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ABSTRACT

This paper focuses on the construction of two-point and three-point implicit block
methods for solving general second order Initial Value Problems. The proposed methods
are formulated using Hermite Interpolating Polynomial. The block methods approximate
the numerical solutions at more than one point at a time directly without reducing the
equation into the first order system of ordinary differential equations. In the derivation of
the method, the higher derivative of the problem is incorporated into the formula to enhance
the efficiency of the proposed methods. The order and zero- stability of the methods are
also presented. Numerical results presented show the efficiency of these methods compared
to the existing block methods.
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INTRODUCTION

Many researchers have focused on the block method for directly solving general second
order initial value problems (IVPs), whereby the IVPs are not reduced to system of first
order IVPs. Awoyemi et al. (2011) used the collocation technique to develop block linear
multistep methods to solve second order IVPs. Majid et al. (2012) used two-point block

method to solve general second order IVPs.
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solving the same type of problems, Ramos et al. (2016), developed an efficient Falkner-type
method of order two and three. Waeleh and Majid (2017) derived block method to solve
second order IVPs using variable stepsize code. Nasir et al. (2018) presented the diagonal
block method of order four, for solving the second-order boundary value problems with
Robin boundary conditions. While Singh and Ramos (2019) derived an optimized two-step
hybrid block method which was formulated in variable step-size mode for integrating the
general second order [VPs directly.

In most of the previously mentioned work, the methods did not have the extra derivative
in the formulation of the methods. The aim of having the extra derivative in the formulation
of the method is that, numerical solutions which are very accurate can be obtained.
Furthermore, most of the block methods in the literature were derived using collocation
and interpolation technique and some of them were derived using linear operator, which
require more computational effort.

In this paper, we derived the methods using integration technique which was much
simpler than the collocation and linear operator techniques. Previous work on block method
which were derived using integration technique, only used Newton interpolation for the
function on the right-hand side of the integration. In this research the function was replaced
by Hermite interpolation, so that the extra derivatives of the problems to be solved could
be included into the formula. Here, block methods with extra derivative are derived for
directly solving the general second order ODEs (Equation 1).

y'=ft.yy") y(@) =y,y'(@=y, as<t<bh (1)

The first derivative of /' with respect to ¢ can be written as

y'=f'Cyy)=[fi+y L+ ffy=9&yy").

Hermite Interpolating Polynomial P, can be defined by Equation 2:

n m;_q

PO =) > P Lo, @)

i=0 k=0

. b— . e
where f;=f(t;),ti=a+ih, i=0,1,...,n and h = Ta , N 1s a positive integer.

L; x(t)1s the generalized Lagrange polynomial which can be defined by

Li,mi (t) = ‘ei,mi(t)'i = 0,1,. .., n,

(t—t)* : 2 N
£ip(6) = | | (=D =01k = 01,0
! i~ ¢

j=0ji
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And recursively for k =m; —2,m;—3, ..., 0.

mi—l
Lin(®) = € ® = ) 45 E)Lin(®.
v=k+1
MATERIALS AND METHODS
Derivation of the Methods

In two-point block method, the interval [a, ] contains two points for each block. To
evaluate the first point, Yn+1 and Y+t At tnra, we integrate (1) once and twice over
the interval [t,, t,41], which gives Equation 3

tnt1 tn1
f y'"dt = f(ty,y)dt. (3)
tn tn
and Equation 4
tnyr t tngr [t
f y' dtdt = f f(t,y,y)dtdt. (4)
tn  Jtn th  Jtn

Let t,4+1 = t, + h and substituting into Equation 3 and 4, we have Equation 5 and 6

tn+ 1

Y (the) =y () + f@y ydt, (5)

tn

tn+1
7" (Xpg1) = Y(tne1) = y (&) + hy'(t,) + f (tnsr —Of Y,y dt. (6)

tn

Then, f(t,y,y’) in Equation 5 and 6 will be replaced by Hermite Interpolating
Polynomial in Equation 2 which is defined by P,(t) as follows (Equation 7):

