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ABSTRACT

This study aims to propose sixth-order two-derivative improved Runge-Kutta type
methods adopted with exponentially-fitting and trigonometrically-fitting techniques
for integrating a special type of third-order ordinary differential equation in the form
u'"" () = f (&t u(@®), u' (£)). The procedure of constructing order conditions comprised
of a few previous steps, k., for third-order two-derivative Runge-Kutta-type methods, has
been outlined. These methods are developed through the idea of integrating initial value
problems exactly with a numerical solution in the form of linear composition of the set
and e~ for trigonometrically-
fitted with w € R. Parameters of two-derivative Runge-Kutta type method are adapted
into principle frequency of exponential and oscillatory problems to construct the proposed
methods. Error analysis of proposed methods is analysed, and the computational efficiency

functions e“tand e ¥ for exponentially fitted and et

of proposed methods is demonstrated in
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INTRODUCTION

Third-order ordinary differential equations (ODEs) are widely applied in the fields of
engineering and physic, such as thermohaline convection, incompressible Newtonian fluid,
turbulent transport of viscoelastic fluids in penetrable channels, jerk mechanical system
with jerk curves, thin film flow systems and other disciplines (Herrera, 2019; Allogmany
& Ismail, 2020).

This article focuses on developing an improved two-derivative Runge-Kutta type
method with exponentially and trigonometrically fitting techniques based on frequency
evaluation for integrating third-order ODEs with exponential or oscillatory solution
(Equation 1).

u"' () = f(&,u(®),u'(®)

u(ty) = uy, u'(ty) = uy, u'(ty) = ug.

(1

In recent, many research are widely studied by researchers regarding the characteristics
of solutions with frequency-dependent properties and the development of efficient
methods to solve ODEs with exponential and oscillatory solutions to illustrate the model
of application problems such as orbital mechanics, molecular dynamics and electronics,
Van der Pol’s equations, Kepler’s problem in a dynamical system, Bessel equations and
harmonic oscillator (Franco & Randez, 2018; Ahmad et al., 2020).

Simos and Williams (1999) constructed exponentially and trigonometrically fitted
Runge-Kutta methods with order three for solving the Schrodinger equation. The numerical
results proved the efficiency of the proposed methods. Then, Zhang et al. (2013) extended
Simos and Williams’ works by proposing fifth-order trigonometrically fitted two-derivative
Runge-Kutta (TDRK) methods for solving the Schrodinger equation. The stability and
phase properties of the proposed methods are investigated. Some research concentrate on
solving application problems through TDRK methods. Chen et al. (2015) applied newly
developed TDRK method oscillatory properties in integrating oscillatory genetic regulatory
systems, which is important to illustrate the chemical reaction in living cells. Monovasilis
and Kalogiratou (2021) developed amplification-fitted and phase-fitted seventh-order
TDRK methods with frequency-reliant coefficients. Proposed methods are built based on
minimised dispersion and dissipation error, leading to high efficiency in solving Stiefel
and Bettis and harmonic oscillator problems.

Also, some research is on constructing direct methods with exponential and
trigonometric fitting techniques for integrating high-order ODEs with exponential and
trigonometric solutions. D’ Ambrosio et al. (2014) revised the multistage Runge-Kutta-
Nystrom method with the exponentially-fitting technique for integrating special second-
order ODEs with periodic or oscillatory solutions. Demba et al. (2016) applied the Simos
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technique in developing the symplectic explicit Runge-Kutta-Nystrom method with a
trigonometrically-fitting technique. Mei et al. (2017) implemented finite-energy conditions
into the traditional Runge-Kutta-Nystrom method to solve nonlinear wave equations.
Zhai et al. (2018) constructed implicit symplectic and symmetric and exponentially-fitted
Runge-Kutta-Nystrom with linear combinations of exponential functions to solve second-
order oscillatory problems. Two years later, Samat and Ismail (2020) derived a four-stage
explicit sixth-order hybrid method with variable steps based on a trigonometrically-fitting
technique. Demba et al. (2020) developed 5(3) embedded explicit Runge-Kutta-Nystrom
methods with an exponentially-fitting technique to reduce the computational cost in error
estimation for solving special second-order ODEs with a periodic solution. The variable
step-size technique is utilised for the derivation of the methods, and the numerical results
proved the efficiency of the methods by generating more accurate results than other existing
methods.

