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ABSTRACT

The introduction of RNA-sequencing (RNA-Seq) technology into biological research has 
encouraged bioinformatics developers to build various analysis pipelines. The chosen 
bioinformatics pipeline mostly depends on the research goals and organisms of interest 
because a single pipeline may not be optimal for all cases. As the first step in most 
pipelines, alignment has become a crucial step that will affect the downstream analysis. 
Each alignment tool has its default and parameter settings to maximise the output. However, 
this poses great challenges for the researchers as they need to determine the alignment tool 
most compatible with the correct settings to analyse their samples accurately and efficiently. 
Therefore, in this study, the duplication of real data of the HeLa RNA-seq was used to 
evaluate the effects of data qualities on four commonly used RNA-Seq tools: HISAT2, 
Novoalign, TopHat and Subread. Furthermore, these data were also used to evaluate the 
optimal settings of each aligner for our sample. These tools’ performances, precision, recall, 
F-measure, false discovery rate, error tolerance, parameter stability, runtime and memory 
requirements were measured. Our results showed significant differences between the 
settings of each alignment tool tested. Subread and TopHat exhibited the best performance 
when using optimised parameters setting. In contrast, the most reliable performance was 

observed for HISAT2 and Novoalign when 
the default setting was used. Although 
HISAT2 was the fastest alignment tool, 
the highest accuracy was achieved using 
Novoalign with the default setting.
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INTRODUCTION

Next-generation sequencing (NGS) is a fast-growing technology that can fulfil efficient 
and highly sensitive sequencing demands. In contrast with the previous sequencing 
technologies, such as Sanger sequencing, NGS is much cheaper and faster (Križanović et al., 
2018). Gaur and Chaturvedi (2017) stated that RNA-sequencing (RNA-Seq) is a powerful 
technique that enhances the understanding of complex transcriptomes by revealing insights 
into many biological phenomena, such as the underlying mechanisms and pathways of 
biological processes. Other applications of NGS also include whole-genome sequencing, 
followed by genetic variant detection in the whole-genome or the targeted region (Qin, 
2019). However, the features and massive volume of NGS reads require the development 
of a new generation of computational algorithms and analysis pipelines equipped to handle 
such data (Koboldt, 2020).

Many researchers have developed more than 60 different algorithms for the sequence 
reads alignment to a reference genome tool, depending on various ranges of capabilities 
(Fonseca et al., 2012; Keel & Snelling, 2018; Schaarschmidt et al., 2020). As alignment is 
the first step in the RNA-Seq pipeline, it will drastically affect the downstream analyses. The 
read alignment in the RNA-Seq experiment can be conducted with or without a reference 
genome, but most studies would prefer mapping to a reference genome as the results have 
been proven to be more reliable and more accurate in quantifying lowly-expressed or small 
transcripts (Wu et al., 2018). The major challenge in handling eukaryotic transcriptomes 
is the alignment of spliced transcripts reads to the reference genome. Apart from being 
computationally challenging (Sahlin & Mäkinen, 2021), spliced-alignment read-lengths 
caused difficulties in detecting isoforms with complicated splicing structures and limiting 
the quantification of isoform abundance (Zhang et al., 2017).

Accordingly, many spliced aligners have been developed to overcome this problem. 
Depending on their algorithms, these aligners mapped the reads crossing the splice junction 
differently. There are two algorithm approaches for the alignment step: hash-tables and 
Burrow-Wheeler Transform (BWT) algorithms. Hash table-based aligners operate by rapid 
seeding of alignment candidates. These are then extended or discarded by using more 
precise alignment algorithms. Then, the reference genome or the reads are split and stored in 
a hash table to search for the exact match of the seed locations. This low space requirement 
algorithm builds an index for the positions of sequences rather than sequences themselves.

While the hash table algorithm is praised for its low space consumption, the BWT-
based algorithm, on the other hand, loses error tolerance for high-speed retrieval of correct 
matches. The representation of the data structures by top-down paths in a tree structure are 
called prefixes/suffixes. Then, a rapid read searching of the substring matching is enabled 
by primarily beginning at the root. The requirement of vast memory for the uncompressed 
tree structure is the main drawback of using these algorithms. In order to overcome this 
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problem, the Ferragina-Manzini index (FM-index) was developed by Ferragina and Manzini 
(2000) to reduce the memory occupied by the prefix/suffix tree. It is a compressed yet 
searchable suffix array-like structure based on the Burrows-Wheeler transform (BWT) 
(Keel & Snelling, 2018).

The selection of a suitable alignment tool for NGS data can be challenging due to the 
wide range of algorithms available. Therefore, various groups of researchers carried out 
benchmarking analyses to guide the users in choosing the correct aligners. For instance, 
a comprehensive benchmarking study of common splice-aware aligners was published 
by Baruzzo et al. (2017). The authors revealed that the aligners’ performances varied by 
genome complexity. Unfortunately, although many benchmarking analyses had been carried 
out in guiding the users in choosing the best aligners, the problem is still plaguing the 
bioinformatics communities, while other solutions have not been derived (Donato et al., 
2021; Grytten et al., 2020; Jain et al., 2020; Schilbert et al., 2020; Thankaswamy-Kosalai 
et al., 2017).

