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ABSTRACT 

Solar drier is considered to be an important product used in the internet of things (IoT). 
It is used to dry different kinds of products used in agriculture or aquaculture. There are 
many factors that have different effects on the drying of items in the solar drier. The current 
study focused on the removal of the moisture ratio in the drying process for seaweed using 
solar drier. For this purpose, a dataset containing 1924 observations was used to study 
the effect of six different independent variables on the dependent variable. Moisture ratio 
removal (%) was considered to be dependent variable with ambient temperature, chamber 
temperature, collector temperature, chamber relative humidity, ambient relative humidity 
and solar radiation as independent variables. All possible models were used in the analysis 
till fifth order interaction terms. Hybrid model of LASSO with bisquare M was proposed 
for efficient selection of the model. The procedure based on four phases was used for 
efficient model selection and a comparison was made with other existing sparse and robust 
regression techniques. The result indicates that the proposed technique is better than other 
existing techniques in terms of mean squared error (MSE) and mean absolute percentage 
error (MAPE).
Keywords: All possible models, LASSO, model selection, robust, seaweed, selection criteria 

INTRODUCTION 

In agriculture field, the items based on the 
Internet of thing (IoT) help to reduce human 
effort as a kind of narrow band model was 
proposed by Klaina et al. (2018). Using IoT, 
different factors such as humidity, air speed, 
temperature and irrigation of water were 
determined by Gondchawar & Kawitkar 
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(2016). There is a large increase in population, so there is need to produce more food to 
meet the demand of the population (Rockström et al., 2009). There are many steps involved 
in the food production process from seeding to harvesting (Yan, 2011). One of the most 
important step is the drying  (Ali et al., 2014). Seaweed is considered to be the most widely 
used product in the aquaculture or agiculture sector (Dissa et al., 2011). In agriculture, 
mathematically there are many models produced for the purposes of forecasting (Neitsch 
et al., 2011). Ordinary least square (OLS) is one of the technique used in model selection, 
but it suffers from limitations in case of certain conditions violated (Zuur et al., 2009). 
Mendelsohn and Dinar (2003) used the linear and quadratic regression analysis with the 
interaction terms of factors. Giacalone et al. (2018) had introduced Lp norm estimation 
methods. These simple methods have no model selection capability, so that Xu and Ying 
(2010) performed the selection of variables using the median regression with least absolute 
shrinkage and selection operator (LASSO) type penalty. The presence of outlier is also 
considered a major data problem because removing such observations is not always a 
good solution, so there are robust methods used to deal with these types of observations, 
as Gad and Qura (2016) reviewed different types of robust methods for outliers. According 
to Shariff and Ferdaos (2017), tikhonov regularisation (ridge regression) is considered to 
be one of the methods used in the case of multicollinearity, but its results are affected in 
the case of outliers. In robust regression, many types of estimates are available as Susanti 
et al. (2014) compared maximum likelihood type estimators (M estimators), modified M 
estimates (MM) and estimators of scale (S) of maize production data, but M estimators 
are preferred by the majority of researchers as their advantages were demonstrated by 
Sinova and Van Aelst (2018). It was based on tukey bisquare and were compared with 
hampel loss function. Another method of robust ridge regression was provided by Shariff 
and Ferdaos (2017) in case of both multicollinearity and outliers problem. For the model 
selection purpose, eight selection criteria (8SC) were used by Ali et al. (2017). From all 
possible models the 8SC was used by Zainodin et al. (2011) in model selection problem. 
It can be seen from previous research that there are different methods such as OLS, ridge 
and LASSO with robustic approach have been used, but no studies have been conducted 
using a combination of LASSO and robust with 8SC for all possible models, including 
interaction terms. Therefore, the contribution is the use of a newly-developed hybrid model 
of LASSO and robust with all possible models. The best choice of these models is made 
by means of 8SC that can be used further to choose the efficient model to forecast. 

METHODS

This study used hybrid of LASSO and robust regression.The details of the methodology 
used are discussed as follows.
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LASSO

Tibshirani (1996) proposed a new sparse estimation method called “LASSO” that 
minimised the sum of squares subject to a restriction that the sum of absolute value of the 
coefficient was less than the constant value. This kind of constraint has the capacity of 
sparsness, as some coefficients will be exactly zero, so the resulting model would have a 
better interpretation. LASSO has the property of both subset selection and ridge regression 
analysis simultaneously. It is a very general method as it can be applied in different statistical 
methods such as in extension of generalised linear model and in tree based models. 
According to Zhang et al. (2016) if there is a response vector Y  = [𝑦1, 𝑦2, ..., 𝑦𝑛]  and the 
predictors X ∈ 𝑅𝑛 ×𝐷, Then in case of without generality of data loss. LASSO, a sparse 
regression method has the ability to resolve the following problem. 

min   ⃦𝑌 − 𝑋𝛽   ⃦22 + λ  ⃦ 𝛽   ⃦1

Where β ∈ 𝑅𝐷 ×1  is considered as vector of regression coefficient. L1 norm 
regularization has the ability to provide as sparse solution so that the model can be easily 
interpreted. 