Some researchers are interested in developing the Improved Runge-Kutta (IRK)
method, which comprises a few previous terms in the formulation to compute the future
value. Several previous terms, such as b-i and k-7 are inserted in the formulation to improve
the method’s accuracy in numerical integration. Rabiei (2011) proposed the improved
Runge-Kutta methods and attained an order of up to five. Later, the stability of the
methods was discussed as well. Rabiei and Ismail (2012) also constructed the improved
Runge-Kutta method for solving first and second ODEs by presenting the new terms k-,
which is the previous step of k,. Another modified, improved Runge-Kutta fifth-order five-
stage technique is proposed by Senthilkumar et al. (2013) to solve a second-order robot
arm problem. The study illustrates the importance of improved methods of visualising
application problems. IRK method is not only used to solve first-order ODEs, but some
researchers utilised IRK method to solve high-order ODEs or other types of differential
equations. Hussain et al. (2017) emphasised solving high-order ODEs, and they developed
a fourth-order improved RK method with a lower number of function evaluations for
solving third-order ODEs directly. The stability polynomial of the proposed method was
studied, and the great numerical performance of the method was proved by yielding a
low maximum absolute error. Tang and Xiao (2020) modified the classical IRK methods
into improved Runge-Kutta-Chebyshev methods based on spatial discretisation of partial
differential equations (PDEs). The width of the stability domain increased significantly,
and the proposed methods are applied to solve several numerical problems, including
advection-diffusion-reaction equations with dominating advection.

However, there is no improved two-derivative Runge-Kutta type method with
exponentially and trigonometrically fitting techniques developed in the current research field
for solving high-order ODEs. Thus, we propose a three-stage sixth-order explicit improved
two-derivative Runge-Kutta type method with exponentially and trigonometrically fitting
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techniques, denoted as EFIRKT6 and TFIRKT6 methods, to solve third-order ODEs
with exponential and oscillatory solutions. Nonoscillatory and oscillatory properties of
third-order ODEs are discussed. We developed order conditions for an improved TDRKT
method. Then, exponentially-fitted and trigonometrically-fitted improved TDRKT
methods are derived by adapting a linear combination of frequency-dependent coefficients
and constructed EFIRKT6 and TFIRKT6 methods. Analysis of error for EFIRKT6 and
TFIRKT6 methods was discussed. The numerical performance of EFIRKT6 and TFIRKT6
methods and other existing numerical methods are shown. This article ends with a
discussion and conclusion.

METHODOLOGY

The explicit three-stage sixth-order two-derivative improved Runge-Kutta type method
with exponentially and trigonometrically fitting techniques are proposed. Here we introduce
the criteria for achieving nonoscillatory and oscillatory properties of third-order ordinary
differential equations.

Oscillatory and Nonoscillatory Standard for Third-Order Linear Differential
Equations

The oscillatory and nonoscillatory standards for third-order ordinary differential equations
are mentioned as follows (Lee et al., 2020):

u"'(@®) + a(®u'(®) + p@Ou) = 0. (2)

Equation 2 consists of an oscillatory solution if both a(t) and (t) are constant, negative
and fulfil the following requirement in Equation 3:

—B(®) — 7= (a®)? > 0. G)

then two linear independent oscillatory solutions exist, and zeroes of any oscillatory
solutions are split in which the oscillatory solution of Equation 2 is a linear combination
of them (Lazer, 1966). The solution of Equation 2 is oscillatory iff it contains an infinite
number of zeroes in (0, +o0) and nonoscillatory iff it contains a finite number of zeroes in
(0, +o0). We focus on B(t) = 0 as follow:

1.u"'(t) = a(®)u'(t), a(t) > 0,the solution of characteristic roots equations
contains exponential function if those equations contain two real solutions and
one zero.

2.u"'(t) = —a()u'(t), a(t) > 0,the solution of characteristic roots equations
contains an oscillatory function if those equations contain one real solution and
two conjugate roots.
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Exponentially-Fitted and Trigonometrically-Fitted Two-Derivative Improved
Runge-Kutta Type Methods

The criteria for developing an explicit two-derivative improved Runge-Kutta type method
with exponentially and trigonometrically fitting techniques denoted as EFIRKT and
TFIRKT methods will be proposed. Here we include two parameters, y; and ¢, into U; and
U;' to implement oscillatory properties into the formulation of the two-derivative Runge-
Kutta-type TDIRKT method as in Equation 4.