— ‘n+ — lnt 2 2 2%
Py(t) = [(—2tLyz 2y, ) )a—%x L tnety,

th — thta th — tns2 th = tht1” tn— lny2 —lns1
t—tnyo t—lny1 t—lnyo t—1ty
) fo+[C )2( VI +C—)?
tn — thiz th —tht1” th—lnaz thiz — tn
t—th+t 2 2 t—t,
C——)? — )~ ta2) ——)*
tny2 —tpya tniz —tne1” thyz — ln thiz —tn
t—tniq t— tn+1 t— lnyo
—— )42+ [t- )G )2( ——)?190+ [(t = tns1)
tny2 —thya tnt2
t-t t-t t—t
Copporay Bl Cxpprd Kl 2R [ tn+z)( ~) ()9,
tny1—tn”  tnt2—tn tn” “tniz—tn+a
(7)
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Where fy, f1 and f, are the function / (Equation 1) at the first, second and third point of the
interpolation, while gg, g; and g, are the derivatives respectively (Equation 8).

Let =ty +shand

L~y
—_— 8
A (8)

S =

Taking dt = h ds and change the limit of integration from —2 to —1 in Equation 5 and
6 we obtain Equation 9 and 10

Y Gner) =¥ ) + I 1 foLoo(®) + file o(S) + folao(s) +golor () +
91111 (5) + g2Lz1 ()] h s, 9)
) =00+ i)+ [ R =) oln(5) +filao(®) + foaa(s )
g1L11(s) + g2L21(s)] hds. (10)
where
Loo(s) = C (s + D2 +352(5 +2)(5 + D2), Lyo(s) = 52(s +2)2
Loo(s) =7 ((s +2)%(s+ 1) =3s(s + 2)*(s + 1)?),
Loa(s) = hC- (s +2) (s +1)2), Lia(s) = h(s2(s + D)(s +2)?),
Lz1(s) = hG (s + D)?(s +2)?).

Evaluating the integrals in Equation 9 and 10 produces the first formula of the two-
point implicit block method as follows (Equation 11 and 12):

’ ’ h h2
Yne1 = Yn +5,5[101fn +128fp41 + 11f5] +-[13gn — 40gn41 — 3gn+2]

(11)
h? h3
Yn+1 =Yn T hyn+ 2 [13fn + 7 fas1+ frz| t+ @[599n —128gp411 — 11gp42]
(12)

Integrating Equation 1 once and twice over the [tn41, tnt2] to obtain the approximate
solutions of y,4, andy;, , ,, we have Equation 13
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tnt2 tniz
f y'dt = f &y, y)dt. (13)
¢

n+1 tnt1

and Equation 14

thy2 n+2 [t
f y' dt dt—f f(tyy)dtdt. (14)
t t

tn+1 Yinta n+1 Ytnt1

Taking t,,4, = t4+1 + h and substituting into Equation 13 and 14 we have Equation
15and 16

tht2
V' () =y (Ge) + | [y y)de (15)
tn+1
tnt2
Vo) =Y d) H Ry G+ [ Cua =0 Cyydde (16
tn+1

Replaced f(t,y,y’) in Equation 15 and 16 by Hermite Interpolating Polynomial in
Equation 7 and changing the limit of integration from —1 to 0 in Equation 15 and 16, we
obtain Equation 17 and 18

0
Y (Xnt2) =y (Xng1) + f_l[foLo,o(S) + f1L1,0(s) + f2L20(s)

+9o0Lo1(S) + g1L1,1(s) + g2Lz1(s)] hds. (17)

0
Y(xn42) = Y1) + hy (Xn41) + f_l( = sW)[foLop(s) + fiL10(s)
+f2L20(s) + goLoa(s) + g1L11(s) + g2L21(s)] h ds. (18)

Evaluating the integrals in Equation 17 and 18, produces the second formula of the
two-point implicit block method as follows (Equation 19 and 20):

2

r I h
Y sz =Y i1 T g 1 +128fn1 + 101fara] + 75 [39n + 40gn+1 — 13gn42]-

240
(19)
, h? h3
Ynwz = Ynr1 ¥ 0y oy + 755 [37fn + 616541 + 187fpr2] + 551590 + 76041 = 16gn42].
(20)

