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ABSTRACT

High Leverage Points (HLPs) are outlying observations in the X -directions. It is very 
imperative to detect HLPs because the computed values of various estimates are affected 
by their presence. It is now evident that Diagnostic Robust Generalized Potential which is 
based on the Minimum Volume Ellipsoid (DRGP(MVE)) is capable of detecting multiple 
HLPs. However, it takes very long computational running times. Another diagnostic 
measure which is based on Index Set Equality denoted as DRGP(ISE) is put forward with 
the main aim of reducing its running time. Nonetheless, it is computationally not stable 
and still suffers from masking and swamping effects. Hence, in this paper, we propose 
another version of diagnostic measure which is based on Reweighted Fast Consistent 
and High Breakdown (RFCH) estimators. We call this measure Diagnostic Robust 
Generalized Potential based on RFCH and it is denoted by DRGP(RFCH). The results 

of simulation study and real data indicate 
that our proposed method outperformed 
the other two methods in term of having the 
least computing time, highest percentage 
of correct detection of HLPs and smallest 
percentage of swamping and masking effects 
compared to the DRGP(MVE) and DRGP 
(ISE). 

Keywords: Diagnostic robust generalized potentials, 

high leverage points, mahalanobis distance, outliers
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INTRODUCTION

The Ordinary Least Squares (OLS) is the most popular technique in regression analysis 
because of tradition and ease of computation.  Moreover, the OLS is easy to use as it is 
available in most of the statistical software like SPSS, SAS and MINITAB. The OLS 
technique has many attractive features under normality assumption of regression errors, 
not only in parameters estimation but also in testing of hypothesis. However, many are not 
aware that the one immediate consequence of the presence of outliers especially outlying 
observations in the X- direction which is call High Leverage Points (HLPs) may cause 
apparent non-normality (Huber, 1973). Since most of the statistical analysis are based 
on normality assumption, the violation of this assumption may lead to invalid inferential 
statements and inaccurate predictions. Evidences are now available in the literatures that 
the presence of HLPs have an adverse effect on the computed values of various estimates 
(Rousseeuw, 1985; Imon & Khan, 2003; Midi et al., 2009; Riazoshams et al., 2010; 
Bagheri et al., 2012). As such it is very crucial to search for a very effective method of 
detecting HLPs. The HLPs can easily be spotted from a plot of response variable against 
the predictor variable for simple linear regression model. Nonetheless it is hard to identify 
multiple HLPs for more than one independent variable due to swamping and masking 
effect (Peña & Yohai, 1995).

There are many papers that deal with the diagnostic tools for the identification of HLPs 
(Rousseeuw, 1985; Rousseeuw & Driessen, 1999; Midi et al., 2009). Midi et al. (2009) 
had shown that their method was very successful for the detection of HLPs compared to 
hat matrix approach of (Hoaglin & Welsh, 1978) and Hadis’ potential (Hadi,1992). Even 
though some of them are able to correctly identify multiple HLPs, their running times 
are very long due to using Minimum Volume Ellipsoid (MVE) or Minimum Covariance 
Determinant (MCD) for obtaining the final estimator of location and scatter. Lim and 
Midi (2016) exemplified that Index Set Equality (ISE) had tremendously sped up the 
computation of location and scatter estimator, even much faster than fast MCD (Rousseeuw 
& Driessen, 1999). The only shortcoming of this method is that it is not very stable because 
its computation depends on the selected initial subset, h.  According to Salleh (2013), the 
final estimator of location and scatter of (ISE) is equivalent to MCD if the same initial subset 
is utilized, otherwise the results will be quite different. In order to obtain more efficient 
and much faster location and scatter estimators, we propose employing Reweighted Fast 
Consistent and High Breakdown (RFCH) estimators (Olive & Hawkins, 2010; Alkenani & 
Yu, 2013). By employing the results of Lopuhaa (1999), Olive and Hawkin (2010) proved 
that the location and scatter estimators of RFCH were consistent estimators. For this 
reason, Uraibi et al. (2017) developed a robust forward selection method by formulating 
a correlation matrix based on RFCH estimators which produced very appealing results. 
Hence in this paper, we propose using the RFCH consistent estimators of location and 
scatter in the establishment of Robust Mahalanobis Distance (RMD).
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The paper is organized as follows. Section 2 discusses the importance of detection 
of high leverage points.  Section 3 reviews a few methods of detection of high leverage 
points. The proposed Diagnostic Robust Generalized Potential based on RFCH estimators 
is presented in Section 4. Section 5 discusses the results of the simulation and numerical 
example. The concluding remarks are given in Section 6.