Upsp =Up T Ehu;t -5 hun 1 + (un - un 1
hS
e [ (6, un (6), un (£)) = f(tpm, ey (0, w4 ()]

+h* Z bilg (tn + ci, U0, U{(0), U{' (1)) = gty + cift, Ui (8), UL(6), UL5(0))]

=2

3 1
Upyq = Up + = hun _‘hu; 1 + [f(??n. Un (0, (t)) = f(Enmg, Un—g (), U1 ()]

+43 Z b{lg(tn + cih U (), U{ (1), U} (1)) = g(tney + cih U (0), UL (0), UL (0)]
un+1 - un +- hf(tnr un(t) un(t)) __hf(t —1 Up- 1(t) un 1(0)

+hzz b!'|g(tn + cih, U (0), U (0), U7'(6)) = g(tny + cch, U—i(0), U (1), U7(1))]
i=2

where

(c;h)? (i h)3
D) Uy + f (o, wy, up)

U; = u, + ¢;hu,, +

AW RN ORI ORA))
j=1

(c;h)? o (cih)?

U_; =up 4 +cihu),_, + up_q + A

f(tnfll Un—1, H;L—l)

+h°‘ZAUg wet + Ch, U (0, U750, U2
=

U = upy; + cihuy, +

(Ch)z ! A r rn
- Al + b Z 159 (tn + i, U(©), U0, U} ()

=1
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(Czh)z

P! " r
U*i =Up1¥i t Cihunfl + f(tn—ll un—i'unfl)

s
2 Ay (tn+ h U_(0,U7,0,07(0)
=1

S
Ui" = up + cihf (ty, wn, up)7; + h* Z Aijg (fn + ¢;h, U; (1), Ui (1), Uj"(t))
=

rno_ . ’ ~
Uy =uy g + Cihf(tnflr Un—1, un—l)yi

s
2 A (tnes + b U0, U7,(0,070)
=1

fori=1,2,..,s. 4)

The parameters for the TDIRKT method are ¢;, 4;j,4; , A, by, bi,bi',vi and 9; for i
=1, 2, ..., s. TDIRKT method is explicit if all 4; j,ffi, j,/ii, j=0and i< and elsewhere
for implicit TDIRKT method. The general TDIRKT method is modified into the form of
Butcher tableau, which is exhibited in Table 1.

Table 1
General formulation for TDIRKT methods in butcher tableau

c A A A

b:1 bT b'T b"'T

Order Conditions of TDIRKT Method
Order conditions for explicit TDIRKT method up to order 7 are shown in Equations 5 to 17.

The order conditions of u:

3
Fifth order: f:z b; = ?10 5 (%)
. . 1
Sixth order: f=2 bic; = 50° (6)
Seventh order: S_b;c? = 1 (7)

The order conditions of u’:

31
Fourth order: S b =—
=271 " 720

®)
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Fifth order:

Sixth order:

Seventh order:
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The order conditions of u'’:

Second order:

Third order:

Fourth order:

Fifth order:

Sixth order:

Seventh order:

1
s i, 1
Zi=2 biCi = 120° ©
s r2_ 1
i=2bici = P (10)
S r.3 _ 1 S rao 1 11
=2 bici - 252 i=2,j<i bl Ai,j - 1512 ° ( )
by —b”, =0, (12)
s b”+b” _i
i=2Di -1~ 75> (13)
1
obllc =1, (14)
S n 2 __ 31
—2bi ¢ = 360° (15)
n_.3 _ 1 I _ 1
bi'c; =4, i2jaibi'dij=15, (10
17 4. 1 s nmy 1
imabi'ci =, i=2,j<ibi Aij = —1512

A 1
S " _
i=2,j<ibi Aij G = 1515

i= 2]<lb” A (17)

78’

The coefficients of the improved TDRKT method with three-stages sixth order are shown
in Table 2 in the form of Butcher tableau (Equation 18).

Table 2

The improved TDRKT method with a three-stage sixth order

0 0 0 0 0 0

) Y2 V2 A 0 Ay O Ay O

3 Y3 V3 Aszn A3 0 A3y A3, O Ay A3, O
b, by b by by b, by by by by
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5-15 L, ,_1+\/4790b,_1 VA790
T4 TR0 T 12 1440 TP T 12 1440

LT 7 . 4719 VAT 479 AT90
by = b =—— b = b

= 5501 T 5562 T 2232 59396' 3 2232 1 59396

i 172440A 12 V4790 107836199A i 688323  54v4790
327 3545129 21\31 310 | 109898999 2 317 17725645 17725645’

2=Ly3=17,=19;=1 (18)

Exponentially-Fitted TDIRKT Method

To develop an exponentially-fitted two-derivative improved Runge-Kutta-type method,
we integrate e”* and e " at every stage. The relations sinh(v) = (e’ —e™¥)/2 and
cosh(v) = (e” + e™")/2, we get the following Equations 19 to 21:

, 1 1 ;

et =1+ c;v +E(Civ)2 ig(civ)g + vt Zf:zAi,jeicfva (19)
. 1 1 j

etciv — Vi ¢ +E(civ)2 + 3 Z}izlAi’jeiij, (20)

etV =1+ Pic;v + v? 2?:1 Ai,jeicjv, 21

Similarly, we integrate e** and e ** corresponding to u, u and u, we obtain Equations
22 to 24.

