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ABSTRACT

Artificial neural networks (ANNs) are actively utilized by researchers due to their 
extensive capability during the training process of the networks. The intricate training 
stages of many ANNs provide a powerful mechanism in solving various optimization 
or classification tasks. The integration of an ANN with a robust training algorithm is the 
supreme model to outperform the existing framework. Therefore, this work presented 
the inclusion of three satisfiability Boolean logic in the Hopfield neural network (HNN) 
with a sturdy evolutionary algorithm inspired by the Imperialist Competitive Algorithm 
(ICA). In general, ICA stands out from other metaheuristics as it is inspired by the policy 
of extending the power and rule of a government/country beyond its own borders. Existing 
models that incorporate standalone HNN are projected as non-versatile frameworks as 

it fundamentally employs random search 
in its training stage. The main purpose of 
this work was to conduct a comprehensive 
comparison of the proposed model by using 
two real data sets with an elementary HNN 
with exhaustive search (ES) versus a HNN 
with a standard evolutionary algorithm, 
namely- the genetic algorithm (GA). The 
performance evaluation of the proposed 
model was analyzed by computing plausible 
errors, such as root mean square error 
(RMSE), mean absolute error (MAE), 
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global minima ratio (Rm), computational time (CT) and accuracy (Q). The computational 
simulations were carried out by operating the different numbers of neurons in order to 
validate the efficiency of the proposed model in the training stage. Based on the simulations, 
the proposed model was found to execute the best performance in terms of attaining small 
errors and efficient computational time compared to other existing models.

Keywords: 3-satisfiability, Hopfield neural network, imperialist competitive algorithm, logic mining

INTRODUCTION

The inception of artificial neural networks (ANNs) has initiated a variety of capable models, 
which act as a useful tool in solving specific tasks such as classification, prediction, and 
pattern recognition (Ghaleini et al., 2019). Many of the recent developments have assembled 
different takes in refining the existing ANN models, specifically by integrating them 
with proficient searching techniques in order to intensify the quality of their standalone 
framework. In general, ANN possesses comprehensive structure of training and testing 
stages, thus emerging as one of the most efficient tools in finding patterns and extracting 
information to solve real-life applications. They are implemented in tasks such as solar 
radiation forecasting (Benali et al., 2019), risk analysis (Shi et al., 2019), fault detection 
(Dybkowski & Klimkowski, 2019), and quantitative analysis (Li et al., 2019a). Accordingly, 
ANNs can be described in many forms; one of them is the feedback-inducing recurrent 
networks. In particular, Hopfield neural network (HNN) is a recurrent neural network 
resembling the operations of human memory (Hureira & Vartanian, 2019). Proposed by 
Hopfield and Tank in 1985, its ability to manage nonlinear patterns by its training and 
testing capabilities is especially useful for interpreting complex real-life problems. In 
recent years, HNN has been widely used by many researchers as it has a deliberately sturdy 
component of content addressable memory (CAM) (Kong et al., 2019) and emits a degree 
of convergence by utilizing an energy function (Kasihmuddin et al., 2019). However, the 
fundamental HNN employs dated heuristics in its training stage, namely the exhaustive 
search (ES). Nievergelt (2000) had discovered that ES was not considered as a robust 
search technique as it exerted a random search mechanism, which increased the tendency 
of overfitting and showed the lack of variations (Lim & Bang, 2010). As such, Mansor et 
al. (2019) had proposed the incorporation of Elliot Hopfield Neural Network (EHNN) with 
a modified artificial immune system algorithm (AIS), thus ameliorating the performance 
of the HNN elementary model. Other than that, Genitha and Vani (2019) had proposed 
an integrated framework of modified genetic algorithm (GA) with the HNN approach 
for a super-resolution mapping of satellite images, thereby instigating greater accuracy 
compared to a primary HNN model. GA is a computational processing algorithm inspired 
by Darwin’s model, namely a survival for the fittest model (Feng et al., 2019). Furthermore, 
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Jayashree and Kumar (2019) had underlined mutation and crossover as the key traits of GA 
in order to extract information and prioritize feature selection. Consequently, it is one of the 
prevalent metaheuristics used by many neural networkers, substantiating its compatibility 
for a comparison with the Imperialist Competitive Algorithm (ICA) mechanism. The 
common ground in these works is the homogenization of the HNN framework with other 
evolutionary algorithms to enhance the HNN training stage in producing a better HNN 
mechanism. In order to introduce an all-rounded model, HNN can implement more vigorous 
metaheuristics in its training stage.

