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ABSTRACT
This research applies and modifies K-means clustering analysis from Data Mining to 
solving the location problem. First, a case study of Thailand’s convenience store franchise 
in locating distribution centers (DCs) is conducted. Then, the final centroids are served 
at suggested DC locations. Besides the typical distance, Euclidean, used in K-means, 
Manhattan, and Chebyshev, is also experimented with. Moreover, due to the stores’ different 
demands, a modification of the centroid calculation is needed to reflect the center-of-gravity 
effects. For the proposed centroid calculation, the above three distance metrics incorporating 
the demands as weights give rise to another three approaches and are thus named Weighted 
Euclidean, Weighted Manhattan, and Weighted Chebyshev, respectively. Besides the 
optimal locations, the effectiveness of these six clustering approaches is measured by the 
expected total distribution cost from DCs to their served stores and the expected Davies–
Bouldin index (DBI). Concurrently, the efficiency is measured by the expected number of 
iterations to the final clusters. All these six clustering approaches are then implemented 
in the case study of locating eight DCs to distribute to 260 convenience stores in Eastern 
Thailand. The results show that though all approaches yield locations in close proximity, the 
Weighted Chebyshev is the most effective one having both the lowest expected distribution 
cost and lowest expected DBI. In contrast, Euclidean is the most efficient approach, with 

the lowest expected number of iterations 
to the final clusters, followed by Weighted 
Chebyshev. Therefore, the DC locations 
from Weighted Chebyshev could, ultimately, 
be chosen for this Thailand’s convenience 
store franchise. 

Keywords: Centroid calculation, clustering, Davies–
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INTRODUCTION

In Thailand, convenience stores are available on almost every corner (Wang, 2018). New 
franchises and new stores are emerging regularly, especially in tourist and populated areas. 
The Eastern part of Thailand is one of the well-known tourist attractions among local and 
foreign tourists, thanks partly to its terrific location next to the Gulf of Thailand (Ministry 
of Foreign Affairs, 2017; Surawattananon et al., 2021). Among those popular destinations 
are Pattaya, Koh Samet, and Koh Kut. Therefore, it is natural for those convenience store 
franchises to open more branches. Logistics management plays a crucial role in both short-
run and long-run plans for franchises to stay competitive. One long-run logistical decision 
is determining where to locate distribution centers (DCs) (Langley et al., 2020).

This study investigates a case of locating DCs to distribute products to 260 franchised 
convenience stores in Eastern Thailand. Since Eastern Thailand is comprised of seven 
provinces: Chachoengsao, Chonburi, Rayong, Chanthaburi, Trat, Prachinburi, and Sa-
Kaeo, plus one special governed city, Pattaya, the convenience store franchise of interest 
chooses to have eight DCs to be located. The objective is to minimize transportation or 
distribution costs from and to those eight DCs. Figure 1 shows the map of Thailand and 
the 260 locations of the convenience stores for this study respectively. 

Figure 1. Thailand map and the convenience store locations in Eastern Thailand

There are numerous ways to solve the location problem, for instance, optimization 
models, the p-center/p-median algorithm, and the grid technique. However, in this research, 
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as the first contribution of this work, K-means clustering analysis from Data Mining is 
adapted to find the appropriate locations. The centroid of each final cluster serves as each 
DC’s location. Also, as the second contribution, the typical distance metric, i.e., Euclidean, 
used in the K-means clustering, is replaced with other distance metrics, namely, Manhattan 
and Chebyshev. These three-distance metrics constitute the first three clustering approaches 
to the experiment. 

As for the third contribution of this work, due to the nature of the location problem 
application, the clustering algorithm needs to be modified to fit this problem better. 
Accordingly, the centroid calculation during each clustering iteration is adjusted to 
incorporate the center of gravity’s impact. That is done by taking the unequal demands 
required at the served stores as different weights. As a result, three additional clustering 
approaches with demand-weighted centroid calculation are proposed and named Weighted 
Euclidean, Weighted Manhattan, and Weighted Chebyshev, respectively. 