1o 3 —v T 5 9 T 1 3 ¥ 4 tc; 1(ci-1
e = 14T+ v (1-e™) 1203 (1- ™) + v I, be* - ] 2)

S

3 _v o 5 -
et =1+ JvF Ee*" + Evz(l —eT)F ol . bi[exei — etv(ci=1] (23)
i—2
3 N
et = 142y Foe™ 402 Z bi'[exe — etv(ciD)] 24
—2 2
i=2

where v = wh,w € R.The relation and are substituted in Equations 22 to 24.

Here, we obtain hyperbolic functions of v as in Equation 25.
v 5 1
cosh(v) =1+ Esinh(v) + Evz(l — cosh(v)) + gv3 sinh(v)

+v*Y5_, bi[cosh(vc;) — cosh(v(c; — 1))],
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sinh(v) = 2v — Zcosh(v) + =7 sinh(v) + v*(1 - cosh(»))
s, bfsinh (vc;) — sinh (v(c; - D)1,
cosh(v) = 1+2sinh(v) + = v2(1 - cosh(v)).
43 Y2, b [cosh (ve;) — cosh (v(c; — 1))]
sinh(v) =2v — Zcosh(v) + =7 sinh(v) + v* £i_, b/ [sinh (vc;) — sinh (v(c; - 1)
cosh(v) = 1+ Zsinh(v) + v* Y5, ' [cosh (v;) — cosh (v(c; — 1)].
sinh(v) = 2v - Zcosh(v) + v* $1L, b/ [sinh (ve;) — sinh (v(c; — 1)), 29)

Solving Equations 19 to 21, the coefficients A; ]'Al ]iAl j» Vi and )/l can be determined
as Equations 26 to 30:
cosh(vc;)— 1——(c v)2—v* Z‘ 3 Ay j cosh(vc)) (26)

)

Ajjiq =

v#cosh(ve;_q)

_ sinh(vc;)—vci—v Z‘ % Ay j cosh(vcj)
Ajiq = 27

v3cosh(vci_q) !

cosh(vcy)—1—v2 Zj-_:ﬁ A; j cosh(vcj)

A1 = v2Zcosh(vci_q) ’ =

y; = cosh(vc;) — %(Civ)z —v3 23211 4; j sinh(vc;), (29)

5 = sinh(ve)—v? £j77 4y sinh(vc)) (30)
: .

vCi

Then, Equations 26 to 30 are integrated by replacing with Equation 18, and we get the
terms as in Equation 31.

cosh(vcy) — 1 — % (cyv)?

2,1 — 4 ’

cosh(vcs) —1—%(63 v)2—v*43,

v*cosh(vcy) !

_ sinh(vc,) — v,
A2,1 = 1]3 )
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_ sinh(vez) — ves — v343,

3.2 v3cosh(vey) ’
" cosh(ve;) — 1
AZ,l = T:
R sinh(ves) — 1 — v245,
Az = ’

v2cosh(vcy)

1
cosh(vcy) — > (cyv)?,

Y2 =
1 _——_—
y3 = cosh(vcg) — > (c3v)? — v3A3, sinh(ve,),
. sinh(vcy)
Y2 = ve,
. __ sinh(vcz)—v?43;sinh(vey)
V3 vea , (31)

Equation 31 can be further modified through Taylor series expansion, yield Equation 32.