Comprehensive studies on alignment had been carried out, but most were using 
simulated data. We aimed to evaluate a more realistic setting on real data, so we chose the 
human cervical cancer cell line (HeLa) dataset for this study. Liu et al. (2019) proposed that 
HeLa cells present an essential example of human cancer cells that have broadly influenced 
biological studies. Furthermore, a large number of mutations and chromosol changes in 
HeLa cells makes it a complex genome dynamic ecosystem of the tumour genome (Hu et 
al., 2019). For an aligner to be viable for RNA-Seq, it must be able to (i) align reads across 
splice junctions, (ii) handle paired-end reads, (iii) handle strand-specific data, and (iv) run 
efficiently (Baruzzo et al., 2017). Four aligners that satisfy these four requirements are 
HISAT2 version 2.1.0 (Kim et al., 2015), Novoalign version 4.0 (http://www.novocraft.
com/products/novoalign/), Subread version 2.0.1 (Liao et al., 2013) and TopHat version 
2.1.1 (Trapnell et al., 2009). Based on the algorithms, Novoalign and Subread adopt a hash 
table algorithm, while HISAT2 and TopHat adopt an FM-index algorithm.

In this study, we aimed to evaluate the effects of reading quality on alignment on four 
different aligners. Apart from that, we also targeted to compare the default and parameters 
settings of these aligners to obtain the optimal setting for HeLa RNA-Seq reads.  

MATERIALS AND METHODS

Data Sets and Alignment Settings

In this experiment, we used two sets of paired-end, real Illumina sequencing data of human 
cervical cancer cells line (HeLa) treated with C. Nutans. In paired-end sequencing, a 
DNA fragment was selected and sequenced from both ends, producing high-quality data 
compared to only single-end sequencing. The raw sequenced data sets contained around 
52.26 Mb and 53.89 Mb reads, respectively. In order to examine the performance of the 
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aligners on the real sequencing data with varying quality, we compared the alignment before 
and after trimming off the low-quality bases. The trimming of raw data was processed by 
using the fastp trimming tool (Chen et al., 2018). We processed raw and trimmed reads 
using FastQC (Andrews, 2010) to evaluate the quality of the bases. The plot of the qualities 
suggests that the trimmed reads have better quality than the raw reads. The alignments 
were performed using the default setting of each of the four aligners (Appendix A-D). 
The human reference genome used in this experiment is the hg38 genome obtained from 
UCSC (http://hgdownload.soe.ucsc.edu/ downloads.html), and hg38 is chosen because this 
genome is the latest and most stable built of human reference genome now. In addition, 
this genome is the corrected and improvised version of the previous built, hg19. 

For the second part of the study, an alignment of each tool was firstly performed using 
the default parameters using the trimmed data sets. Then, the specific parameter settings 
suggested by the tool were used to increase the quality of the alignments. In addition, four 
sets of parameter settings for each aligner were also used.

Evaluation of Precision and Recall

Alignment quality is perceived in the form of alignment precision and recall values. The 
precision determines which fraction of the aligned reads are being aligned correctly, while 
the recall value evaluates which fraction of the overall reads is correctly recovered. First, 
the number of true and false positive alignments was determined to estimate precision and 
recall values. Then, the mapping of any reader to a correct genomic location was defined as 
a true positive (TP), while the mapping of any read to an incorrect location was counted as 
a false positive (FP). Next, false positives were determined, including all the reads aligned 
to multiple locations. Apart from that, the reads failing to map to any correct position were 
considered false negative (FN) alignments. Since each read originated from one unique 
genome location, it should be mappable into a specific location after the alignment step. 
Thus, there was no such measurement for true negative alignments.

Precision, recall and false discovery rate (FDR) were calculated by using the following 
Equations 1 to 3: 

[1]

[2]

   [1]

[1]

[2]    [2]

[1]

[2]

    [3]

F-measure that evaluates the trade-off between precision and recall was also calculated 
in this study using Equation 4:
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If the multiple parameters set for one aligner resulted in equal F-measures, then the 
dimension of comparison would be based on runtime and memory requirements.

Impact of Parameter Choice on Alignment Quality

Four parameter combinations were tested to evaluate the impacts of each change on the 
alignment performances to investigate the optimised parameter setting further. In addition, 
the dispersion of F-measures by each alignment tool was used to determine the tool’s 
sensitivity level to the tweaks of parameter values. 

Runtime and Memory Requirements

Aligners were installed and ran on the check. If multi-threading was supported, then 12 cores 
were used. The memory usage was capped at 16 GB. Next, the total CPU time measurement 
and memory usage were extracted from the reports using the “time” command, especially 
the memory usage recorded from the maximum memory used during the job execution. 
The alignment jobs were run on Intel® Core ™ i7-8700 CPU @ 3.2GHz x 12 processors.

