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ABSTRACT

Global warming will have an impact on nature in many ways, including rising sea levels 
and an increasing spread of infectious diseases. Land surface temperature is one of the 
many indicators that can be used to measure climate change on both a local and global 
scale. This study aims to analyze the change in land surface temperatures on New Guinea 
Island using a cubic spline method, autoregressive model, and multivariate regression. 
New Guinea Island was divided into 5 regions each consisting of 9 subregions. The data 
of each subregion was obtained from the National Aeronautics and Space Administration 
moderate resolution imaging spectroradiometer database from 2000 to 2019. The average 

change in temperature was +0.012oC per 
decade. However, the changes differed 
by region; significantly decreasing in the 
northwest at -0.107oC per decade (95% CI: 
-0.207, -0.007), significantly increasing in 
the south at 0.201oC per decade (95% CI: 
0.069, 0.333), and remaining stable in the 
centralnorth, southeast and northeast. 

 
Keywords: Cubic spline, global warming, land surface 

temperature, New Guinea Island
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INTRODUCTION

Climate change, particularly rising temperatures, is one of the important environmental 
problems facing the world today. Land surface temperature (LST) can provide insights 
into climatological processes, land surface energy relations and water stability at regional 
and global scales (Li et al., 2013; Wongsai et al., 2017), including climate change effects. 
These changes in climate can severely affect human health, the environment, and economic 
and social development (Marjuki et al., 2016; Mboera et al., 2011; Mishra et al., 2010). 
Climate change has a significant association with human disease vulnerability (Wu et al., 
2016). This is manifested in the slowing down of the long-period decrease in the incidence 
of undernutrition, which is somewhat linked to extreme climatic events (Wheeler & Braun, 
2013). LST is commonly used to assess rising temperatures.

The LST average around the world will continue to increase (Mildrexler et al., 2018). 
In tropical areas there has been wide variations in the level of increase in average surface 
temperatures. The variation depends on many factors such as elevation, normalized 
difference vegetation index (NDVI), and land cover (Alavipanah et al., 2015; Sun et al., 
2012). The great variation on land elevation has a significant impact on the LST (Gao et 
al., 2008). 

In South East Asia, a relationship exists between landscape composition and average 
LST in Jakarta, Bangkok, and Manila, in which green space was found to be cooler by 3oC 
compared to those of impervious surfaces (Estoque et al., 2017). Some parts of South East 
Asia such as Indonesia (including Papua province), Malaysia and Papua New Guinea have 
experienced land use change, mainly for palm oil cultivation (Agus et al., 2013). Indonesia 
is the region with the highest level of land use change as a result of the development of 
palm oil farms and agriculture, and this has had a direct impact on LST (Ramdani et al., 
2014; Sabajo et al., 2017). Papua New Guinea has also suffered from forest degradation 
and half of its forests will be damaged by 2021 (Filer et al., 2009).     

New Guinea Island is the second biggest island after Greenland (Permana, 2011). 
The western half of the island forms a part of Indonesia and the eastern half contains 
the sovereign state of Papua New Guinea. Natural vegetation in this region consists of 
tropical rain forests in the lowlands and mountains, although there is a savannah area on 
the southern coast which has a different seasonal climate (Bowler et al., 1976). Annual 
maximum and minimum temperatures in New Guinea have been increasing in accordance 
with the global pattern (International Climate Change Adaptation Initiative, 2007). The 
New Guinea LST variation will affect LST in the surrounding islands, especially those in 
Indonesian archipelago, Australia, and even the larger Asia continent (Mildrexler et al., 
2018). The extreme temperature was one of the factors of significant loss of suitable habitats 
for plant species in Papua and Papua New Guinea (Robiansyah, 2018). 
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Several statistical techniques were used to investigate the temperature changes. Cubic 
splines are widely used for smoothing data, especially data obtained from satellites. Data 
is fitted using least squares linear regression (Mao et al., 2017; Smith et al., 1974; Wüst et 
al., 2017). The technique has been used to model the vegetation index in Nepal (Wongsai 
et al., 2017; Sharma et al., 2018). There are approaches for the best possible selection of 
those parameters based on procedures to add knots in intervals where the residuals show 
trends as signaled by autocorrelation or in intervals where the residuals are inadmissibly 
significant (Wold, 1974). A first-order autoregressive model was used to fit fluxes in humid 
subtropical monsoon areas (Kumar et al., 2009). Therefore, the objective of this study was 
to investigate the change in day land surface temperatures on New Guinea Island during 
2000 to 2019 using appropriate statistical methods. 