M Estimator

Draper and Smith (1998) stated that for finding the maximum likelihood type estimate (M 
estimate), it is required to minimize the term ∑ 𝜌(𝜀𝑖

𝑆
𝑛
𝑖=1 ), where 𝜀𝑖  is the error term of ith 

observation and s is an estimate of the scale. For this purpose, a partial differentiation is 
used with respect to each parameter p which results in a system of p equations.

∑ 𝑥𝑖𝑗
𝑛
𝑖=1 ψ(𝑦𝑖−𝑥𝑖

𝑇𝛽
𝑠

) = ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 ψ(𝜀𝑖

𝑆
) = 0,    j = 1,2,…,p   (1)

Where ψ(u) = 𝜕𝜌
𝜕𝑢

 called as score function and the weight function can be defined as 

w(u) = 𝜓(𝑢)
𝑢

 

yeilds 𝑤𝑖 = 𝜀𝑖
𝑠

 for i = 1, 2, …, n, with w i = 1 if εi = 0, substituting into (1) the results are 

∑ 𝑥𝑖𝑗
𝑛
𝑖=1 𝑤𝑖

𝜀𝑖
𝑆

= ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 𝑤𝑖 (𝑦𝑖 - 𝑥𝑖

𝑇β)1
𝑆

= 0 j = 1,2,…,p

⇒ ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 𝑤𝑖(𝑦𝑖 - 𝑥𝑖

𝑇β)   = 0,                  j = 1,2,…,p

⇒ ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 𝑤𝑖𝑥𝑖 β  =∑ 𝑥𝑖𝑗

𝑛
𝑖=1 𝑤𝑖𝑦𝑖 j = 1,2,…,p   (2)
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Since s ≠ 0, defining the weight matrix W = diag({wi: i = 1, 2, …,n}) as follows

𝑊 =
𝑤1 . 0

 𝑤2  
0 . 𝑤𝑛

yields the following matrix form of (2)

𝑋𝑇𝑊𝑋𝛽 = 𝑋𝑇𝑊𝑌

⇒ �̌� = 𝑋𝑇𝑊𝑋 −1𝑋𝑇𝑊𝑌      (3)

 It is very similar to least square estimator solution, but the introduction of weight matrix 
reduce the outlier’s influence. Usually, contrasting to the least squares, (3) can not be used 
directly in calculation of M estimation from the dataset, W depends on the residuals, that 
depend on the estimation. In fact, an initial estimate and iterations are required to finally 
converge on W and an M estimation for β. An iterative procedure  called as iteratively 
reweighted least squares (IRLS)  is used to identify M regression estimates. There are three 
types of M estimators commonly used as  huber M, hampel M and tukey bisquare M with 
different weighting function (Stuart, 2011). In the present study, bisquare M is used for 
making the hybrid model with LASSO. 

All possible models are considered in this study. Efficient model selection is 
made in four phases. The purpose of the study is also to highlight the importance of 
interaction terms so the variables till fifth order interaction terms are considered. All the 
assumptions regarding the random pattern of observations, homogeneity of variances and 
autocorrelations are fulfilled.

Phase I – All Possible Models

Ali et al. (2017) stated all possible models using the formula 

𝑁 = � 𝑗
 𝑘
 𝐶
𝑗

𝑘

𝑗=1

     (4)

Using (4), all possible models are calculated with LASSO and with all other existing 
techniques used in this study. Total number of all possible models for six independent 
variables untill fifth order interactions can be observed as in Table 1.

�̂�
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Table 1
Number of all possible models

No of variables single Interact
1st 2nd 3rd 4th 5th Total

1 6 - - - - - 6
2 15 15 - - - - 30
3 20 20 20 - - - 60
4 15 15 15 15 - - 60
5 6 6 6 6 6 - 30
6 1 1 1 1 1 1 6

Total 
Models 63 57 42 22 7 1 192

Model ID M1-M63 M64-M120 M121-M163 M164-M185 M186-M191 M192

A total of 5% of the dataset is stored for forecasting purposes and the mean absolute 
percentage error (MAPE) value is used for forecasting estimates (Ali et al., 2017) in phase 
4. The MAPE is calculated using (5). 