Generally, ICA is an evolutionary algorithm motivated by human socio-political 
behaviors. Imperialism is known as the practice of a government/country to grow stronger 
and rule beyond its territory, whereby the imperialist’s main vision is to increase the number 
of colonies. The main components of ICA consist of the initial empires, assimilation, 
revolution, and imperialist competition (Li et al., 2019b). A work by Tashayo et al. (2019) 
had inaugurated its use to forecast the maximum surface settlement (MMS) induced by 
tunneling in civil projects. Meanwhile, Gerist and Maheri (2019) had proposed an approach 
to solve damage detection problems, specifically by utilizing ICA and resulting in a great 
performance of the convergence rate and better identification of the global optima both. 
Therefore, it can be concluded that employing ICA is an endless potential, ranging from 
industrial planning, scheduling, and decision-making to machine learning (Atashpaz-
Gargari & Lucas, 2007). However, it is commonly used by researchers to explicitly acquire 
a solution to a problem, rather than making use of it to generate a learning model for the 
problem. A research by Abdechiri and Meybodi (2011) had emphasized the credibility of 
HNN in utilizing ICA to solve the propositional satisfiability (SAT) problem. However, the 
work is not suitable for solving real data sets. Therefore, in the current work, the proposed 
model employs ICA in the training stage to overcome the complexity of checking clause 
satisfaction, generate variation, and vast searching space in order to solve two real-life 
data sets acquired from UCI repository. 

Due to the comprehensibility of the HNN framework, researchers have considered 
it as a black box model or a symbolic system. Taking this fact into consideration, the 
execution of logic learning in HNN has delineated many versatile models, primarily 
from the work of Abdullah (1992) that incorporates logic programming on HNN. The 
work presented an extensive HNN framework to cater for the optimization of logical 
consistency. Abdullah (1992) had accordingly proposed an optimized logic learning 
through synaptic weights, which was called the Abdullah (WA) method. In layman terms, 
logic programming illustrates the symbolic knowledge that will be “trained” by the HNN 
model. The primary work by Sathasivam (2012) had further fostered Abdullah’s (1992) 
proposal by implementing first-order logic in a neuro-symbolic integration model, which 
attained more than 90% of global minimum energy (Kasihmuddin et al., 2019). Several 
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compelling logical rules such as the 2-Satisfiability (2-SAT) (Kasihmuddin et al., 2017a) 
and Maximum Satisfiability (MAX-kSAT) (Mansor et al., 2017) have been successfully 
embedded in HNN. Its application with propositional satisfiability logic is boundless, 
ranging from Very Large Scale Integration (VLSI) circuit configuration (Mansor et al., 
2016) and Bezier curves satisfiability model (Kasihmuddin et al., 2016). For this work, the 
incorporation of the 3-Satisfiability (3-SAT) propositional logic is utilized due to its ability 
to achieve a higher probability of satisfied interpretation compared to Horn Satisfiability 
(Horn-SAT) and 2-SAT. Thus, the proposed HNN-ICA model is incorporated with 3-SAT 
in order to solve real-life applications.

Currently, no recent approach is available to thoroughly compare the performance 
of ICA with other metaheuristics in solving real-life data sets. This is crucial; as an 
evolutionary algorithm catering for variation and larger searching space in comparison with 
random search, ICA has to verify its distinctive features that can lead a better training model 
compared to other metaheuristics. Therefore, the contributions of this research are presented 
as follows: (1) to introduce the formulation of ICA with 3-SAT logic programming, (2) to 
initiate a model with the integration of HNN with ICA as a robust tool in order to solve 
optimization tasks by comparing it with two other searching techniques (i.e., GA and ES), 
(3) to implement reverse analysis with the proposed model of HNN-3SATICA in order 
to cater to real-life applications. The construction of the proposed model HNN-3SATICA 
shows better performance in the training stage and successfully interprets real-life datasets 
to detect the factors that are more prominent than others contributing to the optimization 
problems. 

MATERIALS AND METHOD

3-Satisfiability Logic (3-SAT) 

Propositional satisfiability or SAT logic is perceived as a logical rule that consists of 
clauses containing literals or variables. General satisfiability logic (k-SAT) can signify the 
capability to represent real-life applications (Kasihmuddin et al., 2019). This work utilized 
discrete HNN which catered neurons in bipolar representation { }1, 1−  (Kasihmuddin & 
Sathasivam, 2016). Hansen et al. (2019) had emphasized on the generalization of k-SAT 
logical rule, k SATP

−  can be reduced to 3-SAT, 3 SATP
−  logical rule. The general formula of 

3 SATP
−  is given as in Equation (1):

3 1

m

SAT i iP Z
− =

= ∧ (1)

where 3 SATP
−  is a 3-SAT that consists of clause iZ  shown in Equation (2):

( )3

1 , ,i j ij ij ijZ x y z== ∨ (2)
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whereby n  literals and m  clauses denoted by Conjunctive Normal Form (CNF) formula. 
The general structure of 3 SATP

−  (Mansor et al., 2017) can be summarized as follows:
i. A set of m  clauses in a Boolean formula, where 1 2, ,..., mZ Z Z  and clauses will be 

connected with logical AND operator ∧ . 
ii. Each clause consists of only literals will be combined by logical OR operator ∨ . 

In the 3 SATP
−  formula, we only considered three literals in each clause. 

iii. Boolean Satisfiability formula composes an array of n  literals, 1 2, ,..., nu u u , where 
{ }1, 1iu ∈ −  in each clause. Note that in this work, n  is equal to 3. 

iv.  The literals can be the variable itself or the negation of the variable, for example 
A  or A¬ .