MATERIALS AND METHODS

Real Data to Show Why it is Very Important to Detect HLPs

As already mentioned in the preceding section, various estimates can be affected by 
HLPs. That is why it is very important to first check their existence before making any 
inferences to avoid misleading conclusion. In this section, we want to show that HLPs can 
cause multicollinearity and heteroscedasticity by using real examples. Let us first focus 
on Hawkins Bradu Kass Data (Hawkins et al., 1984). This artificial data set consists of  
75 observations and 3 independent variables. Hawkins et al. (1984) claimed that this data 
set had 14 HLPs. Bagheri et al. (2012) exemplified that the first 14 observations (included 
in the original data) as displayed in Table 1, caused multicollinearity evident by showing 
maximum value of Variance Inflation Factor (VIF=33.342 for X3) greater than 10. On the 
contrary, no multicollinearity was observed in their absence. 

Table 1 
Multicollinearity Diagnostics (VIF) for Hawkin Bradu Kass Data

Status X1 X2 X3
Original Data 13.432 23.853 33.432
Without observations 1-14 1.012 1.017 1.027

Education Expenditure Data taken from Chatterjee and Hadi (2006) will be our 
second example to illustrate that HLPs can caused heteroscedasticity. Many authors 
frequently used this data (n = 50 observations with three independent variables) to deal 
with heteroscedasticity (Chatterjee & Hadi, 2006; Imon, 2002; Midi et al., 2014). This 
data consists of 50 observations where per capita income on education project for 1975 
is the dependent variable and three explanatory variables namely per capita income in 
1973, number of residents per thousand under 18 years of age, and number of residents 
per thousand under 18 years of age in 1974. According to Midi et al. (2014), observation 
49, i.e. Alaska (AK) is HLP and influences the heteroscedasticity pattern of the data. 
We investigated this data and apply the White test (WT) which is a Lagrange Multiplier 
(LM) test statistic proposed by White (1980) to test the presence of heteroscedasticity in 
linear regression model. The white test is defined as LM = nR2, where R2 is the coefficient 
of multiple determination and n is size of sample. The LM test statistics is distributed 
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as Chi-Squared , where p is the number of predictors. Table 2 exhibits the values of 
LM test statistics with their corresponding p-values. We can see from Table 2 that in the 
absence of HLP the WT shows no heteroscedasticity but in their presence the WT shows 
heteroscedasticity.

Table 2 
Heteroscedasticity Diagnostics (White test)

Status LM = nR2 p-values
Without AK (HLP) 5.7978 0.1219
With AK (HLP) 22.7817 4.48e-05

We have seen the effect that the HLPs had on the heteroscedasticity and multicollinearity 
pattern of a data and it is crucial to detect them before any further analysis to be carried 
out. This is the reason why we need to find the more reliable method for detecting their 
existence.

Review of Some Methods of Identifications of HLPs

In this section, some methods of identification of HLPs are reviewed.

Diagnostics Robust Generalized Potential (DRGP) 

Mahalanobis (1936) defined Mahalanobis Distance (MD) as a measure of deviation of a 
data point from its center. Let us write the ith vector of predictor variables as:

,

where ti is a p-dimensional row vector. The mean vector and the variance covariance matrix 
are calculated as:

and , respectively. 

Subsequently, the (MD) for each observation is written as Equation 1: 

          [1]   

where T(X) is the mean vector and C(X) is the variance covariance matrix (C). 
Rousseeuw and Leroy (1987) suggested using Robust Mahalanobis Distance (RMD) 
as a diagnostic tool for detection of HLPs by replacing the classical mean vector T(X), 
and classical covariance matrix, C(X) of MDi in Equation 1 by robust estimators such 
as Minimum Volume Ellipsoid (MVE) or Minimum Covariance Determinant (MCD) 
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(Rousseeuw & Yohai, 1984), because the former estimators are not robust. They considered 
observation as HLPs if its corresponding (RMD value) exceeds the cutoff points . 
Midi et al. (2009) noted that the RMD was not very successful in the identification of HLPs 
and established Diagnostics Robust Generalized Potential (DRGP) whereby its algorithm 
consisted of two steps. The suspected HLPs were detected using RMD based on MVE 
and on the second steps, generalized potentials, denoted as (pii), were employed to confirm 
the suspected HLPs.  Since the distribution of generalized potentials was intractable, they 
suggested a confidence bound of cutoff points as follows:

,

where

.                     

Even though the DRGP is very successful in identifying HLPs, its running time is 
very slow due to using MVE in the first step. Lim and Midi (2016) improvised the DRGP 
to speed up the computation of location and scatter estimator by using Index Set Equality.  
They showed that the DRGP based on ISE was much faster than the DRGP based on MVE. 