MATERIALS AND METHODS

Study Area

The area of this study was New Guinea Island located at 130° to 152° east longitude and 
-11° to 0° south latitude (Figure 1). The New Guinea super region contains 5 regions with 
each region consisting of 9 subregions. The first region is located in the northwest and 
includes subregions 1 to 9 while the last region is located in the southeast and includes 
subregions 37 to 45. The sample points are located around parallels of latitude 210 pixels 
widths (190 km) apart. The subregion as the sample point spread with the equal distance, 
each comprising 49 pixels in a 7×7 array, covering the New Guinea mainland.

Figure 1. New Guinea Island: area of study
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Data 

The LST data, which is freely available to download from the MODIS LST (ORNL DAAC, 
2018) database, contains average temperatures every 8 days of clear sky for pixels each 
of area 0.859 km2. To ensure area equality of all pixels, a sinusoidal projection with tiles 
of size 10 ×10 latitude degrees was used, with each tile in turn divided into 1200 ×1200 
pixels. To avoid missing data, the download was based on the center of the subregion on 
the island. If there were any missing values, then they were deleted. An unexpected natural 
disaster (e.g. forest fire, landslide, or tsunami) that may possibly cause a sudden change of 
data behavior, was excluded. Outliers were kept in the data set to have a comprehensive 
view of the LST data. The original LST temperature measurements were stored in degrees 
Kelvin and then converted into degrees Celsius.

The MODIS LST time series data has coverage of global and regular monitoring, 
include the topography of an area. The Terra (land) satellite will provide the LST data during 
the daytime and nighttime. The LST data and climate component inland is also influenced 
by atmospheric and land processes (Luintel et al., 2019; Wan et al., 2015).

MODIS LST data were collected over time with fluctuations due to the season (Wongsai 
et al., 2017). The seasonal pattern was assumed to be the same for every year and the change 
in other parameters such as the land cover change that has a direct or indirect effect on the 
LST data is consistently increasing or decreasing.

Methods

Cubic spline functions are defined as piecewise polynomials of degree r. The joined 
pieces are called knots. A spline function of degree r is a continuous function with r 
–  1 continuous derivatives (Wahba, 1990; Wold, 1974). The formula of the cubic spline 
function is (Equation 1):

     [1]

where S is the spline function, t denotes the time in Julian calendar, specified knots are 
t1 < t2 < ... < tp and (t – tk)+ is (t – tk)>0 for t > x and 0 otherwise. The boundary conditions 
require that S(t) for t < t1 equals S(t) for t > tp. a, b, ck are the coefficients of the combination 
between a linear and cubic spline model. 

Selecting the position and number of knots for smoothing the spline curve is an 
important issue. The placement of the knots relies on the LST data in a tropical area with 
a rainy and dry season (Kohavi, 1995; Lukas et al., 2010; Wongsai et al., 2017). In the 
different regions of the biosphere, inter-seasonal variation can affect the land surface 
temperature variation (Singh et al., 2014). Areas that have both dry and rainy seasons will 
have lower LST during the rainy season (de Jesus & Santana, 2017). In a tropical area, 
changes in LST may be linked with heatwaves (during April and May) and rainfall (during 
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June-September) (Gogoi et al., 2019). We used 8 knots and placed 4 knots at the beginning 
of the year and the remaining 4 knots at the end of the year based on the seasons that are 
characteristic of tropical regions. 