Further extension of 3 SATP
− , an example of 3 SATP

−  is shown as follows: 

3 ( ) ( ) ( )SATP A B C D E F G H I
−

= ∨¬ ∨ ∧ ∨ ∨ ∧ ¬ ∨ ∨¬ (3)

Equation (3) is satisfiable since it gives truth value resulting to P3-SAT =1. According to 
Equation (3), if the neuron states read ( ) ( ), , , , , , , , 1,1,1,1,1,1,1, 1,1A B C D E F G H I = − − , the 
formula will be unsatisfiable or 3 1SATP

−
= − . In this research, 3 SATP

−  will be embedded to 
the proposed model, HNN-3SATICA in comparison with different learning algorithms. 

3 SATP
− will cater the modified networks to unveil the true pattern or behaviour of the real 

data sets involved. Note that 3 SATP
−  is a symbolic form representation thus it is appropriate 

to be integrated in these networks as HNN is a non-symbolic platform. 

Hopfield Neural Network (HNN)

HNN is a recurrent neural network, without hidden layer that mimics human biological 
brain. HNN structure of interconnected neurons and a powerful feature of CAM are crucial 
in solving various optimization and combinatorial tasks (Kong et al., 2019). The proposed 
model consists of structured N  neurons, each of which is represented by an Ising variable. 
The neurons in discrete HNN are utilized in bipolar representation whereby {1, 1}iS ∈ −  
(Sathasivam, 2010). The fundamental overview for the bipolar neuron state activation in 
HNN is shown in Equation (4): 

where ijW  refers to synaptic weight of the neuron from unit j  to i . jS  is the state of 
neuron j  and ω  is the predefined threshold value. Barra et al. (2018) specified that 0ω =  
to verify the network’s energy decreases and ascertain our network to achieve plausible 
results. The connection in Hopfield net contains no connection with itself 0jj iiW W= =
(symmetrical). HNN model has similar intricate details to the Ising model of magnetism 
(Neelakanta & DeGroff, 1994). As the neuron states are termed in bipolar form, the neuron 

1 ,  

1 , otherwise

ij j
ji

if W S
S

ω≥ ∑= 
−

            

(4)
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rotates towards the magnetic field, resulting in the neurons to rotate until the equilibrium 
is achieved. Hence, the dynamic of HNN (considering all the neurons involved) is 
asynchronously changed according to [ ]sgn ( )i iS h t→  , where ih  is the local field of the 
neurons connection. Motivated by Sathasivam et al. (2011), the sum of the field induced 
by each neuron is given in Equation (5):

1, 1, 1,

N N N

i ijk j k ij j i
k k j j j k j j i

h W S S W S W
= ≠ = ≠ = ≠

= + +∑ ∑ ∑ (5)

Thus, the biggest task of local field is to evaluate the final bipolar state of neurons and 
generate all possible 3 SATP −  induced logic that was obtained from the final state of neurons. 
One of the most prominent features of HNN is the fact that it always converges in some 
cases, as illustrated by the following theorem (Hopfield, 1982). 

Theorem 1. Let N be a neural network of order n and be defined by ( , )N W T=  where 
W is an n n×  matrix with element ijW  and T  is a vector of dimension n, where element 
t  depicted as the threshold attached to node i . The network will always converge to a 
stable state when running in serial mode; only one neuron can change the state at any time 
instantly, if the diagonal elements of W are non-negative.
Moreover, the subsequent state updating rule can be represented as in Equation (6)

[ ]( 1) sgn ( )i iS t h t+ = (6)

whereby sgn  represents the signum function to squash the output of neurons, where this 
paper utilized Hyperbolic Tangent Activation Function (HTAF) (Mansor & Sathasivam, 
2016). The following Equation (7) represents the Lyapunov energy function in HNN 
(Mansor et al., 2018a).

3
1, 1, 1, 1, 1, 1

1 1
3 2SAT

N N N N N N

P ijk i j k ij i j i i
i i j k j i j k k i j k i i j j i j i

L W S S S W S S W S
−

= ≠ ≠ = ≠ ≠ = ≠ ≠ = ≠ = ≠ =

= − − −∑ ∑ ∑ ∑ ∑ ∑ (7)

The energy value computed from the Equation (7) will be authenticated as global or local 
minimum energy. The network will provide the filtering mechanism and produce the correct 
solution when the induced neurons state reached global minimum energy. There are limited 
works to combine HNN and ICA as a single computational network. Thus, the robustness 
of ICA helps to improve training process in HNN.

Imperialist Competitive Algorithm (ICA)

The pioneering work of ICA was presented by Atashpaz-Gargari and Lucas (2007), who 
stated that it was an algorithm inspired by imperialistic competition. Generally, all inspired 
countries are divided into two parts, namely the imperialist states and colonies, which 
tackle a list of operations such as initialization, assimilation, revolution, and imperialist 
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competition. This can lead to a better searching technique compared to other metaheuristics. 
The main purpose of ICA is to drive the colonies to converge to a global minimum 
solution, which is believed to have shown vigorous mechanisms in solving optimization 
tasks (Mollajan et al., 2019). It is set to be different compared to other metaheuristics 
as its features function to ease the performing neighborhood movements in both the 
continuous and discrete search spaces (Hosseini & Al Khaled, 2014).  The application of 
ICA is infinitely many, such as ship design optimization (Peri, 2019), engineering design 
optimization (Aliniya & Keyvanpour, 2019), slope stability prediction (Koopialipoor et 
al., 2019), and heat and power dispatch problem (Davoodi & Babaei, 2019).

