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ABSTRACT
With the ongoing increase in complexity, less tolerance to performance degradation and 
safety requirements of practical systems has increased the necessity of fault detection 
(FD) as early as possible. During the last few decades, many research findings have been 
developed in fault diagnosis that addresses the issue of fault detection and isolation in 
linear and nonlinear systems. The paper’s objective is to present a survey on various 
state-of-art model-based FD techniques developed for linear time-invariant (LTI) systems 
for the interested readers to learn about recent development in this field. Model-based 
FD techniques for LTI systems are classified as parameter-estimation methods, parity-
space-based methods, and observer-based methods. The background and recent progress, 
in context to fault detection, of each of these methods and their practical applications 
are discussed in this paper. Furthermore, two different FD techniques are compared via 
analytical equations and simulation results obtained from the DC motor model. In the end, 
possible future research directions in model-based FD, particularly for the LTI system, are 
highlighted for prosperous researchers. A comparison and emerging research topic make 
this contribution different from the existing survey papers on FD.

Keywords: Fault detection, Kalman filter, LTI system, 
model-based techniques, residual generation

INTRODUCTION

In the era of science and technology, every 
engineering system demands accuracy, 
reliability, and safety during its operation. 
However, to realize such systems, i.e., high-
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speed trains, power systems, aircraft, and chemical plants, increases the system complexity 
and financial cost. Moreover, any abnormal behavior in a safety-critical system causes 
performance degradation and leads to a dangerous situation. Thus, detecting and locating 
the fault early is important to ensure safety and reliability by taking necessary measures 
(Li et al., 2016; Franklin et al., 2019).

A fault is an unexpected event and input to the system that can occur in any part of the 
system. Concerning the location of occurrence, it is generally classified as an actuator fault 
(loss of control), a sensor fault (improper functioning of measuring components), and a 
component fault (variation in the system’s internal parameters). Actuator and sensor faults 
can be considered additive faults, while component faults are multiplicative faults (Frank 
et al., 2000). Faults can also be classified according to their time behavior, i.e., abrupt fault, 
incipient fault, and intermittent fault. Any fault in a system causes poor performance and 
leads the entire system to collapse if it is not timely handled (Jie & Patton, 2012; Liu et 
al., 2018; Na & Ahmad, 2019).

The fault diagnosis system is composed of three sub-systems. Each subsystem is merged 
with the capabilities of detection, isolation, and identification (estimation) of the fault. FD is 
the first step in the fault diagnosis process that indicates the fault and its time of occurrence 
in the system. Fault isolation determines the location of a fault, and fault identification 
finds the type and size of a fault (Gao et al., 2015). Generally, fault diagnosis methods 
are model-based and data-driven methods depending on the system model information 
(Isermann, 1997). Data-driven-based FD methods solve the FD problem directly from 
online process data. Therefore, these techniques are more suitable for large-scale complex 
systems (Ding, 2014). On the other hand, model-based FD techniques utilize the analytical 
model of the process that reveals the physical meaning of process dynamics through the 
mathematical description. Ample of research has been done on model-based fault diagnosis 
and their applications on various linear and nonlinear systems during the last few decades 
(Gertler, 2017; Jie & Patton, 2012; Isermann, 2006; Ding, 2013). Therefore, model-based 
techniques are chosen in many practical scenarios, provided that the analytical model of 
the process is well-established. 

The core idea of the model-based FD technique is to reconstruct/estimate the output 
of a practical system using the analytical model, and the reconstructed output is compared 
with the actual output of the system measured from sensors. The difference between the 
two outputs is a residual signal, which indicates fault occurrence in the practical system. 
The model-based FD system is depicted in Figure 1. Residual evaluation refers to the 
process of extracting fault information from residuals to differentiate between fault and 
disturbance. Finally, a binary decision about the occurrence of a fault is made by comparing 
the evaluated residual signal with the pre-defined threshold. Hence, a model-based fault 
detection system consists of two subsystems: residual generation, residual evaluation, and 
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threshold computation (Ding, 2013). In case of fault occurrence, an alarm is generated 
to intimate the operator, or some control action is taken to compensate the effect of fault 
for the smooth operation of an entire system. The process of modifying the control action 
according to fault nature is called fault-tolerant control (FTC). A detailed discussion on 
FTC is available in Zhang and Jiang (2008).

There are three main types of model-based fault detection techniques according to 
the way of residual generation. They are known as observer-based FD techniques, parity-
space-based FD techniques, and parameter-estimation-based FD techniques (Isermann, 
1984). Observer-based fault detection techniques correspond to the design of an observer 
for estimating system output and residual generation. In the parity-space-based approach, 
residual is generated by eliminating the initial states of dynamic systems and utilizing only 
system input and measurement data within a finite time window. The prime objective of 
both techniques is to ensure the robustness of residual against the process and measurement 
of unknown inputs. Finally, the parameter-estimation approach is used to detect the slight 
change/drift in the system parameters by comparing the actual parameters of the nominal 
process with the estimated parameters.