𝑀𝐴𝑃𝐸 =   100
𝑁

(
∑ |𝐴𝑖−𝐸𝑖 |𝑗

𝑖=1
𝐴𝑖

) i=1,2,…,j i=1,2,…,j    (5)

Where
A  = Actual value of dependent variable (y)
E  = Expected value (𝑦�)
N  = Number of fitted points

Phase 2- Selected Models

After calculating all possible models, the next step is to obtain the selected models (Zainodin 
et al., 2011). For this purpose, bisquare M was applied to LASSO selected models at a 5% 
significance level. Significant factors had been observed. From other techniques, significant 
factors were also observed at a 5% level of significance.Only one non significant variable 
was removed at one time and the procedure rerun again. The procedure continued until all 
the variables remaining in the model were significant.

Phase 3 - The Best Model

The next step was to get the best model after a list of selected models was obtained. 8SC 
were defined for this purpose by (Zainodin et al., 2011). 8SC formula can be displayed as 
shown in Table 2. By using mentioned formulas in Table 2, Akaike information criterion 
(AIC), RICE, Final prediction error (FPE), SCHWARZ(SBC), Generalized cross validation 
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(GCV), Sigma square (SGMASQ), Hannan-Quinn information criterion (HQ) and SHIBATA 
were calculated. The efficient model was obtained on the basis of minimum value obtained 
from all mentioned  criteria.

Table 2
Formula used for 8SC

AIC:

𝑺𝑺𝑬
𝒏 𝒆

𝟐(𝒌+𝟏)
𝒏

(Akaike, 1969)

RICE:

𝑺𝑺𝑬
𝒏 𝟏 −

𝟐(𝒌 + 𝟏)
𝒏

−𝟏

(Rice, 1984)
FPE:

(𝑺𝑺𝑬)𝟐

𝒏
𝒏 + (𝒌 + 𝟏)
𝒏 − (𝒌 + 𝟏)

(Akaike, 1974)

SCHWARZ:

𝑆𝑆𝐸
𝑛 𝑛(𝑘+1

𝑛 )

(Schwarz, 1978)
GCV:   

𝑺𝑺𝑬
𝒏 𝟏 −

𝒌 + 𝟏
𝒏

−𝟐

(Golub et al., 1979)

SGMASQ:
𝑆𝑆𝐸

𝑛 1 −
𝑘 + 1

𝑛

−1

(Ramanathan, 2002)
HQ:

𝑺𝑺𝑬
𝒏 𝒍𝒏𝒏

𝟐 (𝒌+𝟏)
𝒏

(Hannan and Quinn, 1979)

SHIBATA:

𝑆𝑆𝐸
𝑛 (

𝑛 + 2 𝑘 + 1
𝑛 )

(Shibata, 1981)

where
n = total number of observations
k +1 =  estimated parameters numbers (including constant)
SSE  = sum of square of error 

Phase 4 - Goodness of Fit 

The goodness of fit test was performed on the final models selected in phase 3 to check the 
efficiency of the selected model. 5% dataset kept in phase 1 was used for MAPE calculation 
using (5) for this purpose. Other supporting evidence, such as scatter plot, histogram and 
residual box plot, was obtained for supporting evidence. 

RESULT AND DISCUSSION

Data Collection and Procedure

The data used in this study were taken from a seaweed drier for four days using V-groove 
hybrid solar dryer. Seven variables were used in this study with moisture ratio content(%) 
as dependent variable while six independent variables include ambient temperature (x1), 
chamber temperature(x2), collector temperature (x3), chamber relative humidity (x4), 
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ambient relative humidity (x5) and solar radiation (x6). Moisture ratio content (%) was 
basically decreasing with the time passed by. So the time effect was already in study of 
the percentage decrease in moisture ratio. Significance of interaction terms had also been 
observed in this study. So, x12 represents the interaction between x1 and x2. Similarly all 
other interactions are presented in this study. The four days of data were taken from a total 
of 1924 observations where 1826 observations were made for the purposes of analysis 
and 98 observations were kept for the purpose of prediction by calculating MAPE value. 
The data for each second was collected from 8 a.m. to 5 p.m. from 16 March 2017 to 19 
March 2017. All possible models for the six independent variables were calculated from 
Table 1. On these 192 models, LASSO was applied and 183 models were obtained. Models 
with the same number of variables were stored in the same group. The tukey bisquare 
M estimator was applied to these 183 models at a 5% significance level in phase 2. As a 
result, 144 models were obtained from the application of the M estimator. Out of the 144 
selected models, an efficient selection of the models was made on the basis of 8SC in phase 
3. The minimum value for 8SC were found for model M192.27.13 meaning that M192.0.0 
was original model where 27 variables were removed in LASSO and 13 were removed 
in bisquare M, thus the final model became M192.27.13 with SSE as 64743. The results 
obtained from 8SC are observed in Table 3.