RESULTS AND DISCUSSIONS

Aligners’ Performance on Sequencing Data with Different Qualities

The performance of the alignment on the different data qualities shows a slight difference 
in the results. For the trimmed data of both replicates, all aligners generally show a higher 
concordance compared to the untrimmed data, except for TopHat. It indicated that these 
aligners (Novoalign, HISAT2 and Subread) worked better with high-quality reads. These 
high-quality reads were obtained after processing our HeLa raw reads using a fastp trimming 
tool where the low-quality bases and the adapter had been trimmed off. On the other hand, 
TopHat was not affected by the quality of the aligned reads as the trimmed data showed 
less concordance compared to the untrimmed data. Nevertheless, the untrimmed data of 
our sample still show a good concordance but is slightly lower than the trimmed ones—the 
comparison is shown in Supplementary Data (Table 1A).

In this comparison, it was noticed that the difference among the results was more 
significant in recall compared to precision. It might be caused by the increasing number 
of errors that affected the precision values. On the other hand, it might be due to quality 
concerns which can significantly mislead analytical results and lead to inaccurate 
conclusions (Zhou et al., 2018). It explained why it is crucial to discard the low-quality 
bases and adapters that might contaminate the purity of our readings.
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Accuracy and Efficiency of the Aligners 

The alignment accuracy and efficiency were assessed in terms of the precision and recall 
values. Precision reveals which portion of the reads was correctly aligned, while recall 
reveals which portion of the overall reads was being recovered correctly. The aligners 
studied were built with two different algorithms: the hash table-based and FM-index 
algorithms. Between the two hash-table-based aligners, Novoalign has a much higher 
precision value than Subread (Supplementary Data - Table 2A). However, the recall values 
between these two aligners were equally high (>0.92), except for the Novoalign Tweak 
2 parameter setting that obtained an extremely low recall value of 0.79419. A previous 
study by Donato et al. (2021) compared 17 aligners on simulated and empirical NGS data, 
and the findings revealed that Novoalign showed the highest accuracy in all alignments. 
In addition, the study also highlighted that Novoalign could detect a new transcript with 
greater ease than the other tools tested.  

While for FM-index-based alignment, a significant difference between the precision 
values of HISAT2 and TopHat was observed. HISAT2 showed the highest precision at 
optimised parameters (labelled as Tweak 2) with the value of 0.80185. TopHat’s highest 
precision was only at 0.70199 when the alignment was carried out at the default setting.  
Nonetheless, the recall values ranging from 0.91513 to 0.97998 were equally high for both 
aligners. The highest precision value (0.94773) in HISAT2 was shown in the sample with 
the tweaked parameters setting labelled HISAT2 Tweak 2. However, the recall value was 
just average. In contrast, the lowest precision value in HISAT2 was shown in the sample 
with HISAT Tweak 3 parameters setting, with the value of 0.76961 but with a significantly 
high recall value of 0.97998. These results showed that in HISAT2, the precision and recall 
values had a negative correlation. Besides the percentage of mapped reads, the alignment 
accuracy also depends on the correctness of the reads mapped to the reference genome or 
transcriptome. Schaarschmidt et al. (2020) revealed that alignment using HISAT2 resulted 
in high overlapping reads, mainly coming from the soft clipping of the first base of the 
reads. The failure of TopHat and HISAT2 to tolerate the soft-clipping and mismatches had 
caused a large fraction of reads to be left unmapped (Sahraeian et al., 2017). However, the 
setting can be turned off, directly eliminating the observed differences. 

Likewise, the precision values of TopHat increased with the decrement of recall 
values. Amongst the default and tweaked parameters settings of TopHat, the default setting 
was measured with an outstandingly high value of precision (0.70199). However, on the 
contrary, the recall value was only 0.91513 and was the lowest among the other TopHat 
settings. On the other hand, the TopHat with parameter Tweak 3 set had the lowest precision 
value (0.62911), but the recall was at a seemingly high value of 0.97864. Although this 
aligner performed well in aligning a read onto the respective genomic locus, similar to our 
findings, the study by Raplee et al. (2019) also found notable discrepancies and deficiencies 
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of TopHat in obtaining insufficient genomic alignment for reliable downstream analysis. 
Furthermore, TopHat prevented the truncation of the reads, which directly led to many 
unmapped reads (Sahraeian et al., 2017).

Meanwhile, for the F-measure, FM-index-based aligners showed a significant difference 
between the aligners, as the average of HISAT2 was 0.86355, while the average of TopHat 
was only 0.76479. Similarly, the F-measures between the two hash-table-based aligners 
also showed a vast difference. The F-measure values of Novoalign and Subread were 
0.84247 and 0.76447, respectively. These results showed that the types of algorithms did 
not correlate with the F-measure. Overall, between these two FM-index-based aligners, it 
can be concluded that HISAT2 is a more reliable aligner with reasonable quality alignment. 