Considering the massive monetary losses caused by the faults, there is a need to find 
the solution for FD problems in safety-critical applications in the presence of unknown 
inputs and system parameter variations. External unknown inputs and parameter variations 
make the FD more intricated. In addition, FD becomes more complex in the closed-loop 
configuration because a fault in the system gets buried rapidly by the control actions. Most 
of the existing survey papers discussed the FD methods for nominal linear systems. This 
survey paper aims to look at another perspective, in which it presents state-of-art model-
based fault detection techniques recently developed for the linear time-invariant (LTI) 
systems in open and closed-loop configurations and subjected to unknown inputs and 
uncertainties simultaneously. Also, two well-known FD techniques, Kalman filter (Blanke 

Figure 1. Model-based fault detection system (Chen et al., 2011)
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et al., 2015) and optimal FD filter (Ding, 2013), are compared using an analogy in observer 
gain matrices and by simulations in this survey paper to demonstrate the clear picture of 
the FD process. Sensor and actuator fault in a linear model of DC motor is detected using 
both FD techniques. Their performance is compared in terms of detectability, computational 
burden, and design complexity.

Unlike other review papers that focused on the same subject, our paper also included a 
numerical comparison of fault detection techniques, and the simulation results were shown 
for verification. Furthermore, based on the review, future research direction in model-based 
fault detection approach is added to give the readers an idea and way forward to extend 
the research in this field. It is significant because the review outcome from this paper can 
be used as a reference for the readers of interest. 

LTI SYSTEM WITH DISTURBANCE AND FAULT

LTI system subject to disturbance and fault can be expressed in the form of state-space 
representation as Equations 1 and 2:

		  (1)

		  (2)

 are state, input, output vectors respectively. is is 
l 2-norm bounded unknown input vector and is  is l 2-norm bounded unknown fault 
vector. (A, B, C, D, Ed , Ef , Fd , Ff) are known matrices with appropriate dimensions. 
Furthermore, Ef and Ff  represent the place where the fault occurs and its influence on the 
system dynamics (Ahmad et al., 2017). Component/process fault or modeling error in the 
system may cause the change of parameters of process dynamics. Equations 1 and 2 can 
be represented by incorporating the process fault (Equation 3).

	 (3)

Where ( ) represents the component faults/modeling errors. There are 
normally four types of sensor faults: sensor drift fault, sensor offset fault, fixed scaling 
factor fault, and sensor stuck fault. In addition, the same type of fault could be categorized 
for actuators (Franklin et al., 2019). It is important to mention here that this survey only 
focuses on additive fault detection techniques (sensor/actuator fault).
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PARAMETER-ESTIMATION-BASED RESIDUAL GENERATION 

The core of the parameter-estimation technique is based on system identification by utilizing 
the system’s measured input and output data. In this technique, system parameters of a 
practical system are identified either offline or online under the normal operating condition 
while assuming that the fault is reflected in the system’s physical parameters. In the context 
of FD, residual is defined as a comparison between nominal parameters of the system in 
a fault-free case and estimated parameters. The estimated parameters should match with 
the system parameters in a fault-free situation. Any discrepancy in process parameters 
indicates the change/fault in the system. Parameters are estimated using parameter-
estimation algorithms, i.e., least squares (LS), recursive least squares (RLS), regularized 
LS, or extended least squares (ELS). These methods can be applied to any engineering 
system, provide the inherent information of system dynamics. The exploitation of these 
methods leads to an efficient fault detection and control system (Ding, 2013). Jesica 
and Poznyak (2018) developed a new technique using the Kalman filter and instrument 
variable method for parameter estimation in the stochastic system. The proposed technique 
minimized the influence of Gaussian noise and removed the biases in estimation, which 
remains available in standard least square methods. The designed scheme also improved 
the convergence speed. 

Bachir et al. (2006) used the offline parameter-estimation technique for stator inter-turn 
short circuit fault and broken rotor bar detection. In this study, a new model of an induction 
machine for stator and rotor has been developed for fault detection. They introduced the 
new parameters in the original model of the induction machine for stator inter-turn fault 
detection and the design of a new faulty model for broken rotor bars detection. 

Generally, the parameter-estimation technique requires one input and output signal, 
and it provides a more detailed picture of internal process quantities. Therefore, this 
technique is more suitable for component fault detection. However, it can be used for 
sensor/actuator fault detection as well. The major disadvantage is that it always needs 
an excitation signal for initiating the parameter-estimation process, which may not be 
suitable for the process, operating at a stationary point (Isermann, 2006). In addition, 
the parameter-estimation technique is less robust to unknown inputs that may affect the 
estimation process. Nevertheless, the performance of parameter-estimation-based- FD 
systems has been demonstrated by many successful applications in industrial processes 
and automatic control systems (Belmokhtar et al., 2015; Ye et al., 2015; Herrera & Yao, 
2018; Khang et al., 2018).

