting: 5
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Figure 3 to 8 exhibit the VIV parameter model simulation outcomes against actual 
experimental result for 6 different strakes dimension setting. Preliminary inspection 
revealed that the majority of the tracking errors occured near lock-in regions since AR 
changes were more rapid, with steep slopes and spikes. The prediction error is likely due 
to influence from external factors and insufficient data sampling. As a result, all related 
models suffer the most errors whilst tracking strakes dimension with 10 times diameter in 
pitch and 0.15 times diameter in height, the fifth strakes’ setting. However, compared to 
classic LS and RLS, improved RLS is still capable of simulating AR  with resemble lock-in 
patterns when strakes material is present. The visible similarity between improved RLS 
simulated output and actual AR  around the lock-in regions is of concern in VIV suppression. 
Hence, it can be concluded that the improved RLS algorithm produced the most probable 
estimated parameters for the given dataset.

The advantage of improved RLS in numerical analysis and visualisation is further 
supported in Figure 9 with the trace of covariance matrix, P over six observations in a 
semilog scale. It can be noticed that P for the improved RLS method gradually converged 
from 210 to 8.381 at the end of the simulation, which is equivalent to the value acquired by 
standard the LS and RLS. Even though the LS method experienced convergence at the end 
of the simulation, the improved RLS identified room for improvement through adaptive 
correction gains and by using 𝜃�𝐿𝑆 as an initial estimated parameter.

To perform strakes’ dimension optimisation, the search space is set to cover solely the 
given dataset range since AR  behaviour is uncertain beyond range boundary. Additionally, 
after conducting AR observations, it is believed that the minimal AR  value is likely to vary 
between the fifth and sixth settings. With the improved RLS estimation model as fitness 
function, the GA simulation discover the optimal strakes’ dimension as 14.02 times D and 
0.16 times D for pitch and height, respectively. This has been validated by comparing the 

Figure 8. AR versus Vr for setting: 6
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Figure 9. Trace of Covariance Matrix, P

AR  simulated by GA-generated optimal strakes input and the fifth strakes setting using 
the improved RLS model. GA data evaluation in Table 3 shows that global maxima and 
average AR  revealed with GA-simulated optimal strakes are considerably lower than 
the fifth setting. Figure 10 further illustrates that GA-simulated optimal strakes provide 
better VIV suppression over fifth strakes setting, particularly around the lock-in region (Vr 
ranging from 4 to 10). GA-simulated optimal strakes were deemed to be more superior since 
less strakes material is required to perform optimum suppression effects. This outcome 
evidenced the feasibility of performing system identification of VIV responses to obtain 
an optimal dimension of suppression tools, with a representable dataset and estimated 
parameter. 

Figure 10. AR for GA-simulated optimal strakes dimension and setting: 5
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Table 3 
GA optimisation evaluation

Setting Pitch Height Global Maxima AR Average AR
GA 14.02*D 0.16*D 0.10 0.043
5 15*D 0.1*D 0.14 0.054

CONCLUSIONS

The present investigation involves the system identification of helical strakes suppressed 
VIV for PVC pipes. With respect to the provided dataset, the VIV response simulated by 
a proposed improved RLS technique stipulates a satisfactory outcome compare to the 
actual values. Standard parameter estimation methods benchmarking suggested that the 
improved RLS model is a fast and accurate option to assist an experimental approach in 
VIV monitoring. Not only can minimal VIV response be obtained by indicating optimal 
strakes dimensions, an improved RLS model embedded GA also helped to eliminate trial-
and-error processes when conducting VIV experiments. Nonetheless, it is inevitable that the 
model accuracy plunges as the VIV is suppressed due to turbulent lock-in region behaviour 
and unpredictable changes. Improvement can be achieved with an optimal strakes range 
extension which requires further experimental initiative.
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