Table 3
Results for 8SC using LASSO with bisquare M 

Model number AIC FPE GCV HQ RICE SCHWARZ SGMASQ SHIBATA
M7.1.0=M9.1.0=M64.1.1 156.01 156.01 156.01 156.36 156.01 156.95 155.84 156.01
M8.1.0=M22.1.0 154.55 154.55 154.55 155.06 154.55 155.95 154.29 154.55
M10.1.0 122.73 122.73 122.73 123.14 122.73 123.84 122.52 122.73
M11.1.0=M25.1.0=M30.1.0=M68.1.0 149.71 149.71 149.71 150.21 149.71 151.07 149.46 149.71
M12.1.0=M69.1.0=M73.1.1 154.47 154.47 154.47 154.81 154.47 155.41 154.30 154.47
M13.1.0 166.42 166.42 166.42 166.79 166.42 167.43 166.24 166.42
M15.1.0=M20.1.0=M21.1.0=M36.1.0
=M37.1.0 147.52 147.52 147.52 147.84 147.52 148.41 147.35 147.52

M16.1.0=M32.1.1 151.53 151.53 151.53 152.03 151.53 152.91 151.28 151.53
M17.1.0=M33.1.1=M40.1.1=M54.1.2 123.95 123.95 123.95 124.36 123.95 125.07 123.74 123.95
M18.1.0=M34.1.0=M39.1.0=M75.1.0 151.66 151.66 151.66 152.17 151.66 153.04 151.41 151.66
M19.1.0=M41.1.1 94.35 94.35 94.35 94.66 94.35 95.20 94.19 94.34
M23.1.1=M66.1.0 153.88 153.88 153.88 154.39 153.88 155.28 153.63 153.88
M24.1.0 121.56 121.56 121.56 122.10 121.56 123.03 121.29 121.56
M26.1.0=M42.1.1=M49.1.1=M58.1.2 149.49 149.49 149.49 150.16 149.49 151.31 149.16 149.49
M27.1.0=M50.1.1 113.33 113.33 113.33 113.83 113.33 114.70 113.08 113.33
M28.1.0=M44.1.0 151.22 151.22 151.22 151.89 151.22 153.06 150.89 151.22
M29.1.0 85.01 85.01 85.01 85.39 85.01 86.04 84.83 85.01
M31.1.0 119.26 119.26 119.26 119.79 119.26 120.71 119.00 119.26
M35.1.0 77.65 77.65 77.65 78.00 77.65 78.59 77.48 77.65
M38.1.0=M56.1.0 92.06 92.06 92.06 92.47 92.06 93.17 91.85 92.05
M43.1.0=M59.1.1 111.99 111.99 111.99 112.62 111.99 113.70 111.69 111.99
M45.1.0 73.22 73.22 73.22 73.63 73.22 74.33 73.02 73.22
M46.1.1 147.40 147.40 147.40 148.06 147.40 149.19 147.08 147.40
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Table 3 (continue)