PARITY-SPACE-BASED RESIDUAL GENERATION

In a parity-space-based approach, a residual is generated by eliminating the effect of initial 
states of a dynamic system and utilizing only the system input and measurement data within 
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a finite time window. The inconsistency arises in the residual in case of abnormal behavior 
evolving in the system dynamics. For example, the parity-space-based fault detection 
system has been studied (Sun et al., 2019; Zhang et al., 2006; Zhong et al., 2018).  This 
section discusses parity-space-based FD for a linear discrete-time system in terms of design 
and implementation issues. 

Consider Equation 1. The following parity relation can be established (Equation 4).

	 (4)

Where , while  and s is 
the order of parity-space and 

, 

H d,s, H f,s can be obtained by substituting (Ed, Fd) and (Ef, Ff) in place of (B ,D ) in H u,s. 
Residual generator based on parity relation vector can be written as Equation 5.

					     (5)

 is a residual signal and M  is donated as a parity-space matrix, which contains a set 
of parity vectors and is defined as parity space, . Let us denote v s 
is the parity vector and holds the condition  then residual in Equation 5 can be 
represented as Equation 6.

					     (6)

Equation 6 clearly shows that parity relation-based residual design only requires the 
computation of parity vector vs. In a fault-free case, (f(k) = 0), ds(k) can be perfectly decoupled 
from the residual if the rank condition is satisfied (M[Ho,s Hd,s] = 0). However, the condition 
looks stringent and very hard to satisfy for practical systems. In such cases, the preferred 
solution for residual design is to apply the optimization technique to make an appropriate 
trade-off between robustness and sensitivity. For this purpose, several objective functions, 
with the prime aim to achieve the trade-off between robustness against disturbances and 
sensitivity to faults, have been defined. The following performance index is widely adopted 
for a parity-space-based residual generation (Equation 7) (Ding, 2013; Gertler, 2017).
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						      (7)

For successful fault detection, the l 2-norm of a residual signal in Equation 6 is the most 
commonly used evaluation function and is defined as Equation 8 (Ding, 2013).

					     (8)

A threshold can be set as (  is an upper bound of disturbance energy) 
in a fault-free case. In the last step, the decision logic is used to declare the fault alarm.  

An optimized parity-spaced-based fault detection algorithm was developed in 
(Odendaal & Jones, 2014) for actuator fault detection in Meraka Modular UAV. The study 
optimized the parity relation, obtained from the standard parity-space approach, using the 
transformation matrix that forms the residual more sensitive to the fault. The said approach 
improved the computational burden compared to the online computation of covariance 
matrices at every instant in the Extended Kalman filter. As compared to FD techniques in 
an open-loop, fault detection in a closed-loop control system is much complicated because 
a closed-loop is more robust against exogenous inputs. External inputs surround a fault 
signal with low amplitude, and closed-loop control input makes the fault signal smaller. The 
phenomena reduce the fault detection performance and fault detection rate significantly. 
Sun et al. (2019) proposed a parity-space transformation-based fault detection system for 
the closed-loop control system. A stable kernel matrix for parity-space transformation was 
designed to obtain the more accurate parity-space in a closed-loop system that improves 
the fault detection performance. Furthermore, the fault detection rate has been improved 
by accumulating the residual in a time window. 

Zhong et al. (2018) demonstrated an integrated design of residual generation and 
residual evaluation for fault detection in a linear discrete-time system subject to unknown 
input without complete knowledge of probability distribution. The study focuses on parity-
space-based FD design to achieve an optimal trade-off between false alarm rate (FAR) 
and missed detection rate (MDR). Determination of parity-space vector and optimization 
of FAR and MDR are formulated in the minimum error minimax probability machine 
(MEMPM) framework. The proposed algorithm delivers an optimal trade-off between 
MDR and FAR in the worst-case scenario of unknown inputs without the information of 
stochastic distribution.
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Equation 6 demonstrates that the residual generator requires the past data of input and 
output measurements; hence, this residual generator is preferred for discrete-time dynamic 
systems only. Furthermore, it is important to mention that parity-space-based residual 
generators are more sensitive to unknown inputs because of their open-loop structure 
than the observer-based residual generator, which has a closed-loop configuration and is 
less sensitive to unknown input and system uncertainties. Despite the advantage of design 
simplicity, knowledge of previous data and constraints on parity-space order makes the 
parity-space-based residual generator non-ideal for online implementation. The solution 
to these two problems is a one-to-one mapping between the design parameters of the 
observer-based technique and the parity-space-based technique. This scheme is known 
as parity-space design, observer-based implementation (Ding, 2013; Isermann, 2006). 
By taking advantage of both designs, less design effort of parity-space vector, and online 
realization of the observer, this scheme can also be used for continuous-time systems.