Altogether, all these six clustering approaches experiment with, and their results are 
compared, considered both effectiveness and efficiency. The effectiveness is measured 
by the expected total distribution cost and the expected Davies–Bouldin index (DBI). In 
contrast, the efficiency is measured by the expected number of iterations to the final clusters.

LITERATURE REVIEW

The facility location problem, or the location problem, refers to how and where to place 
facilities in a logistics network to minimize total transportation costs from and to those 
facilities. Four underlying assumptions of the problem are the following: customers 
assumed to already be at points or on routes, facilities to be located, a space in which 
customers and facilities are located, and a standard metric that specifies distances or times 
between customers and facilities. Facilities in the location problem are small relative to the 
space in which they are located, and interactions between facilities may occur (Farahani 
& Hekmatfar, 2009). 

Facility location decisions are critical to strategic planning for private sectors such as 
industrial estates, banks, retail facilities, distribution centers (DCs), and public sectors such 
as hospitals, post offices, and government headquarters. Determining facility locations is 
one of the broad and long-term decisions influencing numerous operational and logistical 
decisions. Locating or relocating facilities usually involves huge investments, as it may 
need to pay enormously for land acquisition and facility construction. Therefore, decision-
makers must consider not only every current perspective of the facility but also unforeseen 
future events that may affect the facility, such as demographics, climate change, and market 
trend evolution during its lifetime (Farahani & Hekmatfar, 2009).
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The location problem was first introduced in 1909 when Alfred Weber considered 
how to place a single warehouse in such a way as to minimize the total distance between 
the warehouse and several customers. After that, the location problem was advanced by 
several other applications. For example, Hakimi (1964) wanted to locate switching centers 
in a communication network, while Farahani and Hekmatfar (2009) tried to locate police 
posts along a highway system. 

Drezner et al. (2003) studied the best location of a central warehouse to determine the 
number and the locations of local warehouses. They built simple models that considered 
inventory and service costs and compared them with those from the traditional model, 
minimizing the total transportation cost. The models were demonstrated on an example 
problem with up to 10,000 demand points. Excel Solver solves each model in less than 
half a second. However, it turned out that the location solutions for all the models were 
quite different from one another. The conclusion of this research showed that different 
models led to different locations. Therefore, the decision-maker needed to decide which 
model was the most appropriate for the situation. In addition, numerical results showed 
that ignoring inventory costs made the models less accurate.

Yang et al. (2007) investigated the location problem regarding selecting distribution 
centers from a potential set so that the total relevant cost was minimized under a fuzzy 
environment. More specifically, the setup cost, turnover cost, and demands of the customers 
were assumed fuzzy variables. Consequently, a probabilistic-constrained programming 
model for the problem was designed, and some properties of the model were examined. 
Tabu search, genetic and fuzzy simulation algorithms were integrated to search for the 
approximate best solution while satisfying the transportation and assignment constraints 
of the DCs. The effectiveness and robustness of the hybrid algorithm were tested through a 
numerical example. As a result, fuzzy chance-constrained programming was constructed as 
a decision model for the problem. For the convenience of model solving, some mathematical 
properties of the model were also obtained.

Dantrakul et al. (2014) applied greedy, p-median, and p-center algorithms to the facility 
location problem to minimize the sum of the setup and transportation costs. Those two 
costs were considered a function of the number of opened facilities. The network in this 
work represented the road transportation system of six provinces in Northern Thailand. The 
facility location model with bounds for the number of the opened facility was constructed 
in this work. The performances of the constructed methods were tested using 100 random 
data sets. Simulation results showed that the method developed from the greedy algorithm 
was suitable for solving the problem when the setup cost was higher than the transportation 
cost. In contrast, the p-median-based methods were more efficient for the opposite case 
when the setup cost was lower.
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Sharma and Jalal (2017) developed a new clustering and mixed-integer linear 
programming-based hybrid approach for solving the facility location problem. The main 
objective was to utilize the facility by maximizing the number of possible customers to 
maximize profit. The numerical results showed that the profit started to decrease as the 
number of clusters increased. If the profit kept decreasing, it indicated that the solution 
procedure would stop. 