By observing the F-measures for the overall alignment quality results, it was found 
that in most of the cases, the F-measures were reduced as the recall values were getting 
lower. It was notable in three Novoalign cases with almost similar precision values (around 
0.72) but different recall values. The case with a high recall value (>0.97) showed a high 
F-measure, but the case with a low recall value showed an extreme drop in F-measure 
(0.76). Most of the time, the low recall value caused a reduction in the overall alignment 
quality in terms of the F-measure.

Performance of Aligners’ Optimal Parameter Settings

The optimal parameter for each of the four evaluated aligners was determined by testing all 
permutations that appeared to have an impact on alignment quality. The optimal parameter 
sets run along with corresponding performance measures are shown in Table 1. 

The recall metric for the optimal parameters was well balanced, and the values ranged 
between 0.948 (HISAT2) and 0.852 (Subread). While for the precision metric, the highest 
was shown by Novoalign (0.896) and the lowest shown in Subread (0.680). Novoalign 
displayed a significantly high value in precision and F-value metrics. FDR value also shows 
that Novoalign has the lowest value compared to the other aligners. The lower the FDR 
value defines the expected proportion of false positives among the declared significant 
results, so the lower the value, the better it will be. FDR is a useful approach to measure 
the false discoveries within a set of hypothesis tests called significant (Chen et al., 2021). 

Table 1 
Performance of aligners under different metrics

Metric Novoalign HISAT2 Tophat Subread
Reads aligned 56252385 56049365 59413014 48916204
Recall 92.38 94.77 91.51 85.16
Precision 89.64 80.18 70.20 68.06
F- value 90.99 86.87 79.45 75.66
FDR 1.04 1.98 2.98 3.19
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When testing many hypotheses, FDR is often employed to determine significance thresholds 
and quantify the overall error rate. We observed that Novoalign was the leading aligner 
with the highest accuracy.

Parameter Stability

Observing the parameters’ effects on each aligner’s performance is crucial and determining 
the aligner that performs well with the default settings. These evaluations will allow us to 
assess the robustness of the alignment qualities among parameter variations. While there 
are enormous spaces in manipulating the parameters of choice, the combinations may not 
necessarily produce a global optimum output. The main idea is that the parameter variation 
should allow the users to have a consistent precision and recall value to alter the runtime 
and memory properties without affecting the overall performance. 

Parameter optimisation was performed on a duplicated data sample. Table 2 shows 
the dispersion values of the F-measure over the chosen parameter space. Low standard 
deviation, SD, as observed in HISAT2, indicated that the choice of parameters had little 
impact on the alignment performance. The high SD value indicated a wide alignment quality 
distribution, as shown by Novoalign. Meanwhile, both Subread and TopHat showed an 
average number of dispersions of 0.01142 and 0.02054, respectively. Different parameters 
had little impact on the alignment performance of HISAT2, whereas the alignment 
performance of Novoalign was widely affected. These results reflected that Novoalign was 
highly sensitive in terms of the choice of parameter settings. Hence, a precise setting must 
be carefully chosen when using Novoalign, as little change can cause a huge difference 
in the results.

Precision and recall values significantly affected the Novoalign aligner, as both of 
these values were widely distributed. Unlike Novoalign, the values of precision and recall 
in HISAT2 were consistent, with both lowly distributed. These results were not correlated 
with the Subread results. In Subread, there was a significantly high difference between 
the precision and recall values. In terms of precision, it was noticed that the values were 
consistent within each of the tools, regardless of the settings, except for the Novoalign 
default setting. The Novoalign default setting showed extremely high precision compared 

Table 2
Dispersion of F-measure across all parameter settings 
tested for each aligner 

Aligner Dispersion of F-measure
Novoalign 0.05433
HISAT2 0.00326
Tophat 0.02054

Subread 0.01142

to the other parameter settings. However, 
for the recall values, the default setting of 
Novoalign was not as outstanding as the 
precision value since higher recall values 
were shown in the tweaked parameter 
settings. These results illustrated the 
importance of evaluating both the precision 
and recall values. Furthermore, the results 
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were represented by the precision-recall 
analysis of HISAT2 and Novoalign, with the 
two aligners determined with extremely low 
and high F-measure dispersion, respectively 
(Figure 1). 

Remarkably, the high dispersion value 
of Novoalign also resulted in a dramatic 
drop in the recall, especially if the value of A 
in the alignment scoring threshold was set at 
the highest score acceptable for alignment, 
which was 20. These results were out of the 
expectation, as one would expect many true 
positives output from this alignment scoring 

Figure 1. Influence of parameter selection. Precision 
(x-axis) and recall (y-axis) are shown for Novoalign 
(squares) and HISAT2 (X signs) aligners
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setting. In contrast, the false negative value was extremely high compared to the other 
parameters. A low accuracy discovered in Novoalign might be due to its over-mapping at 
both ends of short reads (Nodehi et al., 2021; Shang et al., 2014). Thus, although dispersion 
does not state the alignment software’s overall performance, it indicates whether the optimal 
performance can be achieved without an in-depth understanding of algorithmic details.