The LST was seasonally adjusted using the Equation 2:

Ya = Y – Sf +        [2]

where Ya is a seasonally adjusted time series for LST, Y is an observed data (LST per day) 
for 18 years, Sf is a vector of spline fitted values that we estimated from the cubic splines 
and is the average LST per year. 

A second order autoregressive model AR(2) was used to fit the LST seasonally adjusted. 
The model is given by Equation 3:

Yat = α1Yat-1 + α2Yat-2 + εt       [3]

where Yat is the seasonally adjusted LST at time t, and Yat-1 is the LST at time t-1, t = 1, 
…, 365 days, α1 and α2 are unknown parameters to be estimated and εt is the random error 
with zero mean and finite variance (Chan & Wei, 1987). 

A multivariate regression model (Mardia et al., 1979) was then used to analyse the 
seasonally adjusted LST data. The model is given by Equation 4:

Y = XB + U        [4]

where Y is the outcome matrix of variables with dimension n × m, n is the number of 
observations, m is the number of subregions, X is a matrix of independent variables n×q, q 
is the number of independent variables, B is a regression parameter matrix with dimension 
q×m and U is an unobserved random disturbance matrix. 

All analyses and graphical displays were carried out using R (R Core Team, 2018). 

RESULTS AND DISCUSSION

Region 1 of New Guinea Island was used to represent the results of this study. Figure 2 
shows the LST for each day in region 1 of New Guinea Island where Figures 1 and 2 depict 
the distribution of LST records.  

The vertical axis denotes average temperatures on the same day for each of the 18 
years. The solid red curves are the fitted natural spline functions with 8 knots denoted by 
blue crosses. Land surface temperatures showed a moderate seasonal pattern with two 
summer peaks commonly found in tropical zones.

During the years from 2000-2019 the lowest LST corresponded to day 210 which was 
during the rainy season and the highest LST corresponded to day 324. The highest average 
LST was 27.7oC which occurred in subregion 9 of Region 1. The R-squared was 0.31. The 
lowest R-squared was 0.034 which occurred in the model for subregion 4. The cubic spline 
with 8 knots was fitted to the LST data and the annual LST data showed a seasonal pattern.
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Figure 3 displays the seasonally adjusted LST. The estimated coefficients of a1 and 
a2 were very low, indicating that the time series of daily temperatures are independent.

In Figure 3, the dotted lines in the right panel indicate that LST decreased in subregions 
1, 2, 7, and 9, increased in subregions 3, 4, and 8 and remained stable in subregions 5 and 6 
over the 18 year period, but p-values for the linear models (zero knots) with two parameters 
indicate that none of these changes were statistically significant. The thick curves in the right 
panel show fitted cubic splines with seven knots (with significant p-values for subregions 
4, 7 and 9) whereas the dashed lines (cubic splines with zero knots) show the same trends 
in 18 years for Region 1. The number of knots depends on the LST variation between 
years. We used 7 knots which divided the data equally into 4-year intervals (assuming 
that the variation of LST happens every 3 years). In the bottom-right panel of Figure 3, 
multivariate regression was used to reduce spatial correlation and estimate the mean LST 
for this region. We found a statistically significant decrease, with a z-value -2.098 and 95% 
confidence interval (-0.21 - 0.01) oC per decade.

The increases in LST (oC per decade) for each region is shown in Figure 4. The overall 
mean increase was 0.024oC per decade. There was a wide variation for each region. The 
mean change in daily land surface temperatures for the northwest, central-north, south, 
northeast and southeast regions were -0.11oC, 0.002oC, 0.20oC, -0.07oC and 0.03oC, 
respectively. Only the south and northwest regions had significant changes in day land 
surface temperatures.