Index Set Equality (ISE)

Salleh (2013) established Index Set Equality (ISE) where it is an innovation from fast 
MCD. The following steps illustrate the computation of ISE.

Step 1. Choose arbitrarily h observations from a dataset to be included in the subsample 
denoted as Hold, where and p is the number of independent variables 
(Rousseeuw & Driessen, 1999).                                            

Let be the index set for Hold.

Step 2. Compute the p-dimensional mean vector and the (p x p) covariance matrix 
of Cold from the subset Hold.

Step 3. Compute the squared Mahalanobis Distance for each observation, as

for i = 1, 2, ..., n.  

Step 4. Arrange in increasing order,

where is permutation equal to {1, 2, ..., n}.

Step 5. The first h items that correspond to the smallest will be placed in set 
.Then list the new Index Set, as

={ , }.
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Step 6. If . Stop the process, then the location vector and 
covariance matrix , if let  , then recompute  

and , repeat steps 3 to 6, until . Then the corresponding 
and are the location and scatter estimates for ISE.

Reweighted Fast Consistent and High Breakdown (RFCH)

Olive and Hawkins (2010) developed Reweighted Fast Consistent and High breakdown 
(RFCH) estimators of location and scatter which was faster than the fast MCD developed 
by Rousseeuw and Driessen (1999). The attractive feature of RFCH technique is that not 
only its computation is very fast which is even faster than Fast MCD (Zhang et al., 2012), 
but it is consistent estimators. The RFCH   utilizes the consistent DGK (Devlin 
et al., 1981) estimator and high breakdown Median Ball (MB) (Olive & Hawkins, 2008) 
estimators as attractors. The RFCH algorithms can be summarized as follows:

The DGK Algorithm Steps

Step 1. Compute the p-dimensional row vector of location and (pxp) the )
covariance matrix, () of the original data and use it as the initial or starting point 
( ), for calculating the initial Mahalanobis Distance (Equation 2).

,
,

                                                                                         i = 1, 2, ..., n.        [2]                                                                                                    
Step 2.  Sort the in increasing order. Then calculate its median,

. . The observation corresponding to the Mahalanobis Distance 
less than the median will be in the remaining half dataset (m observations), defined as 
Equation 3 

,  ,          [3]

where k is the number of predictor variables.

Step 3. Consider where  is the original dataset’s scatter matrix, 
then recompute  the location and scatter estimators for the dataset to obtain the first 
attractors ( ).

Step 4. Stop the process if the diagonal elements of , otherwise  repeat 
Steps 1 to 3 until convergence where at convergence the final location and scatter estimates 

 is acquired from the , where K is final step at which convergence 
takes place.
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The MB Algorithm Steps

Step 1. Let an identity matrix be the scatter matrix, denoted as C = Ip. Then compute 
Mahalanobis Distance based on the median vector, median (X) and C as Equation 4:

         [4]  

where median .

Let the median of MDi be the cut-off point, which is denoted by 
Lcut=median (MDi),                                            [5]

where . Determine the for half of the dataset (m) whose MDi is less than or 
equal to the Lcut, such that (Equation 6)

, ,                [6]

Step 2. Compute the p-dimensional row vector of location and the (pxp) covariance matrix 
of scatter estimators of the and use it as the initial or starting point ( ), 
for calculating the initial Mahalanobis Distance (Equation 7).

,          [7]                

determined the remaining half dataset by using new cut-off point as Equation 8:

, ,           [8]                         

where median .

Step 3. Based on the , calculate the attractor ( ).

Step 4. If the diagonal elements of stop the process, otherwise 
recalculate the based on attractor ( ) and iterate the Steps 2 to 3, 
until the convergence is achieved at final attractor ( )  and final remaining 
set .

The RFCH Algorithm Steps

The RFCH consists of three steps where in the first step the Fast Consistent and High 
breakdown (FCH) attractors of Olive and Hawkins (2010) is determined based on the final 
attractors of DGK and MB estimators that adhere the following rules:

Step 1. The TFCH and CFCH are determined as Equation 9:

,             [9]                                                                                                       

And Equation 10
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      [10]                                                        

where is chi-square distribution with p degrees of freedom and significance level 
0.5. The are the consistent estimators of the FCH attractors according to 
Theorem 1 of Olive and Hawkins (2010), 

where * .