We denote the formula as two-point second derivative block implicit method or
2PSDBI(2).
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In the three-point block, each block contains three points. The values of
VYn+1> Yz and vy, 3 at the point t,4 4, tyeo and t, 431 are calculated concurrently in a block.
The approach is similar to the derivation of the two-point implicit method. Equation 1
will be integrated once and twice over the intervals [ty,, tn41], [tn+1, tnez2] and [Eniz, thes]
to obtain the approximate solutions of yy+1, ¥y 11, Ynt2 Y42 Yn+3and y, 5. Define P3(t)
as follows (Equation 21):

-1 -2

E=tnyr U= tnyr T —Epy3 -1
P3(t) = [( ) ) )2+ (( )+ ( )+ ( )
b —tntt” Ty —lngt” T lny3 th —tns1 th — 2 th — 3

(=)D G o+ I )22 f +

tn—tn+1” tn—tns2” tn—tnt n+1=tn”  tns1—tni2” tne1—tnes
t=tn y2, t-tn41 t—tnts )Z]f [( t—ty )2 t—tn41 t=tntz \ 2
tnt2—tn” tni2—tntr tnt2—tnss 2 tnt3—tn”  Tn+s—tne1” Tnisz—tnsz tnt3—tn
1 1 t-t t-t t-t
—) + ——)((t - tn+3)( ) ) (— ) fs
tns—tns1 tnt3—tns2 tn” “tas—tntr” tnts—tns2

=)D G0 +H(E - s 2 ) )0

—tns1” tn—tnt2” tn—tny tne3=tn” 3 —lng1” Xnt3—Xn42

21

Hermite Interpolating Polynomial in Equation 21 will interpolate f(%,¥,¥") and let
t=tpyz3 +shands = t_t"”.Foreachevaluationof Yn+1 ,y,’,+1 ) yn+z,y,'l+2 and Yp+3, y,’1+3,
we obtained the formulae which can be written as follows (Equation 22, 23, 24, 25, 26
and 27):

' , h h?
41 = yn 6480 [3463fn + 3537fn+1 783fn+2 + 263fn+3] + 1080 [97gn 17gn+3],

(22)

2 3
75300 116384 + 7857fu1 = 2376f42 + 815 frua] + o

o [3889n — 53gn43l,
(23)

Ynt1 = In +h Yn

, , h
Y42 =Vn41 t @[_7fn +47 fop1 + 47 fpa2 — 7 fra3l + [ 119, + 11gp43l,

(24)
h? h3
Yn42 = Yn+1 + hyn+1 + =55 15120 [ 715fn + 5832fn+1 + 3051fn+2 - 608fn+3] 2520 [ 41gn + 36gn+3]
(25)
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2

[263f, = 783fy1 + 3537f, 1 + 3463f, 5] + oo

[17gn 97gn+3]'
(26)

, , h
Yn+3 = Yns2 T 3on

2 h3

Yn43 = Yns2 T hyn+2 t— 1680 [38f, — 115f,,1 + 626f,,, + 291f, 5] + 2520 [22§n 97gn+3]'

27

This method is denoted as three-point second derivative block implicit method or
3PSDBI(2).

Order and Error Constant

The local truncation error associated with the normalized form of the proposed method
can be defined as the linear difference operator (Equation 28)

LIp(); k] = iolanp(t +jh) = hBip'(t +jh) — R2yap (¢ + jh) — h363p™ (¢ + jh)].
(28)

Further detail can be seen in Fatunla (1995). Assuming that ¥ (t) is sufficiently
differentiable, Equation 28 can be expanded as a Taylor series expansion about the point
£ to obtain the expression L[ (t); h] = Cop(t) + Crhy’ (£)+...+C,hPYP)(£)+..., where
the constant coefficients C,,p = 0,1,... are given as follows (Equation 29):

_ Vk —_V\Vvk k
0=2i=0%, G =Xiojaj—2i=ohj

k
1 1 N e ) .
(C”:EZJP a"_(p—1)!zfp LBy G oY~ g Bt P8 = 3.4
i i=0

(29)

It can be said that the proposed method has order p if
Co=0C; = ..(Cp = (Cp+1 =0, (Cp+2 # 0. Therefore, (Cp+2 is the error constant and
Cpi2hP+2p@+2) (t,) is the principal local truncation error at the point Z,,.