Model number AIC FPE GCV HQ RICE SCHWARZ SGMASQ SHIBATA
M47.1.0 118.40 118.40 118.40 119.06 118.40 120.20 118.08 118.40
M48.1.0=M61.1.0 87.00 87.00 87.00 87.49 87.01 88.33 86.77 87.00
M51.1.0 86.99 86.99 86.99 87.48 86.99 88.31 86.75 86.99
M52.1.0=M62.1.0 77.68 77.68 77.68 78.11 77.68 78.86 77.47 77.68
M53.1.1 149.88 149.88 149.88 150.55 149.88 151.70 149.55 149.88
M55.1.0 77.69 77.69 77.70 78.13 77.70 78.88 77.48 77.69
M57.1.0 70.96 70.96 70.97 71.44 70.97 72.26 70.73 70.96
M60.1.0 72.80 72.80 72.80 73.28 72.80 74.13 72.56 72.79
M63.1.0 71.29 71.29 71.29 71.84 71.29 72.81 71.01 71.28
M65.1.0=M83.1.2 154.53 154.53 154.53 154.87 154.53 155.46 154.36 154.53
M67.1.0=M81.1.1 122.50 122.50 122.50 122.91 122.50 123.61 122.30 122.50
M70.1.0 162.41 162.41 162.41 163.13 162.41 164.38 162.05 162.41
M71.1.0 151.27 151.27 151.27 151.95 151.27 153.11 150.94 151.27
M72.1.0 150.36 150.36 150.36 150.86 150.36 151.72 150.11 150.36
M74.1.0 121.72 121.72 121.72 122.13 121.72 122.83 121.52 121.72
M76.1.0 85.23 85.23 85.23 85.61 85.23 86.26 85.04 85.23
M77.1.0 177.37 177.37 177.37 177.96 177.37 178.98 177.08 177.37
M78.1.0 134.59 134.59 134.60 135.05 134.60 135.82 134.37 134.59
M79.1.0 151.11 151.11 151.11 151.95 151.11 153.41 150.70 151.11
M80.1.1 148.18 148.18 148.18 149.00 148.18 150.43 147.77 148.17
M82.1.0 135.42 135.42 135.42 136.48 135.42 138.31 134.90 135.42
M84.1.0 108.30 108.30 108.30 108.78 108.30 109.61 108.06 108.30
M85.1.1 128.35 128.35 128.35 129.21 128.35 130.69 127.93 128.34
M86.1.0=M128.1.0 76.47 76.47 76.47 76.90 76.47 77.63 76.26 76.47
M87.1.1 112.07 112.07 112.07 112.82 112.08 114.12 111.71 112.07
M88.1.0=M130.1.0 88.49 88.49 88.49 89.08 88.49 90.10 88.20 88.49
M89.1.1 152.41 152.41 152.41 153.09 152.41 154.26 152.08 152.41
M90.1.1 106.50 106.50 106.50 107.09 106.50 108.11 106.20 106.49
M91.1.1 124.02 124.02 124.02 124.85 124.02 126.28 123.61 124.01
M92.1.0 67.85 67.85 67.85 68.30 67.85 69.09 67.63 67.85
M93.1.0 127.73 127.73 127.73 128.58 127.73 130.06 127.31 127.72
M94.1.0 97.75 97.75 97.75 98.52 97.75 99.84 97.38 97.75
M95.1.0 74.94 74.94 74.94 75.28 74.94 75.85 74.78 74.94
M96.1.0 109.06 109.06 109.06 109.79 109.06 111.05 108.70 109.06
M97.1.0=M139.1.0 91.72 91.72 91.72 92.44 91.72 93.68 91.37 91.72
M98.1.0 62.66 62.66 62.66 63.15 62.67 64.00 62.42 62.66
M99.1.0 146.74 146.74 146.74 148.21 146.74 150.78 146.02 146.73
M100.1.0 99.99 99.99 99.99 100.66 99.99 101.82 99.66 99.99
M101.1.1 127.89 127.89 127.89 129.32 127.89 131.80 127.19 127.88
M102.1.1 62.73 62.73 62.73 63.36 62.74 64.46 62.42 62.73
M103.1.1 112.64 112.64 112.64 113.52 112.64 115.04 112.21 112.63
M104.1.0 84.49 84.49 84.49 85.06 84.49 86.04 84.22 84.49
M105.1.0 70.77 70.77 70.77 71.41 70.78 72.50 70.46 70.77
M106.1.0 104.31 104.31 104.31 105.36 104.31 107.18 103.80 104.30
M107.1.1 80.91 80.91 80.91 81.72 80.91 83.13 80.51 80.90
M108.1.1 51.05 51.05 51.05 51.45 51.06 52.14 50.86 51.05
M109.1.0 51.86 51.86 51.87 52.50 51.87 53.61 51.55 51.86
M110.1.1 107.75 107.75 107.75 108.59 107.75 110.05 107.33 107.74
M111.1.0 84.28 84.28 84.28 85.13 84.28 86.60 83.86 84.27
M112.1.0 50.86 50.86 50.86 51.37 50.86 52.26 50.61 50.85
M113.1.0 60.10 60.10 60.10 60.63 60.10 61.56 59.83 60.09
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Table 3 (continue)