The parity-space-based technique is well applied for FD purposes in the induction 
motor drive system (Dybkowski & Klimkowski, 2017), electromechanical brake systems 
(Hwang & Huh, 2015), vehicles (Wang et al., 2019), and power systems (Rasoolzadeh & 
Salmasi, 2020). 

OBSERVER-BASED RESIDUAL GENERATION

A survey on observer-based FD techniques for the LTI system is presented in this section. 
FD system based on Kalman filter is presented first for stochastic LTI systems with 
Gaussian noise. Next, unknown input observer (UIO) is discussed for perfectly decoupling 
the unknown input, followed by a discussion on optimal observer design for deterministic 
LTI systems subjected to norm-bounded unknown inputs and uncertainties.

Kalman Filter-based Fault Detection 

A stochastic system is a dynamic system subjected to a stochastic/random noise, i.e., 
Gaussian noise with mean value and variance. The first stochastic fault detection system 
was developed using the innovations (residuals) generated by the Kalman filter (Mehra & 
Peschon, 1971). A well-known Kalman filter, which looks like an observer in a deterministic 
environment, is used to estimate the system’s state based on a series of measurements taken 
in time, having system inaccuracies and statistical noise. The residual signal contains the 
information of fault and the mutual effect of uncertainties, process, and measurement noise. 
Stochastic residual evaluation techniques are used to eliminate these undesired effects 
and recover the fault information from the residual. These techniques use the residual’s 
statistical properties, i.e., mean, variance, and covariance, and try to detect statistical 
parameters change. Several statistical methods are available in the literature to evaluate 
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the residual generated by the Kalman filter for fault detection purposes. A few of these 
methods are the chi-square test (Da & Lin, 1996), multiple hypothesis tests (Bøgh, 1995), 
generalized likelihood ratio (GLR) test  (Willsky & Jones, 1976), and cumulative sum 
algorithms (Nikiforov et al., 1993).

Kalman filter provides an optimal estimate of system states, i.e., minimum covariance 
of error between estimated and actual states of the system. The unified approach is presented 
in Doraiswami and Cheded (2013) to detect and isolate the fault in a linear discrete-time 
system with measurement and system noise using the Kalman filter. Switched Kalman filter 
is designed for sensor fault detection and isolation in power converters (Kleilat et al., 2018). 
The proposed filter is an extended version of the standard Kalman filter combined with a 
disturbance decoupling observer and has confirmed satisfactory results disturbance. The 
incipient sensor fault detection in the continuous stirred-tank reactor benchmark process has 
been addressed in Gautam et al. (2017) using Kalman filter and GLR test. In this technique, 
signal to noise ratio (SNR) index is used to determine the threshold for successful fault 
detection with minimum false alarm and missed detection rate. 

As physical and technological constraints arose in the industrial system due to 
complexity and robustness, many researchers developed modified and enhanced versions 
of the Kalman filter to cope with the advanced requirements of the system. As a result 
of dedicated research towards the development of stochastic fault detection techniques, 
in parallel with ongoing research on deterministic fault detection techniques, improved 
versions of Kalman filter is obtained, such as extended Kalman filters (EKF), unscented 
Kalman filters (UKF), adaptive Kalman filters, and augmented state Kalman filters.

An Extended Kalman filter is commonly used for estimating the non-measurable states 
of a nonlinear dynamic system (Jokic et al., 2018). Extended Kalman filter has shown good 
results random disturbances; however, owing to nonlinearity in states and measurements of 
the system, it is imperative to get the linearized and Jacobian matrix of the system model. 
Moreover, the linearization process reduces the estimation performance of EKF that might 
lead to instability of the filtering process for fault detection purposes.

Unscented Kalman filter overcomes the drawbacks of the EKF approach. UKF uses 
the unscented transform, i.e., a good approximation of the stochastic distribution of state 
rather than nonlinear function. Therefore, this method is straightforward and efficient for 
estimating the system states for nonlinear dynamic systems leading to better fault detection 
performance (Khazraj et al., 2016). However, in some cases, EKF requires a precise value 
of measurement and process noise covariance matrix. This condition is not often practical, 
leading to another version of the Kalman filter, i.e., adaptive Kalman filter. 

An adaptive Kalman filter is used to tune the measurement noise covariance matrix and 
system noise covariance matrix according to noise conditions to obtain a satisfactory fault 
diagnosis (Hajiyev & Soken, 2013). According to the literature, researchers classify the 
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adaptive filters into four types: Bayesian-based, maximum likelihood-based, correlation-
based, and covariance matching techniques (Tripathi et al., 2016). In addition, the augmented 
Kalman filter is often used to estimate the system states and fault and disturbance signals 
simultaneously (Gannouni & Hmida, 2017). Various applications of Kalman filter-based 
fault detection system can be found in the gas turbine engine (Pourbabaee et al. 2016), 
synchronous generator (Nadarajan et al., 2016), power systems (Liu & He, 2017), wind 
turbine system (Cho et al., 2018), and aircraft (Marzat et al., 2012).