The formulae of the two-point implicit block method given by Equation 11, 12, 19
and 20 can be written in the form of a matrix as follows:

0 0 0 0 yn 1 1 -1 0 Y n-1
0 -1 1 0 \ lo 1 0 0 Y +
0 0 0 0 |[|yne 00 1 -1 ([,
0 0 -1 1 00 1 0 '

n+2
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P 101 128 11 7 -0 13 —40 -3
240 240 240 240 240 240
0 18 7 1 fr-1 0 59 —128 -—11 In-1
h2 42 42 42 fa 4 B3 1680 1680 1680 In
0 11 128 101 j 0 3 40 -13 In+1
240 240 240 fn+2 240 240 240 In+2
0 37 616 187 0 5 76 —16
[© 1680 1680 1680 [© 840 840 840
Or Equation 30
aYp = hBY' + h2yE, + h36G,, (30)

where @, B,v and § are the (4x4) matrix coefficients of Yy, Y'im, Fn and Gy, respectively.
By substituting these matrices into Equation 29 we have

where 0 is the zero vector which can be written as 0 = [0,0,0,0].

For p = 8, it is found that Cg # 0. Hence, the two-point implicit block method has order
p = 6 with error constant Cg = [, ——, ==, —=-|". For the three-point implicit block
method, given by Equation 22, 23, 24, 25, 26 and 27, the formulae can be written in the

form of a matrix as in Equation 30, where @, B,¥ and & are matrices (6x6) and

00 0 0 0 0 001 -1 0 0
00 -1 1 0 0 001 0 0 0
a=[000 0 0 0 0 | 1000 1 -1 0
00 0 -1 1 0 [PTlooo 1 o o [
00 0 0 0 0 000 0 1 -1
oo 0 0 -1 1 000 0 1 0
o o 3463 3537 783 263 | . 97 o -17
6480 6480 6480 6480 1080 1080
o o l638¢ 7857 2376 8IS 0o 38, =%
45360 45360 45360 45360 7560 7560
o 2w T 0o T, ,
_ 80 8 80 80 5= 360 360
4 ~715 5832 3051 —608 | —41 36 |
0 0 00 =—— 0 0 —
15120 15120 15120 15120 2520 2520
, o 263 783 3537 3463 0o 7, Y
6480 6480 6480 6480 1080 1080
0 o 38 -5 626 291 0o B2y, Y
1680 1680 1680 1680 1 L 2520 2520
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Yn-2 y,n—z fn—Z In-2
Yn-1 Y n-1 fn-1 In-1
| In . y,n _ fn | 9n

Ym = Yn+1 Yim = Y i1 +Fn = fn+1 G = In+1 |

Yn+2 y,n+2 fn+2 In+2

Yn+3 ’ fnts In+3

|y n+3-

By substituting these matrices into (29) we have, Co = C; = ---C4 = C,= 0,

It is found that, the three-point implicit block method has order p = 6 and error constant
97 260 -113 -113 97 313 7

is
Cs = l100800 604800’ 100800 201600’ 100800’ 604800

Zero-Stability of the Methods
For the two-point implicit block method, substituting Equation 11 into Equation 19, we
have Equation 31
, h h?
Y 42 y + [7fn + 16fn41 + 7fne2 +7¢ 15 [9n — In+2] (31)

And also by substituting Equation 11 and 12 into Equation 20, we have Equation 32

16 19 2 16 4
105f" fn+1 + 108 ——fu2l th [21gn ~ o5 9n1 T ﬁgmz].

(32)

Ytz =Y+ 2hy  +hP[—

The first characteristic polynomial of the two-point implicit block method is given by,

p(R) = det[RA(® — AM] = 0, where

1000 00 10
0100 000 1
©) — W=
A 00 1 0 |2nd4 00 10
000 1 00 0 1
R 0 -1 0
. lo R o0 1 3
p(R)—detOOR_1 0 =0,
00 0 R-1

R2(R—1)2=0,R=10,0,11,|R| < 1.

For the three-point implicit block method, substituting Equation 22 into Equation 24,
to obtain Equation 33
hZ
Y,y =Y, t+h Eﬁl +Efn+1 +Efn+2 —Efnw 135 o [89n + 2gn43].