This work is focusing on utilizing ICA to find the maximum fitness of countries that 
will increase the number of satisfied clauses in the training stage. Its implementation with 
HNN is addressed as follows (Abdechiri & Meybodi, 2011):

Step 1. Forming initial empires (Initialization)
Each solution is shown by an array called country. Note that, in an N -dimensional 
optimization tasks, a country is denoted as 1 N×  array. This array predefined as Equation 
(8):

[ ]1 , 0,1 0.5
1 , otherwiseNj

rand
C

 ≥= 
−

(8)

whereby iC  is the country and CNj is the number of variables to be considered of interest 
about a country. Each empire iE  comprises N  number of countries which represents the 
state of 3 SATP −  as shown in Equation (9):

( )1 2, ,...,E E Ei i i
i NE C C C= (9)

Step 2. Fitness Evaluation
Each country’s fitness is calculated based on the clauses by using Equation (10):

1

NZ

i iECi i

f Z
=

= ∑ (10)

iECi

f  denoted as fitness of each iC  in iE , iZ  is the clause in 3 SATP
−  and NZ  is the total 

number of clauses.

Step 3. Colonies moving towards imperialist (Assimilation)
We select the imperialist, EiT  from the country, Ei

iC  with the highest iECi

f and the rest will 
remain as colonies by using Equation (11).     

[ ]

, max

, otherwise, 1,

Ei
iE Ei Ci

i
Ei

i

T f
C

C i rand N

  
   = 
 =

(11)
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Other remaining countries and colonies will be allocated to respective empires where each 
colonies population is randomized.

Step 4. Revolution
When revolution occurs, the rest of the colonies, Ei

iC  inside an empire iE  will be 
randomized according to the following Equation (12):

[ ]1 , 0,1 0.5
1 , otherwise

Ei
ij

rand
C

 ≥= 
−

(12)

to offer colonies acquiring better position that will attain higher chances of redeeming its 
place to take over the reigning empire by replacing the current imperialist, EiT . In order 
for revolution to take place, the fitness for each Ei

iC  will be computed by using Equation 
(10) and the new imperialist EiT  will be selected based on Equation (11).

Step 5. Imperialist Competition
This feature of ICA sets apart ICA from other metaheuristics. In this process, imperialistic 
competition occurs among all imperialist in order to acquire power of each empires 

iE

NV
as in Equation (13):

1

1
1

N

E E E Ei i i iT T Cii

V f f f
N

ε
=

= − +
− ∑ (13)

whereby EiT
f  represents the fitness of each imperialist. According to Atashpaz-Gargari 

& Lucas (2007), 0.05ε =  is chosen as an optimal value for this study. Empires that 
show no power will fall in this competition and the surviving imperialist will be the one 
that has the highest power. Worth mentioning that, if the power for a particular empire 
is within Ei

V Vφ λ− ≤ , EiT  will be chosen as the final neurons states for 3 SATP− . Note that 
λ  will be predetermined by users. Step 4 and Step 5 will be repeated until termination 
criteria 

EiT
f NZ=  is been met. The state of EiT will be stored as CAM. In this paper, we 

modified the ICA of the pioneering work (Atashpaz-Gargari & Lucas, 2007) that utilized 
ICA to solve a continuous problem into bipolar representation to solve NP problems. A 
work on implementing ICA with HNN for solving Satisfiability problem was executed by 
Abdechiri & Meybodi (2011), however it only catered to simulated data set. Figure 1 depicts 
the summary of ICA from Step 1 until Step 5. This research extends the work of ICA by 
implementing HNN and 3 SATP

−  logical rule with reverse analysis in solving real data sets.

Genetic Algorithm (GA)

In this paper, GA will be applied into HNN-3SAT or abbreviated as HNN-3SATGA in order 
to compare with other searching techniques, HNN-3SATICA and HNN-3SATES. GA is a 
popular optimization algorithm that was inspired by Darwin’s evolutionary theory to find 
a formula or optimized answer in order to predict or match patterns (Esfe et al., 2019). 
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Figure 1. Summary of ICA
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The phases of HNN-3SATGA are as follows (Mansor et al., 2019):

Step 1. Initialization
Initialize 100 random chromosomes ( iCr ) as bipolar interpretation where each element 
of { }1, 1−

 is denoted by True and False. Every iCr  portrays the possible interpretation 
for 3 SATP − .

Step 2. iCr  Fitness Computation
Fitness of the iCr  in GA is typically being calculated by using fitness function. Thus, 
the fitness computation is based on the satisfiability of the clauses in 3 SATP

− . Hence, the 
maximum fitness manifests the effectiveness of the training process. 