Chen (2019) studied the location problem of DCs based on the Baumer Walvar model 
using Jiaji Logistics as a case study. This research aimed to optimize the total DC costs, 
consisting of four cost components, namely, the transportation cost from the factories to 
DCs, and from DCs to the customers, the DCs’ fixed costs, and the DCs’change fee. The 
whole cargo of Jiaji logistics was transported from five factories (Chongqing, Chengdu, 
Xi’an, Zhengzhou, and Lanzhou) to four customers (Guangzhou, Shanghai, Hangzhou, 
and Tianjin). The company wanted to select the optimal five DCs out of the predetermined 
eight DCs (Wuhan, Nanchang, Guiyang, Changsha, Shijiazhuang, Beijing, and Nanjing). 
The economies of scale were also taken into account. The results showed that the minimum 
cost was 7,301,620 yuan, and the optimal locations of DCs were Nanchang, Nanjing, 
Guiyang, Changsha, and Shijiazhuang.

As for previous work on the K-means clustering, algorithms, distance metrics, and 
performance measurement are of our interest and are presented as follows. 

Singh et al. (2013) compared the K-means clustering using three different distance 
metrics: Euclidean, Manhattan, and Minkowski. All the experiments were performed on 
dummy data. The result showed that Euclidean distance gave the best performance while 
Manhattan distance yielded the worst. 

Sinwar and Kaushik (2014) studied two popular distance metrics, Euclidean and 
Manhattan, on the simple K-means clustering. They used two real and one synthetic data 
set, namely, Iris, Diabetes, and BIRCH. The development tool for clustering data items 
was WEKA, and the numbers of clusters used in this research were 2, 3, 4, 5, 6, and 7. The 
results showed that the Euclidean method was more efficient than the Manhattan method 
in terms of the number of iterations performed during centroid calculation.

Gultom et al. (2018) analyzed and compared object clustering from real big data using                
K-means and K-medoid methods. In both methods, combination testing used three distance 
metrics: Euclidean, Canberra, and Chebyshev. The sample dataset contained six variables 
collected from three college classes having 147,679 students at Medan State University. 
Performance measurement was the Davies-Bouldin index. The results showed that the 
Chebyshev distance in K-means yielded better results than that in K-medoid in terms of 
accuracy and quality. On the other hand, the results suggested not to use the Canberra 
distance in K-means nor K-medoid because the Davies-Bouldin index was undefined. 
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In the next section, the K-means clustering using three different distance metrics and 
the proposed demand-weighted approaches is explained. 

 
THE TYPICAL AND PROPOSED CLUSTERING APPROACHES

This section describes the typical K-means clustering along with the proposed modified 
one in detail. K-means clustering is the most commonly used clustering algorithm and one 
of the most efficient partitional clustering algorithms. The K-means clustering algorithm’s 
general steps are explained step by step as follows (Gultom et al., 2018; Aggarwal & 
Reddy, 2014).

Step 1: Determine the number of clusters formed in the dataset, K. 
Step 2: Randomly choose K representative points as initial “centroids” of the K clusters.
Step 3: For each point, calculate the distance to each centroid and identify the closest 

 centroid. 

Then, assign that point to the cluster.

Step 4: Once all the points are assigned to clusters, update the centroids of all clusters.
Step 5: Repeat step 3 to step 4 until all the points in each cluster do not change. The 

 algorithm stops. The last set of centroids is used as the desired locations.

However, in our application of locating the DCs for a convenience store franchise 
where the points to be clustered represent the convenience stores and the centroids represent 
the locations of the DCs serving the stores in the same clusters, it is natural to also take 
into consideration the different demands at the served stores. Therefore, in our case, the 
demands are used as weights in computing the updated centroids after the clusters are 
formed at each iteration. 

In the following, the modified K-means clustering algorithm that incorporates the stores’ 
different demands is applied to and explained in our application context. Simultaneously, 
three distance metrics, namely, Euclidean, Manhattan, and Chebyshev, are experimented 
with in the algorithm as well. Finally, together with the typical and demand-weighted 
centroid calculations, six combinations are tried to compete for the best algorithm. The 
notations used in this article are defined as follows.