UIO-based Fault Detection

Fault detection system should be robust against all undesired inputs such as process and 
measurement disturbance. Initially, it was proposed to decouple the unknown input from 
the state estimation process using the disturbance distribution matrix. If system states are 
decoupled from unknown disturbance, then residual is, obviously, also independent (Ding 
& Frank, 1990; Wünnenberg & Frank, 1987). The decoupling observer is known as the 
unknown input observer (UIO), a type of Luenberger observer, principally to estimate 
state variables. 

In the Eigen structure assignment method, left eigenvectors of the observer gain matrix 
are assigned so that gain’s left eigenvectors are orthogonal to the disturbance distribution 
matrix to make residual signal robust (Patton & Chen, 2000). In this approach, instead of 
decoupling unknown input from the state estimation process, the residual signal is made 
independent of unknown input. The geometric approach is used by (Hur & Ahn, 2014) to 
decouple the effect of disturbance from the residual. All the above approaches (UIO, Eigen 
structure assignment approach, and geometric approach) address the problem of disturbance 
decoupling from the residual. However, these approaches are not capable of handling the 
model uncertainties. One possible solution to tackle the model uncertainties is to model 
them as an unknown input and then apply the disturbance decoupling techniques further. 

The inverter incipient sensor fault is successfully detected and accommodated in 
three-phase PWM inverters in the traction system (Zhang et al., 2017). UIO technique has 
been widely used in many applications of FD, aircraft systems (Hur & Ahn, 2014), gas 
turbine engines (Dai et al., 2009), cyber-physical systems, and wind energy systems (Zhu 
& Gao, 2014). However, as stated in Ding (2013), the existing condition of the disturbance 
decoupling technique is stringent and hard to achieve for many practical systems. Moreover, 
the decoupling technique is also not suitable for cases where fault vector lies in the same 
space as disturbance vector that may lead to a decoupling of fault signal from residual as 
well, just like disturbance. An alternate strategy, widely adopted, is to design an observer 
to make a suitable compromise between robustness to unknown input and sensitivity to 
fault. It makes the fault detection problem a multi-objective design problem.
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Optimized Observer/FDF-based Fault Detection

Fault Detection Filter (FDF), a well-known realization of full order state observer, generates 
the residual for fault detection purposes. FDF structure for Equations 1 and 2 can be 
represented by the following Equation 9:

			   (9)

,  is the state estimation vector and measurement estimation vector, 
respectively.  is a so-called residual signal. L and V are two design parameters of FDF. 
Observer gain L is determined in such a way that estimation error asymptotically goes to 
zero. The residual in Equation 9 can be rewritten in the frequency domain as Equation 10: 

				    (10)

Where

It can be observed from Equation 9 that residual is dependent on fault and unknown 
input signal.  norm represents the maximum influence of disturbance on residual and 
is widely used to improve the robustness of residual against the unknown inputs (Zhou & 
Zhang, 2019). Furthermore, to analytically represent the influence of fault on the residual, 

 norm, H 2 norm, and H_  index are successfully adopted for FDF design. Robustness to 
unknown input/disturbance while, at the same time, sensitivity to fault makes the design 
of FDF a multi-objective optimization problem. This way, optimal observer gain can be 
obtained by solving the following optimization problem over some specified frequency 
range (Equation 11).

					     (11)

There are several forms of performance indices (i.e., ) are available for 

solving Equation 11. In addition, L*,V* are optimal parameters of FDF in Equation 9 
that deliver a residual which has maximum robustness to unknown inputs and maximum 
sensitivity to faults (Ding, 2013).
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Optimal FDF design for linear system formulated as a multi-objective optimization 
problem (Ding et al., 2000) and unified solution for the optimization problem is obtained 
using factorization technique which is realized by solving the Riccati equation. Aguilera 
et al. (2016) designed an observer-based fault detection system to detect the current sensor 
fault in the induction motor drive. A differential geometric approach is used in this study 
to detect and isolate the single and multiple faults, i.e., disconnection, offset, and constant 
gain faults. 

The prime objective of all techniques developed for the solution of Equation 11 is 
to obtain an optimal trade-off between robustness and sensitivity. These techniques are 
well-suited for fault detection in linear systems subjected to unknown disturbances only. 
However, in model-based FD techniques, another issue often encounters in the residual 
generation process is model mismatching. A perfect mathematical model of a practical 
system is never available because of modeling error, process linearization, and component 
aging issues. Hence, optimization techniques that solve Equation 11 cannot be applied to 
uncertain systems. 