(33)
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Substituting Equation 22 and 23 into Equation 25, we obtain Equation 34
3

fn 945

(11895, — 8gn+3]-
(34)

1
Yn+2 = yn+2hy +h2[ fn+1 %fn+2 fn+3]+

567 105 2835

Substituting Equation 33 into Equation 26, we have Equation 35

81 81 39 h?
Y s =t h[oo o 455 fusn + 55 Fusa + 3 Fusa| + 35 39— 3gnea]

(35)
And also by substituting Equation 33 and 34 into Equation 27, we have Equation 36

243 + 27 9

(36)

Ynt3 =Yn t 3hy + hz [_ﬁ’L fn+1 + 557

280 112

The first characteristic polynomial of the three-point implicit block method is given as

p(R) = det[RA(®) — AM] =0,

where
1000 0 0 000010
01000 0 00000 1
@w_[0 010 0 0 m_l0 000 10
A 00010 o |24 00000 1
000010 000010
00000 1 00000 1
R 0 0 0 -1 0
0O0R OO 0 1
. lo o rR 0 -1 0 6 opS o
pRY=det|y 0 0 R o e =0, RS —2R5 + R* = 0,
00 00 R—1 0
0000 0 R-1

R =0,0,00,11|R| < 1.

According to Ackleh et al. (2009), the two-point and three-point implicit block methods
are zero-stable, since, the characteristic polynomial p(¢) has a modulus less than or equal
to one, and that the multiplicity of the roots with modulus one be at most two.
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RESULTS AND DISCUSSION

In this section, based on the new methods, codes in C-programming language are developed
for solving general second order ordinary differential equation problems and the numerical
results are compared when the same set of problems are solved using the existing methods.
The comparisons are made with block methods of almost the same order and the same or
higher step number. The values of ¥',,,1,Yn+1,Y ;42 Yn+2 in the two-point method and
Y ni1 Yn+1s ¥ ni2 Yne2 ¥ nis and Ynes in the three-point method are approximated
using the predictor-corrector equations. Where Taylor method is used as the predictor
equation, this is the same as in the implementation of other implicit block methods in the
literature, see Majid et al. (2006) for further details. We are also using Taylor method for
the predictor equations in the implementation of the comparison methods, hence it is a very
fair comparison. The predictor equations using Taylor method for the two point method

can be written as Equation 37,
'p p
Yn+m = yn+(m—1) +h frf+(m—1)'
h2
P _.P 'p
Ynam = Yn+(m-1) +h Yn+(m-1) + 21 frf+(m—1)' (37)

14 _ 14 'p
Faem = fCnm Ynem Ynem)»

gﬁ+m=f,(tn+mryﬁ+m;yyllfm)- m= 1,2

Problem 1 :
y"=2y—-y'. y(0)=0, y'(0)=1, [0,10].

et—g—2t

3

Exact Solution: y(t) =

Problem 2 :

2cos1-sin1l

2,11 I 2 _ — = 3 1 ! -
ty" +ty' + (t*—0.25)y=0. y(1)—\/;sm1, y'(1) = = [1,8].

Exact Solution: y(t) = \/%sin(t).
Problem 3:

14 4 ! 1
y'—t()?=0.y0) =1 y'(0) =3, [01].

Exact Solution: y(t) =1+ % ln(%).
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Problem 4 :
y', =—y2 + sinmt, y1(0) =0, ¥',(0) = -1,
y', ==y +1-mn?sinnt, y,(0)=1, y',(0)=1+m [0,5].

Exact Solution: y;(t) =1 — et, y,(t) = et + sinnt.

Problem 5:
Y= »(0) =1 y',(0)=0,

V' == ¥2(0)=0, y,(0) =1, 7=y +y3, [0,10]
Exact Solution: y; (t) = cos(t), y,(t) = sin(t).
Problem 6:

y'" =100y, y(0) =1, y'(0) =-10, [0,2].

Exact Solution: y(t) = e~ 10,

From the set of test problems, problems 1, 2 and 4 are linear problems. Problems 3
and 5 are nonlinear problems and problem 6 is a mildly stiff problem. Problem 5 is also
the two body problem which determines the motion of two objects interact with each other.

Notations used are:

h : step size.