K = the number of clusters/centroids/DCs; in our case here, K = 8.
N  = the total number of convenience stores. Here, N = 260.
Ti  = the number of convenience stores in cluster i; i = 1, 2,…, K. 
Xi  = (xi, yi) refers to the location of centroid i representing DC i, where xi and yi are 
the latitude and longitude of centroid i, i = 1, 2,…, K, respectively.
Sj = (rj, sj) refers to the location of convenience store j, where rj and sj are the latitude 
and longitude of store j, j = 1,2,…, N, respectively.
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Si
j = (ri

j, si
j) refers to the location of store j that is assigned to cluster i.

wj = the demand at convenience store j 

Then, the K-means using each of these three-distance metrics, Euclidean, Manhattan, 
and Chebyshev, and the modified demand-weighted K-means using each of the above 
metrics proceed in detail as follows.

Step 1: Random eight initial centroids Xi; i = 1, 2,…, 8, representing eight initial DCs. 
Step 2: For a fixed convenience store Sj, calculate the distance between the store and each

centroid 
Xi uses one of the three metrics, i.e., Euclidean, Manhattan, and Chebyshev, according 

to Equations 1, 2, and 3 (Singh et al., 2013).

DEuclidean(Sj, Xi) = ( ) ( )2 2

j i j ir x s y− + − 	 i = 1, 2,…, 8     				   (1)

or DManhattan(Sj, Xi) = |rj-xi|+|sj-yi|         	i = 1, 2,…, 8      			   (2)

or DChebyshev(Sj, Xi) = max(|rj-xi|,|sj-yi|)  i = 1, 2,…, 8      			   (3)

Then, select the centroid i that minimizes the distance from store j. Assign this store 
Sj to cluster Xi accordingly. Now, Sj becomes Si

j; that is, store j is grouped in cluster i; in 
other words, served by centroid or DC i. Repeat this step for all other stores. 

Step 3: Calculate the new location of each centroid i, using the typical average of all store 
locations j in cluster i, as Equation 4.
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On the other hand, the effect of each store’s different demand results in the proposed 
demand-weighted average for computing the new location of each centroid i as Equation 5.
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    for i =1, 2,…, 8       	 			   (5)

Step 4: Repeat Steps 2 to 3 until all convenience stores in the final clustering are the same 
 as in the immediate previous clustering.

Step 5: The total distribution cost from DCs to their served stores is calculated, and the 
 Davies–Bouldin index (DBI) is computed to measure the effectiveness. As for the 
 efficiency measurement, the number of iterations to the final clusters is determined. 

 The details of these measures are given in the next section.
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Step 6:	 Repeat Steps 1 through 5 for 10,000 instances to obtain the expected distribution 
cost, the expected DBI, and the expected number of iterations to the final clusters, 
accordingly.

Now that all the algorithm steps have been stated, the effectiveness and efficiency 
of the six clustering approaches will be measured and compared. These issues will be 
explained in more detail next.

THE EFFECTIVENESS AND EFFICIENCY MEASUREMENT 

The modified demand-weighted K-means algorithm described above employs three 
different distance metrics and two centroid location calculations. As a result, six different 
approaches are carried out for each problem instance. The first three approaches are named 
after the three-distance metrics: Euclidean, Manhattan, and Chebyshev. The other three 
approaches incorporating the demands as the weights in updating the centroid location 
calculation are Weighted Euclidean, Weighted Manhattan, and Weighted Chebyshev. After 
the experiments are performed, these six approaches are compared by their effectiveness 
and efficiency. In terms of effectiveness, the expected total distribution cost and the 
expected Davies–Bouldin index (DBI) are measured. In contrast, in terms of efficiency, 
the expected number of iterations to the final clusters is determined for each of the six 
clustering approaches.