System uncertainty severely affects the output estimation that leads to poor performance 
of fault detection.  Robust FDF has been designed for continuous LTI systems subjected 
to disturbance and norm-bounded uncertainty (Zhong et al., 2003). Robust FD problem 
is formulated as  model matching problem, and solution of the optimization problem 
is presented in linear matrix inequality (LMI) form in the said paper. Li et al. (2013) 
extended the same work discussed in Ding et al. (2000) for continuous-time linear uncertain 
systems subjected to polytopic uncertainty utilizing the iterative LMI approach. Farhat 
and Koenig (2015) formulated the proportional integral observer (PIO) design problem as 
a multi-objective optimization problem for the continuous-time linear uncertain system. 
The robustness to disturbance and uncertainty has been ensured minimizing the  norm 
of G rd in the LMI framework.

Although the designed robust FDF, with and without system uncertainty, somehow 
minimizes the effect of disturbances and uncertainties, these are not completely decoupled 
from the residual. These unknown inputs still influence the residual. In such cases, the 
appropriate residual evaluation function and threshold computation selection are integral 
in successful fault detection. The final decision on the occurrence of a fault is made using 
a simple comparison between residual evaluation function and threshold. 

There are two widely accepted ways to generate evaluation function and threshold 
depending on the system’s dynamics under consideration. Generally, the norm-based 
residual evaluation function is used for a deterministic system in which the energy of 
unknown input is bounded under a certain limit . On the other hand, 
a statistical-based residual evaluation function is adopted for stochastic systems. For 
deterministic systems, l 2-norm is a mostly used evaluation function and is defined in 
[8]. Peak value, root mean square value, and moving average of residual is also used 
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for residual evolution function. We refer our esteemed readers to Ding et al. (2003) for 
more knowledge and computational skills. In case, residual is dependent on disturbance, 
uncertainty, and fault signal, then residual, generated by any of the methods discussed 
above, can be represented as Equation 12:

				    (12)

In a fault-free case, , the threshold can be defined as Equation 13:

					     (13)

Other Observer-based Fault Detection Techniques

Besides the previously discussed Kalman filter, UIO, and optimized FDF schemes, other 
types of fault detection observers in the literature have been investigated for LTI systems. 
Those are a proportional-integral observer (Do et al., 2018; Yang et al., 2020), sliding 
mode observer ( Zhirabok et al., 2018; Zhang et al., 2019), interval observer (Pourasghar 
et al., 2020; Zammali et al. 2020), and adaptive observer (Lijia et al., 2019; Perrin et al., 
2004). These observers are designed to estimate the system output with minimum output 
estimation error and fast convergence speed. Then output estimation error is used as a 
residual to indicate the fault occurrence.

DISCUSSION

In this section, a comparison among various fault detection techniques discussed so far 
is given in terms of robustness, complexity, and performance. The robustness of the fault 
detection method is checked by the measure of sensitivity to noise, disturbance, and 
uncertainty. Likewise, robustness and the performance of the fault detection method are 
determined in terms of FAR and MDR. Based on the above survey, the following points 
are highlighted:

1.	 An observer generates the residual for fault detection, and it is synthesized to zero 
in fault-free cases. Observer-based and parity-space-based FD methods produce 
the alike residual in terms of residual characteristics. However, the observer-based 
method shows more robustness to uncertainty as compared to the parity-space-
based residual generator. 

2.	 FDF is a complete state observer, while an unknown input observer is a reduced-
order observer and might be considered where full state estimation is not required. 
UIO has more robustness to unknown inputs with increased complexity and 
computational effort.

3.	 Observer-based and parity-space-based fault detection methods are designed for 
additive faults and perform well when the plant model is perfect. 
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4.	 Observer-based and parity-space-based FD system design requires the knowledge 
of robust control theory when there is uncertainty and unmodeled disturbance 
in the linear systems. These unwanted inputs are handled by selecting a higher 
detection threshold in the second step of the fault detection process. However, a 
higher detection threshold causes to increase in the FAR, and a lower detection 
threshold cause to increase in the MDR. Therefore, a feasible trade-off is required 
between FAR and MDR for successful fault detection.

5.	 Optimization-based FD methods are formulated so that the sensitivity of residual 
to unknown inputs is minimized along with improved sensitivity to faults. Such 
methods provide a solution in terms of mathematical multi-objective functions. 
There could be one disadvantage: it might not guarantee the usefulness and 
performance of the solution in some applications. Hence, special care is required 
while implementing optimized FD methods in the underlying application, which 
may also increase complexity. 

6.	 Kalman filter-based FD system is used for stochastic systems, and much knowledge 
of statistical analysis and probability is required. Different versions of the Kalman 
filter can be applied to nonlinear systems and time-varying systems as well.

7.	 Fault detection methods relying on system identification are useful for linear and 
nonlinear systems, but the performance of such FD systems entirely depends 
on detecting the variation in system parameters. Moreover, these fault detection 
methods are beneficial for detecting small and incipient faults.