Step 3. iCr  Selection

Select y iCr  (in our case 10y = ) containing 3 SATP
−  information with the highest fitness 

out of 100 iCr  to undergo the crossover process.

Step 4. Crossover
Two iCr  are selected and separated during the crossover phase from 10 selected iCr . 
Furthermore, by joining both parts of the paternal iCr , a child iCr  is produced. Hence, the 
second child is therefore generated by the addition of the primary and secondary segment 
and vice versa (Luke, 2013).

For example:
Before crossover

1 1 1 1111 1 1 1Cr = − − − − − −

2 1 1 11 11 1 1 1Cr = − − − − − − −

After crossover
1 1 1 1 1 1 1 1 1 1Cr = − − − − − − − − −

2 1 1 11 11111Cr = − − − −
Therefore, the iCr  fitness for the new generated iCr  can be determined. 

Step 5. Mutation
Mutation is an integral optimization operator in the GA which shifts iCr  patterns, ensuring 
that the population is not trapped at local minima. This is the random process of altering 

specific genes of the 
iCr . As an illustration:

Before mutation

3 1 1 11 11111Cr = − − − −

After mutation

3 1 1 11 11111Cr = − − −
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The first part of the 
iCr  was flipped from -1 to 1. Thus, a better 

iCr might be generated 
after mutation. The fitness value for a newly formed iCr will be computed. The current 

iCr  will repeat the first step if the fitness value does not achieve maximum fitness.

IMPLEMENTATION

Performance Evaluation Metrics

The performance of the proposed model in executing logic mining will implement several 
performance metrics such as root mean square error (RMSE), mean absolute error (MAE), 
global minima ratio (Rm), computational time (CT) and accuracy (Q).The list of parameter 
names in performance evaluation metrics is shown in Table 1. Meanwhile, the list of 
parameter values used in Rm depicts in Table 2.

Root Mean Square Error (RMSE)

Overall, RMSE is a prediction metric utilized by neural networkers to enumerate the 
predicted value of a model with observed value. RMSE formulation utilized in this work 
is shown in Equation (14):

2

1

1 ( )
n

x y
i

RMSE f f
n=

= −∑ (14)

Mean Absolute Error (MAE)

According to Willmott and Matsuura (2005), MAE capable of evaluating good error 
estimation by showing a uniformly distributed error. MAE formulation consists of the 
absolute value of the difference between the estimated values and the actual values (Chai 
& Draxler, 2014). A good model will attain low values of RMSE and MAE. The equation 
of MAE is shown in Equation (15): 

1

1n

x y
i

MAE f f
n=

= −∑ (15)

Global Minima Ratio ( mR )

The global minimum ratio is the generalized metric for evaluating the efficiency of the 
solutions. Tolerance value will filter each calculated final energy of the neurons in HNN. 
The final energy is assumed as global minimum energy if the final energy of the model 
within the tolerance value (Sathasivam, 2010). The Equation (16) of Rm   is shown as follows:

3

1
P SAT

n

m L
i

R N
ab −

= ∑ (16)

Computational Time (CT)
Computational time is used to determine the effectiveness of the proposed models. The 
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value for CT will be measured in SI unit of second ( s ). The Equation (17) of CT  is 
shown below:

( ) ( )CT TrainingTime s TestingTime s= + (17)

whereby TrainingTime  and TestingTime  are depicted as the total time to execute the 
HNN-3SAT models in training and testing phase respectively. In the work by Kho et al. 
(2020), CT  was utilized for HNN-2SAT model because it implies the capability and 
stability of the model. 

Accuracy (Q )
The accuracy is used to assess the models ability to train the data set. The Equation (18) 
of Q  is shown below:

100%
test

Correct
induced

P

PQ
N

= × (18)

Table 1
List of parameters in performance evaluation metrics

Parameter Parameter name

xf Total number of clauses

yf Number of satisfied clause

n Number of iteration before 
fx = fy

a Number of trials

b Number of neuron 
combination

Parameter Parameter value
a 100
b 100
Tolerance value 0.001 (Sathasivam, 2010)

Table 2
List of parameters in Rm

Parameter Parameter name

 
3P SATLN
−

Number of global 
minimum energy

 
3P SATLN
−

Number of global 
minimum energy 

testPN Number of testing 
data

Correct
inducedP Correct induced 

logic
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Experimental Setup

The utilization of 3 SATP −  will aid in discovering valuable information on real data sets. 
Many works of literature have surfaced in explaining that information and patterns can 
be represented in a logical form. The use of reverse analysis method to extract significant 
information from a particular data set has been introduced by Sathasivam and Abdullah 
(2011) by considering the CNF logical rule. Motivated by the work of Mansor et al. (2018b), 
more systematic logic mining techniques incorporating 3 SATP −  in HNN have been proposed. 
Following this, the 3-SAT-based Reverse Analysis Method (3-SATRA) is employed in 
HNN-3SATICA to generate an optimized induced logical rule from several prominent data 
sets. In this case, raw data are translated into 3 SATP −  and then embedded and processed 
by HNN-3SAT. By pursuing this, the induced 3 SATP −  will be used to classify the outcome 
of the dataset. The comprehensive 3-SATRA via HNN-3SATICA is depicted in Figure 2.