Runtime and Memory Requirements

The runtime evaluation of each aligner was based on two main steps in the alignment 
process. The first is the indexing and the second one is the alignment. By comparing the 
indexing runtime for each of the aligners, it was found that the relationship between the 
indexing time correlated with the types of algorithms used. For example, HISAT2 and 
TopHat, FM-index-based aligners require a longer time (more than 60 mins) to build a 
genome index. In contrast, hash-table-based aligners, like Subread and Novoalign, can 
build genome index in less time (< 15mins).

Most of these four aligners were designed with a trade-off between the indexing and 
alignment runtime (Table 3). For example, Subread and Novoalign were able to build an 
index of the genome within a short duration. Still, they required plenty of alignment time 
at the default setting, with 47.30 mins and 244.8 mins recorded, respectively. Conversely, 

Table 3
Indexing and alignment runtime of the aligners

Aligner Algorithm Indexing runtime (mins) Alignment runtime (mins)
HISAT2 FM-index based 61.13 12.02
TopHat 78.39 602.19
Subread Hash-table based 13.30 47.3

Novoalign 10.49 244.8



2736 Pertanika J. Sci. & Technol. 30 (4): 2727 - 2745 (2022)

Kristine Sandra Pey Adum and Hasni Arsad

HISAT2 required a short duration to build 
an index but took 12.02 mins of alignment 
time when using the default setting. It was 
approximately five times faster than the 
indexing runtime (Figure 2).

On the other hand, TopHat required 
an extremely long time for indexing and 
aligning compared to other tools. The 
TopHat’s default setting required 602.19 
mins to complete the alignment. However, 
TopHat required the least memory compared 
to the other three tools to compensate for the 
lengthy runtime. TopHat only required 4.0 
Gb RAM, while Novoalign, Subread and 

Figure 2. The measurements of indexing and 
alignment runtime of each aligner on the default 
setting

HISAT2 required 8.0 Gb, 10.0 Gb and 6.7 Gb of RAM, respectively. 
By observing the runtime for the default and optimised parameters settings of each 

aligner, we found that the alignment runtime of each aligner barely depended on the types 
of algorithms but more on the individual settings. Although the runtime differs significantly 
among the hash table-based aligners, the runtime among Subread’s optimised parameters 
and default settings was more consistent than Novoalign. Subread generally required 1 
hour of runtime and even less for the default setting. In contrast to Subread, the default 
setting of Novoalign required more than 2 hours of runtime to obtain a comparable precision 
and recall. In addition, Novoalign had the longest computational time of reads mapping, 
probably due to its predispositions toward other parameters (Donato et al., 2021). 

As for the FM-index-based approach, the alignment runtime of the aligners varied 
vastly. HISAT2 outperformed TopHat in terms of the runtime. The average runtime of 
HISAT2 was only 12 mins and 43 sec, while TopHat needed at least 3.45 hours of runtime. 
In terms of memory consumption, HISAT2 required 6.7 Gb RAM, while TopHat required 
the least memory at only 4.0 Gb RAM. These results were consistent with the previous 
findings by Keel and Snelling (2018), who found that HISAT2 was significantly faster and 
used less memory through simulated data sets. Despite the very low memory consumption, 
TopHat could still achieve a reasonable alignment quality, thus supporting the widespread 
use of TopHat within many of the RNA-seq mapping approaches and as the most cited 
aligner. On the other hand, no significant correlation was observed between the F-measure 
with the runtime and memory requirements. 

HISAT2 performed extremely fast alignment with comparable accuracy to the other 
aligners. In contrast, the alignment runtime for Subread was the second-fastest but achieved 
poor alignment quality. The runtime for Novoalign was acceptable and at an average rate, 
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while the alignment with TopHat was the slowest. The alignment with TopHat was thus 
considered inefficient, especially when working with multiple data sets. 

Error Tolerance 

This section aims to analyse each aligner’s sensitivity in response to a specific number of 
errors allowed in the reads. Goodwin et al. (2016) believed that NGS platforms provide a 
massive amount of data, while each platform is associated with error rates ranging from 
0.1 to 15%. Therefore, a good alignment algorithm used in mapping sequence data must 
be able to compensate for these inevitable raw data errors (Keel & Snelling, 2018). A 
previous study by Sun et al. (2017) found that alignment is a critical step for intermediate 
indel detection. Therefore, each read was measured to determine the number of mismatches 
or indels for this purpose. The highest number of mismatches and indels in a correctly 
aligned read was 10 and 5, respectively, for all the aligners tested, except for Novoalign. 
Unlike other aligners, Novoalign first searches the candidate alignment positions from the 
reference genome using the Needleman-Wunsch algorithm based on the alignment score. 
Due to this alignment-score-based search algorithm, the users cannot define the number 
of allowed mismatches in each alignment, but the users can still set up a threshold of an 
alignment score. The mapping quality scores define the accuracy of alignment, meaning 
that the higher the alignment quality score, the more accurate an alignment is. Thus, the 
alignment score threshold is from 30 to 180 for Novoalign. 