Step 2. Construct a new set of data, by using the following Equation 11,   

         [11]
  j = 1, 2, ... , k, l = 1, 2, ... , m,                             

where is the Mahalanobis Distance based on the location and scatter of 
FCH estimators in Step 1. Then compute the location and scatter estimators for the 
dataset to obtain the RFCH attractors, Again, following Theorem 1 
of Olive and Hawkins (2010),

is defined as Equation 12

*         [12]

Subsequently the Mahalanobis Distance based on is computed and a new set of data is 
constructed using the following Equation 13;

         [13] 

, 

Following the same process, estimators are calculated based on the 
dataset. Afterwards, is defined as in Equation 14 by applying Theorem 

1 of Olive and Hawkins (2010),

*           [14]                                                                 

Step 3. Step 1 to 2 is repeated K-times until convergence. Convergence is achieved if 
the number of detected outliers or HLPs is the same for and 

.
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As stated by Olive and Hawkins (2010), on convergence, the final estimators of RFCH, 
i.e. are High Breakdown (HB) consistent estimators (see Olive 
and Hawkins (2010) for description of consistent estimator).

The Proposed Diagnostic Robust Generalized Potential based on Reweighted Fast 
Consistent and High Breakdown Estimators (DRGP(RFCH))

Midi et al. (2009) proposed Diagnostic Robust Generalized Potential based on Minimum 
Volume Ellipsoid (DRGP(MVE)) for detecting HLPs. The DRGP algorithm comprises 
two steps where in the first step, Robust Mahalanobis Distance (RMD) based on MVE is 
used to detect the suspected HLPs and on the second step, the generalized potential is used 
to confirm whether or not the suspected HLPs is a genuine HLPs. Although the DRGP 
is proven to be very successful in detecting HLPs, its computation running time is very 
slow since it uses the location and scatter estimators obtained from the MVE.  As such, 
Lim and Midi (2016) proposed another diagnostic method, Diagnostic Robust Generalized 
Potential based on Index Set Equality (DRGP(ISE) to identify HLPs by incorporating 
the location and scatter estimators based on ISE. However, through our investigation, the 
DRGP (ISE) is not very stable and we anticipate that it still suffers from small percentage 
of swamping and masking effect. We also expect that the running time of the DRGP (ISE) 
can be improved.  In this regard, we attempt to improvise the existing DRGP by integrating 
the location and scatter estimators obtained from the Reweighted Fast Consistent and High 
breakdown (RFCH) estimators (Olive & Hawkins, 2010). The attractive feature of this 
estimator is that it is High Breakdown  consistent estimator as noted by Olive and 
Hawkins (2010). Our improvised DRGP is denoted as DRGP (RFCH).

The Proposed DRGP (RFCH) Technique is Summarized as Follows

Step 1. Identify the suspected HLPs by using RMDi for each ith observation based on 
RFCH (Equation 15)

      [15]

Step 2. As per Midi et al. (2009) the cut-off point is defined as follows;

,
where

We declare that any ith case with Robust point, is the suspected HLPs 
and include them in a deletion group, denoted as D Group, while the rest of the observations 
are kept in the R group. 
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Step 3. Following Midi et al. (2009), we employ generalized potential, Pii, to confirm the 
suspected HLPs whether are not they still can be considered as HLPs (Equation 16).  

          [16]                                                                                                                               

Where (Equation 17)

.                      [17]                                                                                 

Step 4. Compute the cut-off point pii, for i.e. cut-off 
Rousseeuw and Croux (1993) defined as a pairwise 

order statistic of whole distance where and . 
Rousseeuw and Croux (1993) noted that to make Qn a consistent estimator for Gaussian 
data the value of C should be chosen equals to 2.2219. 

We declare that all members of the D group as HLPs if Pii > cut-off Pii, otherwise place 
those observations back into the estimation subset R sequentially begin with the least pii 

value.

RESULTS AND DISCUSSION

Monte Carlo Simulation Study 

Monte Carlo simulation study was carried out to assess the performance of our proposed 
DRGP(RFCH) compared with DRGP(MVE) and DRGP(ISE). As per Lim and Midi (2016), 
we consider a general linear regression model with p explanatory variables as Equation 18                                                                

,      [18]

where each of the explanatory variable is generated from Uniform Distribution (0, 10), ei 
is generated from standard normal distribution with varying sample of sizes, n = 20, 40, 
60, 80, 100 and 200. We consider various proportion of High Leverage Points (α = 0.05, 
0.10 and 0.15) and p = 2and p = 4. For p = 2, we set B0= 1, B1 = 2 and B2 = 3 as the true 
parameter values and set B0 = 1, B1 = 2, B2 = 3, B3 = 4 and B4 = 5 as the true parameter 
values for p = 4. The HLPs are created by replacing the first 100 α% observations of the 
original good data for p = 2 and p = 4 with values of X1 and  X2 and values of X1, X2, X3, 
and X4, respectively, generated from Uniform Distribution  U (15, 20), without changing 
their y values. The simulation was repeated 10,000 times.