Figure 2. Land surface temperatures in New Guinea Region 1 showing a seasonal pattern
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Figure 4. Increase in mean day land surface temperatures with 95% confidence intervals for New Guinea 
Island

Figure 3. Seasonally adjusted land surface temperatures for New Guinea, Region 1

This finding illustrates that the land surface temperatures in New Guinea Island would 
increase by 0.12oC per decade which was lower than that predicted for Papua New Guinea 
by the Papua New Guinea National Weather Service (predicted increase in temperatures 
ranging from 0.4–1.0°C, International Climate Change Adaptation Initiative 2007). The 
change in land surface temperatures in New Guinea Island was not significant. The islands 
laying on the equator line tend to have warm temperatures (stable) and the island close to 
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the pole consistently cold and the variation of LST depend on the position of a place on 
the earth and its elevation (Gillespie, 2014).  

Figure 5 shows the results of LST change for the 45 subregions in New Guinea using 
the multivariate regression model. The probability that temperatures in each of the 5 
regions increased, decreased, or remained stable were determined by averaging the LST 
trends for each subregion. The day LST decreased in the northwest, increase in the south, 
and is likely to be stable in the central-north and southeast, while it is likely to decrease 
in the north-east.

Figure 5. Trends in land surface temperatures (°C/decade) in New Guinea Island, 2000-2019

The seasonal pattern of the data showed that the highest LST for region 1 occurred 
between day 267 and day 324. However, the findings indicate that there was a seasonal 
pattern. Other studies conducted in areas with four seasons showed that the highest LST 
appeared during summer (Singh et al., 2014). LST has also been shown to be influenced 
by vegetation, land use/land cover (LULC) and surface solidity (Khandelwal et al., 2018).

Several studies have shown that LULC affects LST temperatures (Odindi et al., 2015; 
Rasul et al., 2017). The area will experience an increase in temperatures if the land cover 
is greatly reduced (Parmesan & Hanley, 2015). Green trees or other plants that cover 
the ground surface can absorb heat as a result of the reflection of sunlight through the 
evaporation process. The heat on the surface of the trees will metabolize the heat and 
convert it into other forms of energy therefore reducing the temperature on the land surface. 
This means that LULC in the form of healthy vegetation tends to not produce an increase 
in LST (Babalola & Akinsanola, 2016). 
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Vegetation or healthy plants in an area were affected by LST variation (Rahmad et 
al., 2019). Two studies reported on the increasing rate of forest conversion in the areas of 
Papua New Guinea and Papua (Alamgir et al., 2019; Austin et al., 2019). This deforestation 
is suspected to be the cause of an increase in temperatures in the area. A study found that 
areas with a low vegetation index will have high LST (Buyadi et al., 2014).

Temperature changes on the island of New Guinea occurred at a minor rate. Research 
shows that an increase in the temperature of an area can be reduced if the vegetation can 
be recovered again (Cooper et al., 2017). In other words, if the NDVI is increased in an 
area that experiences an increase in temperature, it is expected that this will reduce or 
prevent further increases in LST. 

Use of a cubic spline and multivariate regression analysis was suitable for examining 
the seasonal pattern and variation in the LST for the 5 study regions. Only 2 of the 5 regions 
showed a significant change in LST. This might due to the number of subregions when 
compared to the size of New Guinea Island. We included 210 pixels in each grid, which 
equated to a longitudinal distance of 190 km between each subregion. It has been shown 
that increasing the sample size can improve the estimation of the true population mean 
(Storch & Zwiers, 1999; Mehta & Pocock, 2011). 

CONCLUSIONS 

With the appropriate number and placement of knots, the cubic spline model provided 
a satisfactory fit to the LST data on New Guinea Island. This study demonstrated a 
decreased LST in the northwest and south regions. There were variations in the increase 
of LST, although the increases were not significant. An increase in LST on the Island of 
New Guinea is an indication of global warming at the regional level. However, further 
investigations are needed to confirm these findings on a wider scale. Another approach is 
needed to improve the accuracy of estimation, especially to validate our findings for the 
same area such as Sumatra and Borneo islands, which are on the equator. The sample size 
can be increased by increasing the number of regions or subregions. Finally, since New 
Guinea Island contains many rainforests and mountainous areas, including other variables 
such as NDVI or land elevation in the analysis may help to improve the model fit.
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