Figure 3 shows the impacts of errors on the alignment quality for each aligner by using 
its default setting. Generally, it was noticed that the precision of the alignments was barely 
affected by the number of errors. As illustrated in Figures 3(c) and 3(d), the precision values 
of HISAT2 and TopHat showed a flat line. Sun et al. (2017) believed that most variant 
calling programs would miss the intermediate indels from these aligners, except when the 
soft-clipped reads were sufficiently triggered. Furthermore, the study also discovered that 
the TopHat family RNA-seq mapping programs do not align the reads with intermediate 
indels, or the reads were minimally aligned when HISAT2 was used. 

In contrast with precision readings, the recall values obtained showed that more significant 
changes were recorded with increasing errors. Interestingly, we also determined a drastic drop 
in Subread once the mismatches and indels were set at 5 and 10, respectively, as shown in 
Figure 3(b). It was possibly due to the general design of the alignment algorithm itself, as the 
algorithm is robust enough to detect a small number of single-based mismatches, depending 
on the parameter setting. As a result, most of the algorithm’s recall stayed relatively constant 
while still being within the tolerated range of mismatches but dropped significantly as soon 
as this range was exceeded, as shown in the Subread aligner. In addition, the other aligners 
could tolerate up to five mismatches. For Novoalign, as illustrated in Figure 3(a), the recall 
rate gradually decreased as the alignment score decreased. 
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Figure 3. The impacts of errors on the alignment quality for each of the aligners tested: (a) Novoalign; (b) 
Subread; (c) HISAT2; and (d) TopHat. The dependencies of alignment precision (blue lines), recall (red lines) 
and F-measure (green lines) on each of the alignment algorithms based on the default setting were analysed 
in this study.
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Some aligners tolerate indels as these tools are designed to handle gapped alignments. 
As a result, most algorithms’ recall values were considerably impaired by indels’ presence. 
A remarkable tolerance to indels was shown by HISAT2 and TopHat, with a near-constant 
performance observed, even as the indel counts increase. Even though the baseline recall 
of Novoalign was already rather low at 0.6, the other aligners were shown to tolerate 
indels, with significantly higher values of baseline recall recorded. Subread was found to 
be the most vulnerable to indels among these aligners. The main limitation in the gapped 
alignment-based indels detection method is the need for indels that are entirely contained 
within a read and correctly detected during the initial read mapping step (Donato et 
al., 2021; Li et al., 2009). In the case of small indel detection, the supporting reads are 
frequently presented with too few bases that can match with the reference genome, or the 
reads may contain only one end that can map correctly to the reference genome. However, 
the remaining bases following the indel may be trimmed or soft-clipped by the NGS aligner 
(Donato et al., 2021; Landman et al., 2014). 
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As our study was using RNA-Seq data of HeLa cells, we needed to have the tools 
that could tolerate indels and mismatches. It was because, according to Bottomley et al. 
(1969), Liu et al. (2019), and Rutledge (2014), HeLa contained a huge number of genomic 
variants. Furthermore, it was reported that the variation in the karyotype of HeLa had been 
stated inconsistently and proven that such changes had affected the phenotype of the cells 
(Fasterius & Al-Khalili Szigyarto, 2018). Indeed, Hela has been purposely established to be 
genetically unstable (Fasterius & Al-Khalili Szigyarto, 2018; Yoo et al., 2017). Therefore, 
by allowing the mismatches in the alignment, we still managed to handle these biological 
characteristics of Hela whilst obtaining the maximum alignment precision.

CONCLUSION

In this study, we concluded that the alignment procedure’s accuracy depended on two 
aspects. The first was the quality of the reads, and the second was the parameter settings. 
A high-quality read is free from any adapter contamination and low-quality bases. The 
alignments of the high-quality reads show significant increment in all aligners tested in 
this study except for TopHat data 1. It indicated that the TopHat alignment quality was 
not affected by the quality of the reads. While for the parameter settings, the number of 
mismatches and indels allowed displayed a great impact on alignment accuracy. 

Apart from the accuracy, the notable difference between these aligners was the runtime.  
After comparing each aligner’s runtime and alignment qualities, we can summarise that the 
fast runtime did not guarantee a high alignment quality. So, the choice of the aligner depends 
on the target of the researchers. Nevertheless, our study found that HISAT2 performed 
extremely fast alignment with comparable accuracy to the other aligners. 

In conclusion, the default setting of Novoalign was the most reliable setting that suited 
our data sample. In addition, our study provides a systematic comparison between the 
commonly used alignment programmes in RNA-Seq studies. Furthermore, the approach 
from this study can be applied to future research that deals with human cancer cell datasets 
generated from different platforms. Moreover, this study can also be utilised as guidance 
in selecting the best alignment tool for various sources of samples.