Table 3 and 4 exhibit the percentage of correct detection, masking, and swamping of 
HLPs for p = 2 and p = 4. It can be observed from Table 3 and 4 that for p =2, p = 4, n = 20 
and at 5% HLPs, the performance of the three methods are fairly closed, but DRGP(ISE) 
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is slightly better than the other two methods in terms of having the smallest swamping 
effect. However, other than at 5% of HLPs and n = 20, the DRGP(RFCH) outperforms other 
methods regardless of sample size and percentage of HLPs, followed by DRGP(MVE) and 
DRGP(ISE). In this situation, the DRGP(RFCH) consistently having the highest percentage 
of correct detection of HLPs and the least percentage of swamping and masking effects. 
Similar conclusion can be made for p = 4 where again the DRGP(RFCH) shows the best 
result followed by DRGP(MVE) and DRGP(ISE). Let us now focus on the computer 
running time for our DRGP(RFCH) compared to DRGP(ISE) and DRGP(MVE) as 
displayed in Table 5 and Figure 1. Table 5 presents the computer running times in seconds, 
the average HLPs detected by DRGP(RFCH), DRGP(ISE) and DRGP(MVE) and the actual 
number of HLPs planted in the dataset. At 5% of HLPs, n = 20, DRGP(RFCH) slightly over 
detected the HLPs because the average of HLPs detected is slightly larger than the actual 
HLPs planted in the data. Nonetheless, the computer running time for the DRGP(RFCH) 
is much smaller than the DRGP(ISE) and DRGP(MVE). On other scenarios, the average 
of HLPs detected by DRGP(RFCH) consistently the nearest to the actual HLPs planted in 
the data, followed by the DRGP(MVE) and DRGP(ISE). It is also interesting to see that 
the computer running times for the DRGP(RFCH) was consistently the least, followed by 
the DRGP(ISE) and DRGP(MVE). The results are depicted in Figure 1 for clear and quick 
visualization. The results for p = 4 and greater than p = 4 are consistent and not reported 
here due to space limitation.

Figure 1. The running time for DRGP(MVE), DRGP(ISE) and DRGP(RFCH), at various sample size
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Real Example

A real Hand Grip Strength dataset (Hossain et al., 2012) was used to evaluate the 
performance of our proposed DRGP(RFCH) method. In this study, we considered a sample 
of size 196 men, comprising of healthy staff, medical students and visitors of University 
of Malaya Medical Center between January and April. Four explanatory variables (Age, 
Height, Weight and BMI) were considered in this study and the dependent variable is the 
right-hand grip strength. The DRGP(RFCH), DRGP(ISE) and DRGP(MVE) were then 
applied to the data. The number of HLPs detected by each method is displayed in Figure 
2. It is interesting to see from the graph of Figure 2(a) and 2(c) that both DRGP(RFCH) 
and DRGP(MVE), having the same cut-off points, detected the same observations as HLPs 
(cases 24, 45, 91, 107, 137, 140, 183). On the other hand, as expected the DRGP(ISE) 
with cut-off point 0.0615 does not detect the same number of observations. It detects only 
six observations as HLPs (cases 24, 45, 91, 107, 137, 140, 183) where its masked case 
107. The value of DRGP(ISE) which corresponds to case 107 is less than the cut-off point 
0.0615. The results of real data are consistent with the results of simulation study where 
the DRGP(ISE) suffers from swamping and masking effect.

Figure 2. The number of detected HLPs by DRGP(MVE), DRGP(ISE) and DRGP(RFCH)
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CONCLUSION

The main aim of this paper is to propose another diagnostic method of detecting HLPs 
that we call DRGP(RFCH). The existing DRGP(MVE) is quite successful in identifying 
HLPs but its running time is very slow. The DRGP(ISE) running time is much faster than 
the DRGP(MVE). However, the DRGP(ISE) was not computationally stable and still 
possessed masking and swamping effect. Contrarily, the propose DRGP(RFCH) is very 
successful in detecting HLPs with negligible swamping effect. Moreover, it is based on    
RFCH consistent estimators of location and scatter. The numerical study also signifies that 
the DRGP(RFCH) needs much lesser computer running time and computationally very 
stable in the sense of having consistent estimated values. The results of this study appear 
to recommend that the DRGP(RFCH) may give the most appealing diagnostic method for 
the identifying HLPs in multiple linear regression model.
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