Measurement of Effectiveness: Distribution Cost 

For our application, we are most concerned with the overall distribution cost of locating 
the DCs. Typically, the distribution cost depends on the transportation rate, the shipment 
weight, and the traveling distance. Let us assume that the transportation rate is $1 per 
kilometer per one shipment weight unit. Assume further that the shipment load is the 
demand at each store Sj served by DC Xi, denoted by lij. Finally, for the traveling distance 
between the store and its relevant DC, the Euclidean metric is used in the calculation. 
Therefore, the distribution cost from DC Xi to store Sj is as in Equation 6.

Distribution cost = $1× lij × DEuclidean(Sj, Xi)                               			   (6)

Measurement of Effectiveness: Davies–Bouldin Index (DBI) 

The Davies-Bouldin Index (DBI), introduced by David L. Davies and Donald W. Bouldin 
in 1979, is a metric for evaluating clustering algorithms. It is an internal evaluation scheme 
in which the evaluation of how well the clustering is performed is based on variables 
and features that are intrinsic to the dataset. The process of calculating DBI is as follows 
(Davies & Bouldin, 1979): 
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Step 1: For each cluster i, calculate the average distance between all stores Sj in the cluster 
and DC Xi, denoted by Ai, by Equation 7. 

( ) ( )2 2

1 1

1 1i i

j j

T T
i i

i i i i
j ji i

i
jA X r x s y

T T
S

= =

= − = − + −∑ ∑ ; i =1,2,…,8.       	 (7)

Step 2: Calculate the distance between DCs Xh and Xi, denoted by Mhi, according to Equation 8.

 ( ) ( )2 2
hi h i h i h iM X X x x y y= − = − + −                     	 (8)

Step 3: For each pair of DCs Xh and Xi, can calculate using Equation 9
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Then, identify using Equation 10
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Step 4: Finally, calculate DBI using the following Equation 11.

1

1 K

i
i

DBI D
K =

= ∑                                                                            		  (11)

Measurement of Efficiency: Number of Iterations to the Final Clusters 

To measure efficiency, for each instance, the number of iterations to the final clusters, 
where all the stores served by the DCs remain unchanged from the previous iteration, is 
counted. Once the experiment is repeated for 10,000 instances, an average is obtained for 
each of the six clustering approaches. 

THE EXPERIMENTS, THE RESULTS, AND THE DISCUSSION

This section presents the experiments, their results, and the discussion. First, all the 
previously mentioned six different clustering approaches, resulting from a combination 
of three different distance metrics and two calculation methods for centroid locations, are 
experimented with for our location problem. More precisely, Euclidean, Manhattan, and 
Chebyshev, together with the other three demand-weighted approaches, are Weighted 
Euclidean, Weighted Manhattan, and Weighted Chebyshev, are applied to find the optimal 
eight DC locations for distributing goods to 260 convenience stores in Eastern Thailand. 

The experiments conducted in this study use a total of 10,000 different instances. For 
comparison purposes, each instance randomizes new initial centroids, and these same initial 
centroids are then used in all six approaches. After the 10,000 instances are carried out for 
each approach, the effectiveness and efficiency measurement expectations are calculated 
over these 10,000 instances. 



Pertanika J. Sci. & Technol. 31 (2): 655 - 670 (2023)664

Chartchai Leenawong and Thanrada Chaikajonwat

The optimal solutions obtained from these six clustering approaches are first tabulated, 
followed by their efficiency and effectiveness results reported in tabular and graphical 
presentation. In addition, a discussion of all the results is provided. 

Also, note that all the experiments in this research are run on Intel® Core™ i5-1035G4 
with 8 GB of DDR4 memory. The programs are coded in R-programming on RStudio 
version 1.3.1093.  

Optimal Solution Results: The Locations of Eight Centroids or DCs

All eight optimal centroids or DC locations are obtained after implementing all six 
clustering approaches (Table 1). They all yield the optimal locations nearby, which are not 
easy to differentiate. Therefore, measurement of the effectiveness and efficiency of the six 
clustering approaches is needed for comparison purposes.