Figure 2. Implementation of 3-SATRA in HNN-3SATICA
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In this paper, two different real data sets from different fields occupied the constructed 
3-SATRA, namely the Bach Choral Harmony data set (BCHDS) and German Credit data 
set (GCDS). All data sets were taken from the UCI machine learning repository website 
and each of them had different purposes. Nine attributes were used in this paper and all real 
data sets used multivariate data. In this experiment, the aim was to analyze a comprehensive 
comparison of accuracy between HNN-3SATICA and other existing models such as GA, 
ES, and researchers utilizing the same data sets. The information about BCHDS and GCDS 
is shown in Table 3 and 4.

Table 3
List of attributes for each data sets  

Data Set Details of each attributes Output P3-SAT

BCHDS
(Haque et al., 2019)

A : Pitch for Key “C-M” To identify the 
distinction between 
good harmony and bad 
harmony for musician.

B : Pitch for Key “E-m”
C : Pitch for Key “B-m”
D : Pitch for Key “A-m”
E : Pitch for Key “F-m”
F : Pitch for Key “G-M”
G : Pitch for Key “A-M”
H : Bass
I : Meter

GCDS
(Liu et al., 2019)

A : Credit History
B : Status of existing 

checking account
To distinguish bank’s 
customer of having 
a good or bad credit 
risks.

C : Saving account/bonds
D : Personal status
E : Age
F : Housing
G : Number of existing credits 

at this bank
H : Telephone
I : Foreign worker

As mentioned earlier, the literals can be the variable itself or the negation of the 
variable; for example, A  or A¬ . Thus, as the work implemented real-life data sets, the 
negation literals represented attributes that did not affect the output of 3 SATP −  and vice 
versa for non-negate literals. 
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Table 4
Method used in existing model

Data Set Method
BCHDS AdaBoost
GCDS Support Machine Vector (SVM)

The source code was developed through Dev C++ Version 5.11 in 8GB RAM with 
Intel Core i5 to acquire a good comparison between all proposed models. The same device 
was used during simulation to avoid bias; using the same device rendered the simulation 
comparable as the memory (RAM) and processor had the same power. Another factor 
that can trigger bias is a different compiler for each learning algorithm, which may lead 
to different computational times or anomaly in error values. Moreover, to avoid bias, 
the number of neurons chosen for the simulations showed the same combination of 
9 72NN≤ ≤  for all learning algorithms. The threshold for simulation was set to 24 hours 
according to Kasihmuddin et al. (2016). All outputs exceeding 24 hours of computation 
time were omitted due to the simulation, which would eventually break down in finding the 
satisfied clause interpretation, 

3
0

SATPE
−

= . Table 5, 6 and 7 show all parameters involved 
in the proposed models.

Table 5
List of parameters in HNN-3SATES (Sathasivam, 2012)

Parameter Parameter value
Neuron Combination (b) 100
Number of Trial (a) 100
Tolerance Value (Tol) 0.001
Number of String 100
Selection Rate 0.1

Table 6
List of parameters in HNN-3SATGA (Kasihmuddin et al., 2017b)

Parameter Parameter value
Neuron Combination (b) 100
Number of Trial (a) 100
Tolerance Value (Tol) 0.001
Selection Rate 0.1
Mutation Rate 0.01
Generation 1000
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Table 7
List of parameters in HNN-3SATICA

RESULT AND DISCUSSION

The effectiveness of implementing ICA in the training stage of the HNN-3SAT model 
was investigated in this paper. The proposed mode of HNN-3SATICA in comparison with 
existing models that utilized GA (Kasihmuddin et al., 2017b) and ES (Sathasivam, 2012) 
embedded two real-life data sets, which were retrieved from the UCI Machine Learning 
Repository platform. The investigation of a model’s performance can be separated into two 
parts. The first important part is to examine the quality of the solution generated by different 
searching techniques, specifically by employing the suitable training errors. Second, one 
should analyse the robustness and efficiency of the proposed model by comparing the 
CT  and Q  needed to execute the models’ respective mechanisms. Accordingly, five 
performance evaluation metrics were involved in analyzing the training and testing stages 
of the modified models, as presented in the Performance Evaluation section. Therefore, 
this research’s main contribution was the display of HNN-3SATICA competency in 
outperforming the existing models. 