In this study, we focused mainly on comparing the aligners from two specific angles, 
using real data of HeLa cells reads of varying qualities. Thus, there were a few limitations 
in this study. Firstly, rather than the data from real cases of cancer, we only used a sample 
from a cell line. Secondly, our sequencing data sets were only sequenced from the Illumina 
sequencer. Third, we were only using pair-end data in this study without using the single-
pair end to compare the results. Lastly, while there are many available alignment tools, 
we only compared a small number of alignment tools in this study. Although this article 
has these limitations, our study applies to the pair-end whole genome real sequencing data 
and data generated from other sources. The main challenge we faced was to set up a fair 
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comparison of the chosen parameters and evaluation metrics among these different aligners. 
Regardless of this challenge, we managed to achieve the objectives of this study, and we 
expect that this study can guide other researchers in choosing the optimised settings of 
the aligners of interest.
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SUPPLEMENTARY DATA
Table 1A
Percentage of reads uniquely aligned in two data sets by four aligners under default setting

Aligners Metrics
Dataset 1 Dataset 2

Untrimmed data Trimmed data Untrimmed data Trimmed data
Novoalign Precision 0.8678 0.8964 0.8262 0.8618

Recall 0.98886 0.9238 0.9526 0.8693
F 0.9242 0.9099 0.8849 0.8655
FDR 0.1323 0.1036 0.1738 0.1382

HISAT2 Precision 0.7554 0.7947 0.7851 0.8018
Recall 0.7941 0.9484 0.9816 0.9477
F 0.7743 0.8648 0.8724 0.8687
FDR 0.2446 0.2053 0.2149 0.1982

Tophat Precision 0.7087 0.6286 0.6348 0.6291
Recall 0.8620 0.8898 0.9451 0.9786
F 0.7779 0.7367 0.7608 0.7659
FDR 0.2913 0.314 0.3652 0.3709

Subread Precision 0.6028 0.6806 0.5794 0.6330
Recall 0.8689 0.8516 0.8648 0.9401
F 0.7118 0.7566 0.6940 0.7566
FDR 0.3972 0.3194 0.4205 0.3670

Table 2A
The alignment summaries of default and four sets of parameters settings by using Novoalign, HISAT2, TopHat 
and Subread aligners

Tools Sample Total reads Precision Recall F FDR Runtime Memory

N
ov

oa
lig

n

NOVOA default 56252385 0.89636 0.92376 0.90985 0.10364 138m 39s 8.0 Gb
NOVOA tweak1 68796275 0.74681 0.98410 0.84919 0.25319 270m 04s 8.0 Gb
NOVOA tweak2 64061997 0.72463 0.79419 0.75782 0.27537 57m 59s 8.0 Gb
NOVOA tweak3 68769479 0.74690 0.98297 0.84883 0.25310 272m 22s 8.0 Gb
NOVOA tweak4 68497483 0.74798 0.97529 0.84664 0.25202 244m 08s 8.0 Gb

H
IS

AT
2

HISAT2 default 56525790 0.79269 0.94209 0.86095 0.20731 11m 08s 6.7 Gb
HISAT2 tweak1 57616454 0.76800 0.97996 0.86113 0.23200 14m 38s 6.7 Gb
HISAT2 tweak2 56049365 0.80185 0.94773 0.86870 0.19816 11m 44s 6.7 Gb
HISAT2 tweak3 57530440 0.76961 0.97998 0.86215 0.23039 13m 23s 6.7 Gb
HISAT2 tweak4 56519361 0.79474 0.94844 0.86481 0.20526 12m 02s 6.7 Gb

To
pH

at

TOPHAT default 59413014 0.70199 0.91513 0.79452 0.29801 600m 30s 4.0 Gb
TOPHAT tweak1 70379105 0.62912 0.97838 0.76580 0.37089 274m 14s 4.0 Gb
TOPHAT tweak2 67973298 0.63477 0.94999 0.76103 0.36523 207m 53s 4.0 Gb
TOPHAT tweak3 70390636 0.62911 0.97864 0.76588 0.37089 284m 12s 4.0 Gb
TOPHAT tweak4 62577636 0.62861 0.88975 0.73673 0.37139 602m 19s 4.0 Gb

Su
br

ea
d

Subread default 48916204 0.65845 0.95194 0.77845 0.34155 45m 45s 10.0 Gb
Subread tweak1 48916204 0.64358 0.97506 0.77538 0.35642 49m 30s 10.0 Gb
Subread tweak2 48916204 0.61826 0.97060 0.75537 0.38174 69m 51s 10 .0Gb
Subread tweak3 48916204 0.63300 0.94011 0.75658 0.36700 68m 46s 10.0 Gb
Subread tweak4 48916204 0.68062 0.85162 0.75658 0.31938 47m 30s 10 .0 Gb
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APPENDICES 