8.	 The major disadvantage of the model-based FD method is to get the precise 
mathematical model of the system. This reason restricts the application of the 
model-based FD methods to industrial systems. In such cases, data-driven 
techniques are advantageous when the system model is unavailable (Denkena et 
al., 2020).

9.	 The parameter-estimation method produced good results in detecting structural 
damage, while all other model-based methods are well suited for detecting the 
actuator and sensor faults. 

10.	 The selection of an appropriate detection technique depends on the reliability of 
the available knowledge of the system.

COMPARISON OF FAULT DETECTION TECHNIQUES

This section compares two well-known fault detection techniques in terms of detectability, 
design complexity, and computational load. For this purpose, a linear DC motor model is 
simulated in MATLAB for sensor and actuator fault detection. First, a unified solution of 
an optimal FDF developed in Ding (2013) for Equations 1 and 2 subjected to deterministic 
disturbance is compared with Kalman filter-based optimal estimator for stochastic LTI 
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system (Blanke et al., 2015). Both FD techniques confirm good performance in terms 
of fault detection if an unknown disturbance lies within bound and there is no system 
uncertainty. Second, the state-space model of DC motor in Equations 1 and 2 has the 
following matrices: 

, , ,

,  ,  

Kalman Filter Design 

Residual generation for stochastic LTI system (Equation 14): 

		  (14)

Let and , be zero-mean process and measurement noise with following 

covariance matrix, . The dynamics of the 

Kalman filter-based residual generator is represented by Equation 15:

			   (15)

K is Kalman filter gain and can be determined as , 
While P can be obtained by solving the following Riccati Equation 16:

			   (16)

The residual evaluation and threshold are given as Equation 17:

					    (17)

Where .Threshold could be def ined as 
, where  is given false alarm rate (FAR) and n is the number of output 

signals. The threshold is computed using chi-square (X2) test.

Unified Solution of Optimal FDF

Residual generation for deterministic LTI system in Equations 1 and 2, d(k) is l2 norm 
bounded unknown disturbance, holds . Optimal FDF of the form in 
Equation 11, observer gain L and post-filter V is obtained using the unified solution 
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Equation 18:

			   (18)

Where, X is a solution of the above Riccati equation. Residual obtained from unified 
solution is an optimal solution because, in fault-free case, the effect of d(k)  on the residual 
is uniform in the entire subspace spanned by the disturbance d(k) . Thus Equation 9 serves 
as a residual evaluation function, and the threshold is taken as the upper limit of disturbance 
energy (Equation 19).

							       (19)

Table 1 describes the comparison in gain matrices of the Kalman filter and optimal FDF. It 
is shown that the gain of both filters depends on their noise characteristics. The following 
comparison reveals no difference between these two filters, and they deliver optimal residual 
in terms of robustness if there is no system uncertainty.

Table 1
Comparison between FD techniques via gain equations

is zero-mean white noise with the 
covariance matrix 

is an all-pass filter in fault-free case, i.e., the 
beauty of a unified solution

is zero-mean white noise with the 
covariance matrix 

is an all-pass filter in fault-free case, i.e., the 
beauty of a unified solutionis zero-mean white noise with the 

covariance matrix 
is an all-pass filter in fault-free case, i.e., the 

beauty of a unified solution
is zero-mean white noise with the 

covariance matrix 
is an all-pass filter in fault-free case, i.e., the 

beauty of a unified solution
r (k) is zero-mean white noise 
with the covariance matrix σ2v

r (k) is an all-pass filter in fault-free case, 
i.e., the beauty of a unified solution

Comparison by Simulation

For simulation purposes, the following assumptions are considered, , 
, , the covariance of Gaussian noise:  
and .
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The following simulation results have been observed: Figure 2 illustrates that system 
output estimates are close to actual measurement in fault-free cases. Thus, residual obtained 
from both schemes prove robustness to unknown disturbance/noise. Figure 3 demonstrates 
a speed sensor fault case in which ramp input as an incipient fault is injected at 2.2 sec. 
It is observed that the detection time of the Kalman filter is high as compared to optimal 
FDF. In this case, the Kalman filter has shown less robustness to a time-varying fault in 
the DC motor speed sensor. Finally, Figure 4 confirms the effectiveness of both schemes 
in terms of robustness and detection time in actuator stuck fault conditions. 