Model number AIC FPE GCV HQ RICE SCHWARZ SGMASQ SHIBATA
M114.1.0 46.50 46.50 46.50 47.23 46.50 48.50 46.14 46.49
M115.1.1 103.16 103.16 103.16 104.31 103.16 106.32 102.59 103.15
M116.1.2= M118.1.3 77.95 77.95 77.96 78.56 77.96 79.62 77.66 77.95
M117.1.2 45.86 45.86 45.86 46.32 45.86 47.12 45.64 45.86
M119.1.3 47.17 47.17 47.18 47.70 47.18 48.62 46.92 47.17
M120.1.1 40.99 40.99 40.99 41.63 40.99 42.76 40.67 40.98
M121.1.1 152.90 152.90 152.91 153.59 152.91 154.76 152.57 152.90
M122.1.1 146.88 146.88 146.88 147.70 146.88 149.11 146.48 146.88
M123.1.0 125.34 125.34 125.34 126.04 125.34 127.24 125.00 125.34
M124.1.0 126.99 126.99 126.99 128.12 126.99 130.09 126.43 126.98
M125.1.0 158.61 158.61 158.61 159.49 158.61 161.02 158.17 158.61
M126.1.1 107.59 107.59 107.59 108.19 107.59 109.23 107.30 107.59
M127.1.0 124.74 124.74 124.74 125.86 124.74 127.79 124.20 124.73
M129.1.0 104.95 104.95 104.95 105.77 104.95 107.19 104.55 104.95
M130.1.1 154.50 154.50 154.50 155.36 154.50 156.84 154.07 154.49
M131.1.0 114.90 114.90 114.90 115.67 114.91 117.00 114.53 114.90
M132.1.0 118.18 118.18 118.18 119.23 118.18 121.07 117.66 118.17
M133.1.0 68.28 68.28 68.28 68.81 68.28 69.74 68.02 68.28
M134.1.0 157.02 157.02 157.03 158.25 157.03 160.38 156.42 157.02
M135.1.0= M137.1.0 94.67 94.67 94.67 95.51 94.67 96.98 94.26 94.66
M136.1.0 66.69 66.69 66.69 67.22 66.70 68.12 66.44 66.69
M138.1.0 108.23 108.23 108.24 109.20 108.24 110.88 107.76 108.23
M140.1.1 61.03 61.03 61.03 61.44 61.03 62.15 60.83 61.03
M142.1.2 135.41 135.41 135.42 136.93 135.42 139.56 134.68 135.41
M143.1.1 94.92 94.92 94.92 95.88 94.92 97.53 94.45 94.92
M144.1.0 127.21 127.21 127.21 128.35 127.21 130.32 126.65 127.20
M145.1.2 59.86 59.86 59.86 60.46 59.86 61.51 59.56 59.85
M146.1.2=M166.1.2 103.30 103.30 103.30 104.22 103.30 105.82 102.85 103.30
M147.1.0=M167.1.0 82.53 82.53 82.54 83.18 82.54 84.30 82.22 82.53
M148.1.2 47.26 47.26 47.27 47.90 47.27 49.01 46.96 47.26
M149.1.3 100.26 100.26 100.26 101.27 100.26 103.02 99.77 100.25
M150.1.0 80.22 80.22 80.22 80.94 80.23 82.18 79.87 80.22
M151.1.1 50.84 50.84 50.84 51.35 50.84 52.23 50.59 50.83
M152.1.2 50.85 50.85 50.85 51.36 50.85 52.25 50.60 50.85
M153.1.2 103.96 103.96 103.97 105.01 103.97 106.83 103.45 103.96
M154.1.1=M174.1.1 83.56 83.56 83.56 84.40 83.56 85.86 83.15 83.55
M155.1.1 50.11 50.11 50.11 50.67 50.11 51.64 49.84 50.11
M156.1.1 56.83 56.83 56.83 57.33 56.83 58.21 56.58 56.82
M157.1.3 42.07 42.07 42.07 42.83 42.08 44.15 41.71 42.07
M158.1.1 97.01 97.01 97.01 98.31 97.02 100.59 96.38 97.00
M159.1.2 67.64 67.64 67.65 69.16 67.66 71.85 66.91 67.63
M161.1.2 47.15 47.15 47.15 47.62 47.15 48.45 46.92 47.15
M162.1.2 45.63 45.63 45.63 46.24 45.63 47.31 45.33 45.62
M163.1.5 46.47 46.47 46.47 47.14 46.47 48.32 46.14 46.46
M164.1.4 40.36 40.36 40.37 40.95 40.37 41.98 40.08 40.36
M165.1.1 138.21 138.21 138.22 139.91 138.22 142.88 137.38 138.20
M168.1.1 99.96 99.96 99.96 100.86 99.97 102.40 99.53 99.96
M169.1.2 124.32 124.32 124.32 125.57 124.33 127.74 123.71 124.32
M170.1.2 59.71 59.71 59.71 60.25 59.72 61.17 59.45 59.71
M171.1.3 46.73 46.73 46.73 47.36 46.73 48.45 46.42 46.73
M172.1.1 102.12 102.12 102.12 103.26 102.13 105.25 101.56 102.11



Anam Javaid, Mohd. Tahir Ismail and Majid Khan Majahar Ali 

618 Pertanika J. Sci. & Technol. 28 (2): 609 - 625 (2020)

The minimum value for M192.1.14 represented the efficient model obtained in phase 
3. For LASSO, package glmnet was used and for bisquare M estimator, library MASS was 
used for the purpose of analysis in R software. The coefficients were obtained by means 
of the R software and can be observed as in (6). 