4. = 6441601  1919v4790 22950627839 460224174790\
2172216450400 46176050 ¥ 639002650320000 8875036810000 Y

+( 82135555848961 12361432319v4790 )‘U4
343885666296211200000 3582142357252200000

( 294040876575811199 35404382065921v4790 ) 6
297426712779593066880000000  2478555939829942224000000

( 1052674973624775070081 15089188630912457v4790 )UB
377291733695169397198617600000000  374297354856318846427200000000 ’

4o = 6441601  1919v4790 1816462073 3841v4790 )
327 2216450400 ¥ 46176050 ¥ 319501325160000 ¥ 2218759202500 Y

( 214076712633923 12449882867\/4790) 4
343885666296211200000 3582142357252200000

( 710975672934795007 1142430575083613v4790 ) 6
10622382599271180960000000  1239277969914971112000000

( 3731786017565356409130181 373072793565778149857v4790 )UB
377291733695169397198617600000000 2620081483994231924990400000000 ’
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4,, =
217 14

+( 463627866671572789

77 4799v4790+ 2023681 17495041v4790) ,
955 17874600 © \5725830200 3435498120000 !

( 36177468473 62713990079v4790 ) 4
11555297926620000  1386635751194400000

( 2055628007863 224539256163841v4790 ) 6
126910186371220800000  959441008966429248000000

803863978325073599v4790 ) g
8451875754820102983840000000  1014225090578412358060800000000

)
327 867

45135890 17874600 i 833620755902900  333448302361160000

_ 1586517831 47994790 ( 111041410223 374850995583\}4790) )
v

( 1010573345229507 912680614276573v4790 ) 4
320443818569074760000  11535977468486691360000

( 24054389059591111633 378876794375477242093v4790 ) U6
36953581157385701323200000  39909867649976557429056000000

485935333951896962763298489 140588309086395387940503173y4790

-(

21

17 10220 4805

4922017460825525533463094720000000  98440349216510510669261894400000000

i 1919 6V4790.+ ( 6441601 1919v4790) 2
=—- - v

2216450400 46176050

( 22950627839 4602241V4790) 4

639002650320000 8875036810000

( 82135555848961 12361432319y4790 ) 6

343885666296211200000  3582142357252200000

v
297426712779593066880000000  2478555939829942224000000 '

( 294040876575811199 35404382065921v4790 ) 8

~ o _ 28631109 +6\]4790 ( 24812903941 72658291v4790) 2

527 793097420 4805

3662551298976 1907578801550

( 19126585411486231 3904934862021V4790) 4

26397838487369520000  366636645657910000

( 314869203983050706341 236564868394367731v4790) 6

2841252152072556176640000  147981882920445634200000

( 205505666501846260968448531 24742876882947640783241v4790 ) )

12286994931637769185879680000000  102391624430314743215664000000
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1+ 6441601 1919v4790) , 22950627839 4602241v4790 \ |
- - v
2216450400 46176050 639002650320000 8875036810000

-I-( 82135555848961 12361432319v4790 ) 8
343885666296211200000 3582142357252200000
—1 -I-( 3231057493 906?32{]9\-'4790) 4
129076762204320  26890992125900
-|-( 55410348606113 1229352355694790 ) P
8860197748453680000 8875036815168448686597980000000
+( 3351360448784910563 7465129151134514/4790 )vs
2043516008703356755200000  29801275126923952680000
- 1+(4?99\a4?90 345240) 2 (1?495041\-'4?9{]—12142086{][)) 4
V2 5766(4/4790—-120) 11082252000(y4790-120)
n 62713990079y/4790-4341296216760) ¢
4473018552240000(y/2790-120)
+(224539256163841\-’4?90 1554054??39444230) 3
309497099666590080000(y4790-120)
- 1+(4 4548889\-'4?90—113?646755]) 2 (644664336581\-'4?‘90—46082914655200)’
V3 59549806(1/4790+120) 7630315206200(y4790+120)
n 117946514812127927\/4790—8193004367907021360 "
9239243470579332000(1/4790+120)

(123 26167192820800831583+/4790-853 30343632?4304{]5622080) US
6392817342163251397440000(y/4790+120)

(32)

Afterwards, the coefficients in Equation 25 are utilised to obtain parameters
by, bs, by, b3, by and bj' through Taylor series expansion, yielding Equation 33.

31 314790 2wwﬁ%+ 2651 " 12453977,/4790 14221 ,
=— v - v
271440 T 114960 | 1496779200 18748800 2589128660160000 20591539200

( 152021375417y4790 184288690451 ) 6
1642180743993081600000  6856704567820800000

( 4293767622875856834/4790 2048157093308653 )UB
172332417891526774801920000000  2616548383245804134400000 '

_ 3L SWATS0 [ DSTAAT0 2651\ ) (LSBT0 11 )
U140 114960 T\ 1496779200 18748800/ \2589128660160000 20591539200

( 152021375417Y4790 184288690451 )‘6
1642180743993081600000 ' 6856704567820800000

( 429376762287585683y4790 2048157093308653 )VS
172332417891526774801920000000  2616548383245804134400000 '
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'