Simulation results confirm that both approaches have shown better performance under 
unknown inputs. However, they have limited capability of FD in the presence of system 
uncertainty and may deliver large FAR and MDR. Therefore, a fault-sensitive filter has 

Figure 2. Residual, f(k) = 0 from (a) Kalman filter (left); and (b) optimal FDF

Figure 3. Evaluation function and threshold in incipient fault at t =2.2sec: (a) Kalman filter; and (b) optimal FDF

(a) (b)

(a) (b)

Time (sec) Time (sec)

Er
ro

r m
ag

ni
tu

de

Er
ro

r m
ag

ni
tu

de

M
ag

ni
tu

de

Time (sec)

M
ag

ni
tu

de

Time (sec)



70 Pertanika J. Sci. & Technol. 30 (1): 53 - 78 (2022)

Masood Ahmad and Rosmiwati Mohd-Mokhtar

Figure 5. Residual in actuator stuck case with system uncertainty

Figure 4. Evaluation function and threshold in actuator stuck fault at t = 2.5-3.5sec: (a) Kalman filter; and 
(b) optimal FDF

(a) (b)

been designed for LTI uncertain system to handle the uncertainty problem (Ahmad & 
Mohd-Mokhtar, 2020). Figure 5 shows residual obtained from H-index FDF for uncertain 
DC motor system and residual from optimal FDF of nominal DC motor system. It has been 
shown that H-index fault-sensitive FDF can minimize the effect of system uncertainties and 
enhance the fault sensitivity (Ahmad & Mohd-Mokhtar, 2020) and shows the approximate 
performance of optimal FDF designed for nominal DC motor. Detail comparison of the 
three FD schemes is given in Table 2.
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Table 2
General comparison of three FD schemes

Kalman Filter Optimal FDF H-index FDF
Detectability Can detect all faults but may 

increase FAR when the fault has 
a low fault to noise ratio

Can detect all faults 
simulated in this paper

Can detect all faults 
simulated in this paper

Detection time Fast Fast Fast
Computation load Moderate Low Moderate
Robustness to 
uncertainty

FAR high in the simulation case MDR high in the 
simulation case

Acceptable robustness

Robustness to initial 
states

Less robust than optimal FDF More robust than other Least robust

MODERN TRENDS IN MODEL-BASED FD FOR LTI SYSTEMS

1.	 As discussed above, a model-based FD system consists of two stages: residual 
generation and residual evaluation. The prime objective of the residual generation 
stage is to generate the optimal residual. The objective of the residual evaluation and 
threshold stage is to ensure maximum fault detectability. Thus, the overall objective 
of an optimal fault detection system is to achieve the maximum fault detectability 
and maintain zero false alarm for a deterministic type of system or achieve the fault 
detectability under some allowable false alarm rate under stochastic noise. Based on the 
survey, most of the results mentioned above focus on the effort of residual generation. 
However, little attention is given to the residual evaluation and corresponding threshold 
computation. Hence, there is an indispensable need to design the residual generation 
and residual evaluation in an integrated way, rather than dealing with them separately, 
to optimize certain criteria for better performance of the fault detection system.

2.	 Even though very nice results are available for model-based fault detection, there is 
still a scarcity of research for uncertain linear systems. The standalone design of the 
residual generator and residual evaluator and an optimally integrated fault detection 
system, as discussed in 1, for the continuous and discrete-time linear uncertain system, 
is still an open and challenging topic for researchers. 

3.	 The fault should be estimated after it has been detected so that its effect can be 
compensated to maintain the reliability of a practical system in a faulty situation. An 
optimal fault estimator and fault-tolerant controller for nominal and uncertain systems 
is also an ongoing open research topic. 

4.	 It is also observed that minimal effort has been devoted to developing fault detection 
systems in a closed-loop environment. Open-loop fault detection techniques become 
ineffective in a closed-loop environment. Thus, it is necessary to work on this topic 
which is also an emerging topic.
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5.	 Besides the process and measurement noise, there is also multiplicative noise in the 
system. Due to this, traditional methods could not produce the optimal performance 
for fault detection. Hence, there is a need to address the fault detection problem for 
LTI systems involving multiplicative noise. 

In some instances, recorded or online data of system inputs and measurements are 
only available. In such scenarios, model-based fault detection methods cannot be directly 
applied. Therefore, model-based and data-driven or signal processing-based fault detection 
methods can be combined to design optimal FD systems for complex systems where the 
mathematical model of the system is not possible. As technology advances and more 
techniques are developed regarding fault detection in LTI systems, the combination of 
data-driven and model-based fault detection methods are the future research directions. The 
integration of the two methods provides new opportunities and challenges. Furthermore, 
the integration of robust control and machine learning techniques for observer-based FD 
and estimation scheme for linear systems open new research directions in the model-based 
FD framework.

CONCLUSION

The safety, reliability and desired performance of a practical system must be maintained at 
all the time during its operation. Fault detection plays a paramount role in accomplishing 
these objectives. This paper discusses various model-based residual generation techniques, 
including FDF, UIO, parity-space, optimization-based, Kalman filter, and system 
identification approach. Three different FD approaches were illustrated to address the FD 
problem in the DC motor system, and their performance is compared. The arising issues and 
emerging research topics on fault detection for LTI systems were explained. The outcome 
from this paper may assist in further research in the future.
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