Table 1	
Optimal eight centroids from six different clustering approaches

Clustering Approach Centroid 1 Centroid 2 Centroid 3 Centroid 4

Euclidean (13.358,100.988) (13.017,101.132) (13.867,101.004) (12.700,101.341)

Weighted Euclidean (13.365,100.989) (13.018, 101.135) (13.876,101.009) (12.697,101.337)

Manhattan (12.380,101.933) (12.794,101.164) (13.797,101.208) (13.152,101.045)

Weighted Manhattan (12.487,101.842) (12.786,101.171) (13.799,101.208) (13.156,101.042)

Chebyshev (13.357,100.991) (13.024,101.126) (13.867,101.004) (12.699,101.347)

Weighted Chebyshev (13.355,100.990) (13.024,101.130) (13.876,101.009) (12.697,101.337)

Clustering Approach Centroid 5 Centroid 6 Centroid 7 Centroid 8

Euclidean (12.879,100.912) (13.624,101.131) (11.972,102.312) (13.131,100.950)

Weighted Euclidean (12.875,100.912) (13.642,101.151) (11.972,102.312) (13.129,100.949)

Manhattan (13.030,101.060) (13.507,101.108) (12.692,100.929) (12.906,100.928)

Weighted Manhattan (13.019,101.068) (13.604,101.075) (12.691,100.931) (12.906,100.930)

Chebyshev (12.876,100.916) (13.625,101.126) (11.972,102.312) (13.131,100.947)

Weighted Chebyshev (12.875,100.912) (13.631,101.132) (11.972,102.312) (13.130,100.946)

Effectiveness Results: The Expected Distribution Cost

For the effectiveness measurement, the first indicator, the distribution cost from each 
approach, is calculated (Equation 6) in the previous section and then reported and visualized 
(Figure 2). The expectation is averaged over 10,000 instances for each clustering approach. 

Weighted Chebyshev and Chebyshev produce the first two lowest expected distribution 
costs of $1,559.66 and $1,564.61, respectively. On the contrary, Weighted Manhattan and 
Manhattan generate the worst two expected distribution costs of $6,805.71 and $6,650.62, 
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respectively. Note that the expected distribution costs of these worst two are also far from 
those of the remaining approaches. 

$1,559.66 $1,564.61 $1,569.07 $1,581.26 

$6,650.62 $6,805.71 

$0.00

$1,000.00

$2,000.00
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$4,000.00

$5,000.00

$6,000.00

$7,000.00

$8,000.00

Weighted
Chebyshev

Chebyshev Weighted
Euclidean

Euclidean Manhattan Weighted
Manhattan

Expected Distribution Cost

Figure 2. Bar chart of the expected distribution costs over 10,000 instances from each different clustering 
approach

Effectiveness Results: The Expected DBI

The other indicator of effectiveness is the expected Davies-Bouldin Index (DBI) from the 
six approaches. They are calculated according to the steps in the previous section and then 
reported and visualized by bar charts in Figure 3.

The results show that Weighted Chebyshev and Chebyshev yield the best two expected 
DBIs of 0.6779 and 0.6793, respectively. In contrast, Manhattan and Weighted Manhattan 
yield the worst two DBIs of 2.1905 and 2.0939, respectively. Similar to the above 
effectiveness results by the expected distribution costs, the two DBIs of these two worst 
approaches are far away from those of the remaining approaches even though the worst 
here, Manhattan, and the second worst, Weighted Manhattan, are interchanged from before.
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Figure 3. Bar chart of the expected DBI over 10,000 instances from each different clustering approach

Efficiency Results: The Expected Number of Iterations to the Final Clusters
For the efficiency measurement of all six approaches, the expected numbers of iterations 
to the final clusters are determined and compared. They averaged over 10,000 instances 
for each clustering approach. Euclidean yields the lowest expected number of iterations 
at 8.65 (Figure 4). Slightly in the second and third bests are Weighted Chebyshev at 8.88 
and Chebyshev at 8.97, while Weighted Manhattan and Manhattan are the worst two with 
the numbers far away from the rest, that is, 16.01 and 14.84, respectively. Thus, in terms 
of efficiency, it is fair to say Euclidean, Weighted Chebyshev, and Chebyshev are among 
the most efficient approaches. 