1 #7190 (241{4790)”2 (518389\;4790 1973 )v"

712 1440 96566400 18560062080000 * 193737600

_I_

76233665681y4790 10186361 ) 6
105947144773747200000  41890912560000

+ ( 204301546417014479v4790 294637773487 ) 8
’

11118220509130759664640000000  47235075911654400000

1 /4790 (241{4790) , ( 518389v/4790 1973 )4
(& v

e - - +
¥T127 1440 | 96566400 1856006208000 ' 193737600

( 762336656814/4790 10186361 ) 6
105947144773747200000  41890912560000

( 2043015464170144794/4790 294637773487 ) UB
11118220509130759664640000000  47235075911654400000 !

_ 479 w4790 351y4790 + 1907 4, [ 2412191y4790 492499 .
¥7 2232 5939 1663088000 37497600 647282165040000 386091360000

( 3273299154193y4790 977694255779 ) I3
32843614879861632000000  27426818271283200000 ’

L
by, =

479+\;4790 351v4790 . 1907 . 2412191v4790 492499 p
2232 59396 1663088000 37497600 647282165040000 386091360000

( 3273299154193y 4790 977694255779 ) 8
32843614879861632000000 27426818271283200000 !

(33)

where y;, 7; = 1.

Trigonometrically-Fitted Improved TDRKT Method

Trigonometrically-fitted improved TDRKT method can be derived by substituting v = wh
with iwh and solving Equations 19 to 21 to obtain the coefficients.

_ cos(vci)—1+%(civ)2—v4 2;21 A j cos(vej) 34
Aji1 = v4cos(vei_q) ’ .
~_ wei-sin(ue)—v3 B2 4y j cos(ve)) 35
Api—1 = v3cos(vci_4) ’ )
i _ 1—cosh(vc;)+v? 25-;21 A j COS(UCj) (36)
Li—-1 — v2cos(vci_1) !
_ 1 2 3vi-1 1 ;
Vi = cos(ue;) + 5 (cv)™ +v° Xt Ay j sin(ve;), (37)

~

Yi

i R e N )
sin(vc)+v? X725 4; 5 sin(vej)

vey (38)

Later, Equations 34 to 38 are solved by substituting Equation 18.

Pertanika J. Sci. & Technol. 31 (2): 843 - 873 (2023) 855



Lee Khai Chien, Norazak Senu, Ali Ahmadian and Siti Nur Iqmal Tbrahim

cos(vey) — 1 +%(czv)2

Ayq = —3 ,

1
4 cos(vez)—1+5(c3v)?—v*As,
32— v*cos(vea) ’

_ vey, — sin(vey)
Ay =———=5——,

3

_ ves — sin(ves) — v3434

v3cos(vey) !
. 1 —cos(vc;)
2,1 — 1]2 ’
- 1 — sin(vcs) + v2A43,
Az = ’

v2cos(vcy)
1
¥z = cos(vcz) + 2 (czv)3,

1 _
y3 = cos(vcy) + 5(0317)2 + v34;, sin(vey),

. sin(vc,y)
Y2 = ve,

~ sinh(vcz)+v243 >sin(vey)

Y3 = ves ’ (39)

Equation 39 is then modified through Taylor series expansion, generating Equation 40:

. 6441601  1919v4790 22950627839 4602241v4790 )
2179716450400 46176050  \639002650320000 8875036810000 "

+< 82135555848961 12361432319v4790 ) 4
343885666296211200000  3582142357252200000

( 294040876575811199 35404382065921v4790 )176
297426712779593066880000000  2478555939829942224000000

( 1052674973624775070081 15089188630912457v4790 ) 8
377291733695169397198617600000000  374297354856318846427200000000 ’
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_ 6441601 +1919\/4790+ 1816462073 . 3841v4790 )
327 2216450400 ' 46176050 319501325160000 © 2218759202500 v
( 214076712633923 124498828671/4790 ) 4
343885666296211200000 3582142357252200000

( 710975672934795007 1142430575083613v4790 ) 6
10622382599271180960000000  1239277969914971112000000

( 3731786017565356409130181 373072793565778149857v4790
377291733695169397198617600000000  262008148399423192499040000000

215 1

2877  4799v4790 2023681 17495041v4790\ |
48955 17874600  \5725830200 3435498120000

“

36177468473 62713990079v4790 ) 4
11555297926620000  1386635751194400000

< 2055628007863 224539256163841v4790 ) 6

126910186371220800000  959441008966429248000000

463627866671572789 803863978325073599v4790 )