Aligners Command and Parameters Setting

Appendix A
Alignment with HISAT2
Read alignment was performed using command as follows:
hisat2 --threads 16 --time --reorder --known-splicesite-infile <output index
path>/<genome name>.splicesites.txt --novel-splicesite-outfile splicesites.novel.txt -
-novel-splicesite-infile splicesites.novel.txt -f -x <index name> -1 <read file 1> -2
<read file 2> -S <output sam file>
-N <NUM_MISMATCH> 
-L <SEED_LENGTH> 
-i S,1,<SEED_INTERVAL> 
-D <SEED_EXTENSION> 
-R <RE_SEED> 
--pen-noncansplice<PENALITY_NONCANONICAL> 
--mp <MAX_MISMATCH_PENALITY>,<MIN_MISMATCH_PENALITY> 
--sp <MAX_SOFTCLIPPING_PENALITY>,<MIN_SOFTCLIPPING_PENALITY>

Sample -N <NUM_MISMATCH> -L <SEED_LENGTH> -i S,1,<SEED_INTERVAL>
-D <SEED_EXTENSION> -R <RE_SEED> --pen noncansplice<PENALITY_

NONCANONICAL> --mp <MAX_MISMATCH_PENALITY>,<MIN_
MISMATCH_PENALITY>

--sp<MAX_SOFTCLIPPING_PENALITY>, <MIN_SOFTCLIPPING_
PENALITY>

default 0-22-1.15-15-2-3-6,2-2,1
Tweak 1 0-20-0.5-25-5-20-1,0-3,0
Tweak 2 1-20-0.5-25-5-20-3,0-2,1
Tweak 3 0-22-1.5-15-2-20-1,0-2,1
Tweak 4 OFF-OFF- OFF-OFF- OFF-OFF- OFF-OFF

Appendix B

Alignment with Novoalign
Read alignment was performed using command as follows:
novoalign -d <output index file> -f <read file 1> <read file 2> -F FA -o SAM -r All 10
-t <A_SCORE>,<B_SCORE> -h -1 -1 -i PE <FRAGMENT_LENGTH_MEAN>,<FRAGMENT_
LENGTH_SD> -v 0
70 70 “[>]([^:]*)” > <output sam file> 2>alignment.log

Sample REPEAT_FILTER - -t <A_SCORE>,<B_SCORE>
default Default-Default-default
tweak 1 OFF-10-4.5
tweak 2 OFF-20-2
tweak 3 OFF-12-4.5
tweak 4 default-20-4.5
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Appendix C
Alignment with Subread
Read alignment was performed using command as follows:
subjunc -i <index> -r <read file 1> -R <read file 2> -T 16 
--SAMoutput -o <output alignment>  --allJunctions 

-d <MIN_FRAGMENT_LENGTH> 
-I <INDEL> 
-m <NUM_HIT_SUBREADS> 
-M <MISMATCHES>
 -n <NUM_EXTRACTED_SUBREADS> 
-p <NUM_HIT_PAIR_SUBREADS> 
--complexIndels

Sample -d <MIN_FRAGMENT_LENGTH> -I <INDEL> -m <NUM_HIT_SUBREADS> -M
<MISMATCHES> -n <NUM_EXTRACTED_SUBREADS> -p <NUM_HIT_PAIR_

SUBREADS> --complexIndels
default 50-5-3-3-10-1-off
tweak 1 0-10-1-20-15-1-off
tweak 2 0-10-1-20-5-1-on
tweak 3 0-10-3-3-10-3-on
tweak 4 0-5-3-3-10-1-off

Appendix D

Alignment with TopHat
Read alignment was performed using command as follows:
tophat2 --output-dir <output path> <index> <reads file 1> <reads file 2> --num-threads 16 --GTF <gtf 
file> --mate-inner-dist <INNER_MATE_MEAN> 

 --mate-std-dev <INNER_MATE_SD> 
 --b2-very-sensitive 
 --read-mismatches <NUM_MISMATCHES> 
 --read-gap-length <NUM_GAP_LENGTH> 
 --read-edit-dist <NUM_EDIT_DIST>
 --read-realign-edit-dist <NUM_REALIGN_EDIT_DIST> 
 --max-insertion-length <NUM_INSERTION_LENGTH> 
 --max-deletion-length <NUM_DELETION_LENGTH> 
 --max-multihits <NUM_MULTIHITS>

Sample B2_VERY_SENSITIVE - NUM_MISMATCHES - NUM_GAP_LENGTH -NUM_
EDIT_DIST - NUM_REALIGN_EDIT_DIST - NUM_INSERTION_LENGTH - 

NUM_DELETION_LENGTH - NUM_MULTIHITS
default On-2-2-2-3-3-3-20
tweak 1 On-18-25-25-26-24-24-100
tweak 2 On-7-6-7-8-4-4-100
tweak 3 On-25-25-25-26-24-24-100
tweak 4 OFF-OFF- OFF-OFF- OFF-OFF- OFF-OFF