Figure 4. Bar chart of the expected number of iterations to the final clusters over 10,000 instances from each 
different clustering approach
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The Discussion of the Results    

The optimal locations obtained from the six clustering approaches are not significantly 
different (Table 1). Thus, the effectiveness and efficiency measurement can be good 
indicators for differentiating the six approaches as reported in the previous subsections. 
Nevertheless, a discussion on the combined results across every approach is needed and 
hence given here. 

Starting with a summary of the effectiveness and efficiency results (Table 2) and 
obviously, Weighted Chebyshev is most effective either judged by the expected distribution 
cost or the expected DBI (Figure 5). Moreover, even though Euclidean is the most efficient 
among the six approaches, the second most efficient, Weighted Chebyshev, is just slightly 
behind. Hence, Weighted Chebyshev could be the clustering approach that best fits our 
case study of locating the DCs to serve their convenience stores with different demands.

Table 2	
Summary of the ef﻿fectiveness and efficiency of all six different clustering approaches

Clustering
Approach

Effectiveness Efficiency
Expected

distribution cost
Expected

DBI
Expected number

of iterations
Weighted Chebyshev $1,559.66 0.6779 8.88
Chebyshev $1,564.61 0.6793 8.97
Weighted Euclidean $1,569.07 0.6891 9.10
Euclidean $1,581.26 0.6906 8.65
Manhattan $6,650.62 2.1905 14.84
Weighted Manhattan $6,805.71 2.0939 16.01

Figure 5. Graphical summary of the effectiveness and efficiency results from all six different clustering approaches
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In this section, the results from the six experiments using the three types and three 
proposed clustering approaches have been reported and discussed combined results. In the 
next section, a conclusion of this work is first given. Then, suggestions for future research 
improvement are provided in the end. 

CONCLUSION AND SUGGESTIONS   

This research examines the location problem with a case study of locating DCs for 
Thailand’s convenience store franchise. The K-means clustering algorithm is adapted so 
that the centroids in the final iteration can be used as the appropriate locations. In addition 
to the Euclidian distance typically used in the K-means clustering, two other distance 
metrics, Manhattan and Chebyshev, are also used. 

Furthermore, due to this particular location problem’s characteristics of having different 
demands at the stores and thus different shipment sizes, the locations should be pulled by 
the center-of-gravity rule. Therefore, modifications to the algorithm are necessary to suit 
this application better. This research proposes one way of doing so by adjusting the centroid 
calculation. As a result, the centroid calculation at each iteration is weighted by the stores’ 
different demands. Besides the first three distance metrics, namely, Euclidean, Manhattan, 
and Chebyshev, another three modified distance metrics are proposed and named Weighted 
Euclidean, Weighted Manhattan, and Weighted Chebyshev, respectively.

After these, six clustering approaches are experimented on in the case study of locating 
eight DCs to service 260 convenience stores in Eastern Thailand. The resulting eight DCs’ 
locations show insignificantly different, and thus the effectiveness and efficiency of these 
approaches play a significant role. In conclusion, the clustering approach best fits this 
certain problem is the proposed demand-weighted Chebyshev.

Apart from this, several possible ideas for future research are suggested. First, the cost 
of constructing a DC at each location is usually different, so it should somehow be reflected 
in the algorithms. The same logic can also be applied to the different transportation rates 
at different locations. 

Also, another way to incorporate the center-of-gravity impact of the stores’ different 
demands is by introducing another attribute into the distance metric Equation. In addition to 
the latitude and longitude attributes, the store’s demand can be treated as another attribute.

Furthermore, other than the three-distance metrics employed here, the distances 
between the convenience stores and their distribution centers may be figured from the real 
world based primarily on existing land routes. 

Finally, as in the traditional K-means clustering, the complexity of the initialization 
steps can be viewed as a trade-off to the number of iterations to the final clusters. It is 
suggested to explore further into this issue to obtain higher algorithm efficiency. 
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