M192.1.13 = 𝑌� = 2.350𝑒+02-3.1975𝑒+00𝑥2 -9.921𝑒+00𝑥3 -1.005𝑒+01𝑥5

+ 1.572𝑒−01𝑥13+2.210𝑒−01𝑥15+2.453𝑒−03𝑥26+3.991𝑒−01𝑥35+2.738𝑒−02𝑥45

-2.477𝑒−02𝑥46+1.224𝑒 −02𝑥56+1.589𝑒−03𝑥123+1.150𝑒−03𝑥124-1.128𝑒−02𝑥135

+8.000𝑒−04𝑥245+1.185𝑒−04𝑥256-3.980𝑒−04𝑥346+2.162𝑒−04𝑥356+8.468𝑒−05𝑥1235

+2.203𝑒−05𝑥1246-1.642𝑒 −05𝑥1256-3.053𝑒−06𝑥12345- 6.217𝑒−08𝑥12356

+1.298𝑒−07𝑥13456        (6)

Crucial variables with their respective coefficients can be observed from the above 
model. From (6) onwards, the importance of interaction terms can be observed in the form 
of significant variables. MAPE is found with (5) and was obtained as 8.97 for this efficient 
model using the proposed hybrid model.

 Comparison with other existing sparse and robust regression techniques was carried 
out to verify the efficiency of the proposed technique. Using all other existing techniques, 
the final model was obtained in a similar way  based on four phases in this study. The 
results of mean squared error (MSE) and for MAPE were observed using the R software 

Table 3 (continue)

Model number AIC FPE GCV HQ RICE SCHWARZ SGMASQ SHIBATA
M173.1.1 74.11 74.11 74.11 75.11 74.12 76.84 73.63 74.10
M175.1.1 51.83 51.83 51.83 52.29 51.83 53.09 51.60 51.82
M176.1.1 50.43 50.43 50.43 51.16 50.44 52.45 50.07 50.42
M177.1.1 100.69 100.69 100.70 101.59 100.70 103.15 100.25 100.69
M178.1.0 55.97 55.97 55.97 56.66 55.97 57.86 55.63 55.96
M179.1.3 44.97 44.97 44.97 45.88 44.98 47.48 44.53 44.96
M180.1.1 61.03 61.03 61.03 62.06 61.04 63.85 60.53 61.02
M181.1.6 66.31 66.31 66.32 67.35 66.32 69.17 65.81 66.30
M182.1.4 42.40 42.40 42.40 43.16 42.40 44.49 42.03 42.39
M183.1.7 41.29 41.29 41.29 42.21 41.30 43.85 40.84 41.28
M184.1.7 43.37 43.37 43.37 44.15 43.38 45.51 42.99 43.36
M185.1.3 39.88 39.88 39.89 41.18 39.90 43.52 39.25 39.86
M186.1.1 47.85 47.85 47.86 48.77 47.86 50.37 47.41 47.85
M187.1.2 97.87 97.87 97.87 98.96 97.87 100.86 97.33 97.86
M188.1.3 66.66 66.66 66.67 67.94 66.67 70.17 66.05 66.65
M189.1.4 42.73 42.73 42.74 43.50 42.74 44.85 42.36 42.73
M190.1.7 41.21 41.21 41.22 42.42 41.23 44.58 40.63 41.20
M191.1.3 44.34 44.34 44.35 45.19 44.35 46.68 43.93 44.33
M192.1.14 36.61 36.61 36.62 37.60 36.62 39.36 36.13 36.60
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with the numbers of variables left in a model (k). The proposed technique was compared 
with a variety of other existing sparse and robust techniques. Least trimmed square (LTS), 
modified M estimator (MM), estimators of scale (S estimator) were applied using R 
software. Elastic net LTS (E. Net LTS), elastic net with S estimator (E. Net S)  using the 
pense package in R is applied. M step after elastic net S estimator (M ENet S) using the 
Mpense package in R software was performed by default. The purpose was to compare the 
final selected model among all possible models obtained from all techniques in phase 3.