(8451875754820102983840000000 _-1014225090578412358060800000000

Loy =
327 g6

_ 1586517831  4799v4790 (111041410223 374850995583\/4790)2
v

745135890 17874600  \833620755902900  333448302361160000

1010573345229507 912680614276573v4790 ) 4

+ —_
( 320443818569074760000  11535977468486691360000

24054389059591111633 378876794375477242093v4790 ) 6

- (36953581157385701323200000 - 39909867649976557429056000000

|

485935333951896962763298489 140588309086395387940503173v4790

4922017460825525533463094720000000 - 98440349216510510669261894400000000
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. 1919 6V4790 6441601 1919v4790) ,
20779220 4805 \ 2216450400 46176050 )~

+_( 22950627839 4602241V4790) 4
639002650320000 8875036810000

( 82135555848961 12361432319v4790 ) 6
343885666296211200000 3582142357252200000

( 294040876575811199 35404382065921v4790 ) 8
297426712779593066880000000 2478555939829942224000000 ’

A 28631109 | 6v4790 ( 24812903941 72658291V4790) 2
327 793997420 ' 4805 3662551298976 1907578801550

( 19126585411486231 3904934862021v4790) U4
26397838487369520000  366636645657910000

( 314869203983050706341 236564868394367731V4790) 6
2841252152072556176640000  147981882920445634200000

( 205505666501846260968448531 24742878882947640783241v4790 ) 8
12286994931637769185879680000000  102391624430314743215664000000

14 6441601  1919v4790\ , 22950627839 460224174790\
2= 2216450400 46176050 | \639002650320000 8875036810000/

+( 82135555848961 12361432319v4790 ) 8
343885666296211200000  3582142357252200000
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14 3231057493 90673209v4790 \ ,
Y3 129076762204320 26890992125900 v

( 55410348606113 122935235569v4790 ) U6
8860197748453680000 8875036815168448686597980000000

( 3351360448784910563 746512915113451v4790 ) 8
2043516008703356755200000 29801275126923952680000

R <4799V4790-—345240> 2+<17495041\/4790--1214208600) .
= - v v
2 5766(v4790 — 120) 11082252000(v4790 — 120)

62713990079v4790—-4341296216760\ ¢
4473018552240000(v4790-120)

(2245 39256163841\/4790—15540547739444280) 8
309497099666590080000(+/4790—120)

. (4(4548889\/4790 - 1137646755)) ) (644664336581\/4790 - 46082914655200) '
V3= ve+ v
59549806(v4790 + 120) 7630315206200(v4790 + 120)

117946514812127927y4790-8193004367907021360\ 4
9239243470579332000(v4790+120)

(12326167192820800831583\/4790—853303436327430405622080) 3 (40)

6392817342163251397440000(v4790+120)

Afterwards, the coefficients in Equation 40 are utilised to obtain parameters b,, bs, b3, b5, by
and bg through Taylor series expansion, yielding Equation 41.

_ 3l +31v4790 2377\/4790+ 2651 2, 124539774790 14221 '
271440 T 114960  \1496779200 ' 18748800 Y 2589128660160000 20591539200 Y

( 152021375417v4790 184288690451 ) 6
1642180743993081600000  6856704567820800000

+( 429376762287585683v4790 2048157093308653 ) 8
172332417891526774801920000000  2616548383245804134400000/ ~ '
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b = 31 +31\/4790 23774790 N 2651 )
371440 T 114960 1496779200 " 18748800 "

12453977v4790 14221 R
2589128660160000 20591539200/ "

( 152021375417v4790 184288690451 ) 6
1642180743993081600000  6856704567820800000

+( 429376762287585683v4790 2048157093308653 ) 8
172332417891526774801920000000 2616548383245804134400000 !

, 1 v4790+ 24174790\ 5183894790 s 1973 '
Y12 1440 '\ 96566400 18560062080000 " 193737600/

( 76233665681vy4790 10186361 ) 6
105947144773747200000  41890912560000

( 204301546417014479v4790 294637773487 ) 3
11118220509130759664640000000 ~ 47235075911654400000 !

, 479 V4790 351v4790 ; 1907 4 2412191v4790 492499 6
272232 59396 1663088000 37497600 v 647282165040000 386091360000 v

+< 3273299154193v4790 977694255779 ) 8
32843614879861632000000 27426818271283200000 !