Time : time in seconds.

Max Error : maximum error |y(t;) — yil.

2PSDBI(2) : New two-point implicit second derivative block method of order six.
3PSDBI(2) : New three-point implicit second derivative block method of order six.
Majid(2) : Order three, Two-point implicit block method in Majid et al. (2012).

Omar : Order five, Implicit Four-point block method in Omar and Adeyeye
(2016)

Awoyemi(2): Order four, Implicit Three-point modified block method in Awoyemi et
al. (2011).

Mukhtar(2) : Four- point implicit block method in Mokhtar et al. (2012).

1.2345(-6) means 1.2345x1076. Numerical results for 2PSDBI(2) are given in Figure
1 to 6, whereas for 3PSDBI(2) are given in Figure 7 to 12 respectively.

For methods with less algebraic order usually the accuracy is less but the total
computational time is also less since it has less function evaluations or less number of
steps in the formula. For method with higher algebraic order the accuracy is more but
the computational time is also more because there are more steps and more function

962 Pertanika J. Sci. & Technol. 28 (3): 951 - 966 (2020)
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10gl0(MaxError)
LR .

-11 -1

-08 =07
logl)(Time)
[ % New2PSDBIZ) & Majid() ® Omar|

-6
-7
-3+
=
g
LT
g
2
S 114
3
-124
134
144
-154
T T T T T T i
-13 -12 -1 -9 -08 -0.7

-1
logl0(Time)
[ % New2PSDBIZ) & Majid() ® Omar|

Figure 1. Efficiency curves (2PSDBI(2)) for Problem 1

Figure 2. Efficiency curves (2PSDBI(2)) for Problem 2

1ogl0(Max Error)

T T . T . T
-18 -16 -14 -12 -1 -08
logl (Tim )

[ % New2PSDBI2) ¢ Majid(2) ® Omar

6
=74
) ﬁ
g4

-13 -16

1ogl0(Max Error)

-fl -l‘l -1 -08
log10(Tim &)
[ % New2PSDBI2) ¢ Majid(2) ® Omar

Figure 3. Efficiency curves (2PSDBI(2)) for Problem 3

Figure 4. Efficiency curves (2PSDBI(2)) for Problem 4

1ogl0(Max Error)
55 % 5 ¢

1ogl0(Max Error)
i+

R

-18 -15 -14

-2‘.6 -lll -iE -2
log10(Time}

[ % New2PSDBI2) ¢ Majid(2) ® Omar

T
-2 -1 -14

e
[

-18
logl0(Time}

[ % New2PSDBI2) ¢ Majid(2) ® Omar

Figure 5. Efficiency curves (2PSDBI(2)) for Problem 5
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1og10¢ilaxEiror)
R R <R S S h

-08 -07

T T
-11 -1 -
logl0(Time)
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Figure 8. Efficiency curves (3PSDBI(2)) for Problem 2
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Figure 9. Efficiency curves (3PSDBI(2)) for Problem 3

Figure 10.Efficiencycurves(3PSDBI(2))forProblem4
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evaluations in the formula. Thus, the right technique of measuring the efficiency of certain
numerical methods is by using the efficiency curves. Figurel to 12, showed the efficiency
curves, where the common logarithm of the maximum global errors were plotted versus
the computational time. From the efficiency curves given in Figure 1 to 6, it is observed
that 2PSDBI(2) method is the most efficient compared to Majid(2) and Omar for solving
the same set of test problems, since a smaller global maximum error can be attained for
the same total of computational time. The same observation can be seen in Figure 7 to
12, it is obvious that the new 3PSDBI(2) method performed better than Awoyemi(2) and
Mukhtar(2) methods.

CONCLUSION

We presented the construction of two and three-point extra derivative implicit block
methods for directly solving general second order IVPs. The order and zero-stability of the
methods are given. The methods are then used to solve linear, nonlinear and mildly stiff
IVPs. From the efficiency curves, we can be conclude that the proposed methods performed
noticeably more efficient than the existing methods, though the methods of comparisons are
of the same nature as the proposed methods, that is block in nature and can directly solve
general second order IVPs. Therefore, the proposed methods have a very high potential to
be an efficient numerical methods for integrating general second order [VPs.
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