Table 4
Comparison of proposed method with other existing methods

Selected Model Technique (k) MSE MAPE
M192.1.13 LASSO with bisquare M 23 35.46 8.968
M192.1.0 LTS 63 100766.703 72.58
M192.10.0 MM 53 37.88 9.313
M192.1.0 S 63 3627.52 70.76
M192.2.0 E.net LTS 59 44.47 10.06
M192.2.0 E.net S 57 42.84 8.994
M192.3.0 M E.net S 27 87.53 14.373

Table 4 shows the results of the different techniques used in this study. The number 
of variables can be observed in all techniques with their respective MSE and MAPE in 
Table 4. M192.2.0 in E.net LTS shows that after performing the method in two steps, all 
the variables remain in the model as significant. Similarly other models are presented in 
this way.LTS and S estimator have the highest mean square error. Because of the trimmed 
observations in LTS, LTS cannot be considered as a good method in forecasting (Alma, 
2011). The detailed behavior for the observation pattern for LTS and S estimator is analyzed 
in Figure 2 and Figure 4. Clearly, the proposed technique is better than all other techniques. 
The minimum value of MSE was found to be for LASSO with bisquare M in comparison 
with other techniques. So, on the basis of minimum MSE value, LASSO with bisquare 
M is preffered than other existing methods for forecasting. It has significant number of 
variables with minimum MSE and MAPE value as compared to other existing techniques. 
Although the number of variables in other techniques are higher than the proposed technique 
but MSE and MAPE is also high in comparison. So, the proposed technique is the best 
selection for forecasting the model as compared to others.

For the purpose of observing outliers outside the sigma limits, standardized residuals 
plots are observed for each final model.

Outliers outside 2 sigma limit can be observed from Figure 1-7. The percentage 
of outliers is obtained based on number of observations outside the 2 sigma limit. The 
percentage of outliers outside 2 sigma limit in each technique is observed in Table 5. 
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Figure 1. Standardized residual by for LASSO with bisquare M

Figure 2. Standardized residual for LTS regression

Figure 3. Standardized residual for MM estimator
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Figure 4. Standardized residual for S estimator

Figure 5. Standardized residual for E.net LTS estimator

Figure 6. Standardized residual for E.net S estimator
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Figure 7. Standardized residual for M.Enet S estimator

Table 5
Percentage of outliers outside 2 sigma limits

Selected Model Method 𝜇 ± 2𝜎
M192.1.13 LASSO with bisquare M 5.48%
M192.1.0 LTS 1.70%
M192.10.0 MM 6.08%
M192.1.0 S 3.51%
M192.2.0 E.net LTS 5.92%
M192.2.0 E. net S 6.24%
M192.3.0 M E.net S 6.24%

There are 5.48% observations as outliers in the proposed hybrid model. The outlier’s 
percentage in LTS and S estimator is lower than the proposed method. But due to high MSE 
value, LTS and S estimators cannot be considered as suitable for forecasting. In this study, 
real dataset is used so exclusion of outlier observations is not a good option. The pattern 
in the proposed technique is random, while more outliers are in a positive direction in all 
other techniques. There are fewer outliers in the LTS regression, but the MAPE for LTS is 
72.58 using (5) with a very high MSE value. The pense and Mpense packages show almost 
the same behaviour in E.net S and M E.net S estimators respectively. E.net LTS also shows 
random pattern, but taking the more observations as outliers than the proposed hybrid 
model. The MSE and MAPE are also high as compared to the proposed hybrid model. 

The estimates are not influenced from outliers in the proposed hybrid model due to the 
use of robust estimator. On the basis of minimum MSE and MAPE,  the proposed hybrid 
model is preferred than other existing methods. The model obtained from LASSO with 
bisquare is therefore ready to forecast the moisture ratio removal (%) of seaweed with 
higher efficiency. 
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CONCLUSION

The results show that LASSO with bisquare M model provides the best model as compared 
to other existing methods used in the analysis.The selection of efficient model need to deal 
with all possible models with the interaction terms. The significance of interaction terms 
highlight the importance of interactions in the real life dataset. The proposed hybrid model 
is found to be better in term of MSE and MAPE value in comparison to other existing 
methods. The pattern of observations is also found to be random in graph of standardized 
residuals. So, the proposed hybrid model of LASSO and bisquare M can therefore be used 
for the efficient selection of the model including the interaction terms in it. The model 
is prepared to predict the moisture ratio removal (%) of seaweed with its crucial factors 
involving interaction terms. For the future work, the developed procedure based on four 
phases can also be used in efficient model selection for any other field of study.
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