In this section of result analysis for BCHDS, it could be concluded that the outcomes 
attained by HNN-3SATICA for RMSE and MAE showed a consistent value of zero (Figure 
3 & 4), thereby indicating ICA providing a better and well-trained HNN framework. 
However, the results were identical to HNN-3SATGA. Similarly, HNN-3SATES projected 
larger errors as the number of neurons increased. The incorporation of ES underlined the 
lack of modification undertaken in the training stage of the fundamental HNN. For the 

mR , it is likely to be a better model when it is prone to the value of 1 (Sathasivam, 2011). 
From Figure 5, all models are approaching to 1 even by manipulating different numbers 
of neurons. The trend showed the capability of the training methods deployed by HNN-
3SAT to attain the global minimum energy by having mR  closer to 1. From Figure 6, it 
can be deduced that all models exhibit less CT compared to the assigned threshold time. 
Regardless, HNN-3SATICA executed less CT compared to other models, thereby displaying 

Parameter Parameter value

Neuron Combination (b) 100

Number of Trial (a) 100

Tolerance Value (Tol) 0.001

Initial Empires 10

Parameter (ε) 0.05

Termination Value (λ) 0.05
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Figure 3. RMSE value of HNN-3SAT models for BCHDS

Figure 4. MAE value of HNN-3SAT models for BCHDS

Figure 5. Rm of HNN-3SAT models for BCHDS
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Data Set HNN-3SATICA Sathasivam 
(2012)

Kasihmuddin et al. 
(2017b)

Haque et al. 
(2019)

BCHDS 61% 54% 61% 56.72%

the effectiveness of ICA during the training stage with different levels of complexity. Table 
8 outlines the accuracy of all models that utilized BCHDS, whereby HNN-3SATICA 
and HNN-3SATGA are observed to enumerate the same value of accuracy. Both models 
achieved 61% of accuracy, which demonstrated their respective capability in attaining an 
optimized induced logic for BCHDS. Besides, HNN-3SATES and the work by Haque et al. 
(2019) both generate an accuracy value less than 60%. The accuracy for both methods was 
not promising, particularly for HNN-3SATES. It is due to the non-optimized induced logic 
generated at the end of the executions. By executing the simulation of HNN-3SATICA for 
BCHDS, the induced logic attained by HNN-3SATICA can be observed as per Equation 
(19) below:

( ) ( ) ( )Correct
inducedP A B C D E F G H I= ¬ ∨ ∨¬ ∧ ∨ ∨¬ ∧ ∨ ∨ (19)

whereby from Equation (19), in order to produce a good harmony, attributes A, C, and F are 
insignificant to be scrutinize. However, such attributes like B, D, E, G, H and I would lead 
the harmonization to be out of tune. 

In comparison with the result analysis of BCHDS, GCDS showed better result of 
HNN-3SATICA with other existing models. Figure 7 reveals the RMSE values attained 
by HNN-3SATGA and HNN-3SATES as relatively increasing as the number of neurons 
increased. However, HNN-3SATICA persistently achieved zero RMSE values despite the 

Figure 6. CT of HNN-3SAT models for BCHDS

Table 8
Accuracy of HNN-3SATICA with other existing models
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incremental number of neurons. Furthermore, the MAE analysis for all models yielded 
comparatively similar outcomes to the illustration of RMSE analysis. From Figures 7 
and 8, the execution of the ICA mechanism is significant to aid the standalone HNN with 
a vigorous training stage to achieve 

3
0

SATPE
−

= . Unfortunately, both HNN-3SATGA and 
HNN-3SATES revealed an inclining trend of errors for their MAE and RMSE outcomes 
both, showing the incompetency of the GA and ES mechanisms to accommodate a higher 
number of neurons as the complexity increased. The analysis of mR  in GCDS (Figure 
9) shows that most of the models are able to generate at most 100% of global minimum 
solutions, except for HNN-3SATGA. Although two different data sets from different fields 
were utilized, the findings of mR  achieved by all models depicted indistinguishable results. 
Figure 10 displays that the CT for HNN-3SATGA and HNN-3SATES requires more time 
compared to HNN-3SATICA. This was due to the proposed model offering a larger search 
space, which contributed to a more efficient HNN framework. In Table 9, the induced 
logic generated by HNN-3SATICA in the testing stage records an accuracy of 83%. This 
finding set forth its ability to acquire an optimized induced logic that could best represent 
the GCDS data set. Contrary to this, HNN-3SATGA, HNN-3SATES, and SVM methods 
deployed by Liu et al. (2019) have achieved lower accuracy compared to HNN-3SATICA. 
This is attributable to ICA mechanism’s function to attain 

3
0

SATPE
−

= , which can lead to a 
better training stage in the resulting construction of an optimized induced logic. Equation 
(20) displays the induced logic attained by HNN-3SATICA at 54NN =  until 72NN = :

( ) ( ) ( )Correct
inducedP A B C D E F G H I= ¬ ∨ ∨¬ ∧ ∨ ∨¬ ∧ ∨ ∨  (20)

From Equation (20), one can distinguish whether a customer is a good credit risk or not, 
whereby attributes such as A and D can exhibit a fair credit status. Here, the credit history 
and personal status were very important to know their credit management and liability. 
Other than that, the induced logic could reveal insignificant and trivial attributes such as 
C and I in order to sort out which customer was a good or bad credit risk.

The training stage played a prominent role in enhancing the standalone HNN 
framework. From the HNN-3SATICA results obtained in Figure 3 and 4 and Figure 7 and 
8, the capability of ICA is portrayed by improving the HNN training stage to attain a good 
solution. The deviation of error was generally smaller than the other counterparts due to 
the optimization operator employed in ICA. Assimilation and revolution in ICA played 
a big role to generate fewer iterations in obtaining 

3
0

SATPE
−

= . Apart from this, the fewer 
iterations indicated that less RMSE and MAE were generated from the model. However, 
the results attained for HNN-3SATGA and HNN-3SATES were larger than the proposed 
model, particularly in GCDS. They both employed undeniably ineffective searching 
method compared to ICA, especially ES. In particular, ES used random search where 
the number of neurons increases, the complexity also increases. Thus, ES contributes to 
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Figure 7. RMSE value of HNN-3SAT models for GCDS

Figure 8. MAE value of HNN-3SAT models for GCDS 

Figure 9. Rm of HNN-3SAT models for CGDS
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generate larger errors. Figures 5 and 9 showcase the mR  obtained by all models, which 
are relatively identical even as the number of neurons increased. Therefore, this ensured 
the proposed model reached the global minimum energy without any complications. This 
fact displayed the versatility and relevancy of the ICA mechanism to accomplish close 
achievement as the existing models. 

CT  is predefined as the expanse of time needed for the network to complete the 
overall computational process. Therefore, it is significant to identify a model’s performance 
efficiency affirmation (Xiao et al., 2017). From Figures 6 and 10, it is discovered that 
CT  needed to execute HNN-3SATICA is lesser than other existing models. In contrast, 
with HNN-3SATES, HNN-3SATICA attained faster execution due to the ICA algorithm 
that had fewer parameters compared to ES. However, for ES, the number of neurons was 
gradually increasing and thus more CT  was required due to its nature of brute force that 
needed more iterations. Thereby resulting in overfitting the solution. HNN-3SATICA was 
set apart from other models as it achieved a satisfactory percentage of accuracy for both 
BCHDS and GSDS data sets. Based on the results in Table 9, it can be concluded that ICA 
plays a vital role in the proposed model to generate better-induced logic, which reflects the 
precision of the modified network. The reason for ICA being able to fulfill such factor is 
due to the optimization operator in it, which introduces a larger search space and variations 
of solution that contribute to an effective training stage. 

Table 9
Accuracy of HNN-3SATICA with other existing models

Figure 10. CT of HNN-3SAT models for BCHDS 

Data Set HNN-3SATICA Sathasivam 
(2012)

Kasihmuddin
et al. (2017b)

Liu et al. (2019)

GCDS 83% 71% 82% 75.7%
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The limitation of HNN-3SATICA is that this modified framework only caters to 
bipolar representation and only utilizes the multivariate type of data sets. Further extension 
can be done by utilizing the binary form of entries and incorporating other types of data 
sets, such as time-series. Other than that, this modified network only utilized one type 
of SAT, namely 3-SAT. Therefore, one can incorporate more than one or other types of 
SAT, such as 2-SAT, MAX-kSAT, and k-SAT. The main drawback of HNN-3SATICA is 
its tendency of overfitting, which lacks the variability of generated induced logic. In the 
current context, overfitting indicates that as the search algorithm becomes more complex 
in the training phase, the solution will produce inaccurate and biased results (Reunanen, 
2003). To overcome such aspect, an alteration of the data sets is crucial. Rearrangement 
and permutation of the attributes with a randomized selection of attributes should be 
implemented. The no-free lunch theorem (Wolpert & Macready, 1997) states that there are 
no absolute or specific algorithms that can be utilized to solve any problems. However, in 
this research, it was found that HNN-3SATICA worked exceptionally well for GCDS. On 
the contrary, the HNN-3SATICA and HNN-3SATGA worked well for BCHDS. 

CONCLUSION

In this research, the formulation of constructing ICA in 3-SAT proved to be adequate 
to represent the mechanism that involves in ICA and the implementation of ICA with 
standalone HNN framework with reverse analysis proved to be effective in solving real 
life data sets. Through this approach, we have successfully presented a modified model of 
HNN-3SATICA which presented ICA role in generating variations and broad searching 
space. Particularly in this research, assimilation and revolution components of ICA provided 
a better solution in checking 

3
0

SATPE
−

= which modify the training stage of a fundamental 
HNN framework. The proposed HNN-3SATICA model was trained and tested by using two 
real life data sets, in comparison with two different searching techniques; HNN-3SATGA 
and HNN-3SATES. The performance evaluation between these models was analysed 
by employing different performance metrics such as RMSE, MAE, global minima ratio, 
computational time and accuracy. The analysis of the results displayed the competency 
of the proposed model, HNN-3SATICA for all chosen performance evaluation metrics. 
We have successfully accomplished all objectives as presented based on the performance 
of our proposed model. Computational simulations for all models were specifically 
difficult towards larger number of neurons. However, the constructed proposed model, 
HNN-3SATICA showed good potential and a better training mechanism compared other 
metaheuristics and regular HNN framework. Extended research is required to further 
enhance HNN-3SATICA model by employing the same mechanism to other types of 
recurrent neural networks, such as Elman and Kohonen neural network. Other than that, 
we can utilize other types of propositional logic such as k-SAT and MAX-kSAT.
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