, 479 +\/4790+ 351v4790 N 1907 4 2412191v4790 492499 6
372232 59396 ' \ 1663088000 ' 37497600 " 647282165040000 386091360000

+( 3273299154193v4790 977694255779 ) 8 (41)
32843614879861632000000  27426818271283200000 !

where y; , 7; = 1.

As v—0, the coefficients b, bj, b;’,A; j, A; j,A; ;,v: and 9; of the proposed methods will
return to the coefficients of the original form. It means that both EFIRKT6 and TFIRKT6
methods have the same error constant as the three-stage, sixth-order improved TDRKT
method.

Error Analysis of EFIRKT6 and TFIRKT6 Methods

Local truncation errors (LTE) for u(t),u'(t) and u'’(t) for EFIRKT6 and TFIRKT6
methods are analysed in this part. Here, Taylor series expansion is applied over the step
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size, h, for the exact solution, u (t, + /) and its derivatives, v'(t, + h)and u’(t, + h). Then,
we get local truncation errors of u,u’ and u''as Equation 42:

- — WM (e +h), m = 0,1,2. 42)

n+1 n+1

. . . n
where Upy1, Up4q and Uy, are the approximation solutions for u' and U |

Both EFIRKT6 and TFIRKT6 methods contain algebraic order pif LTE = uy,,1 —
Uty +h) = sy =/ (b + 1) = Wtyy =0 (bg + h) = O(AP*Y) and O(h9) = 0,

q=1,..,p.LTE of u(t),u'(t) and u''(t) of proposed methods are shown as in
Equations 43 to 45:

LTE(u) = —%W( gululuu’3 + 3gu,u’uru’2u” +3gyu'u" + 3gu,u,‘uru”2u'

(43)
+3gu,u’u,f + 3gu,u’u”2 +9uf + gu’,u’,u’u”3 + 3gu’,u’u”f + gu’g) + O(hs)

LTE (u')
_ 11 7 I 4 "2
= mh (12 uu' /U U f + Ju' v U + 3gu’,u'u f + gug
14 12 12 7 17

+ Guuuutt’ + 39U + 69, U + gy (Guu' + gyru’’) (44)
+ 4u’3gu‘u’u'uru" + 6u’2gu,u_uu” + 6u’zgu,u,u’uru”2 + 6u’2gu,u_urf

’ 2 ’ ’ 3 ’
+12u'gy T AU gy f AU Gy T AU gy g
+10u" g, f + 6u”2gu1,ur,urf +4u” g, g+ O(h®)

LTE@W'")

,2 144 7 I’2 4 144
= ﬁh7(30u u gu,u,u',u’f+30uu gu,u',u’,u’f+20u U Guu'u'9

+ Sou,u”gu,u,u’f + 1Ogu’,u’g + 10u,3gu,u,u,u’f + 10ulzgu,u,uf
2
+ 10u’ Juuu' 9 + 15u’gu,u',u'f2 + su,gu,ug + 1Ogu,u’f2 + gu,u,u,u,uu’
+ gu',u’,u',u’,u'u”5 + 15914,u,1t'u,,3 + 1Ogu,u',u’,u’u”4 + 10u,39u,u,u,uu”
+ Gur (Guautt’® + 2 gy’ + gyt + Gur '’ + gur f)
’ " 2 12 2
+ gu(gutt' + gy u’”’) + 109, 4wt + 30U gy 0 u (45)
+ 10ulzgu,u,u',u',u'u”3 + 15u,gu,u,uu”2 + 30u,gu,u,u',u'u”3
7 ”4 7 ’ 144 144
+5u' gyt 5U gy (Guu + gy u’) + 10U gy f
+ 40u”29u,u'.u'f + 15u”gu,u'g + 10u”3gu’,u’,u’,u'f + 10u”2gu',u',u'g
+ 15u”gu’,u’,u’f2 + Su”gu’,u’guu, + gu” + Su’4gu,u,u,u,u’u”) + 0(h®)

5
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The order for both EFIRKT6 and TFIRKT6 methods is six since the entire coefficients
are up to 4° = 0. Thus, LTE = 0(hP**) = 0(h7). By comparison, p = 6.

RESULT AND DISCUSSION

EFIRKT6 and TFIRKT6 methods solve u'”’(t) = f(t,u(t),u'(t)) with exponential or
oscillatory solutions and application problems. Problems 1 to 4 are third-order exponential
problems, while problems 5 to 7 are third-order trigonometrical problems. The proposed
method was also used to test the efficiency in solving the application problem, thin-film
flow, in problem 8. The proficiency of EFIRKT6 and TFIRKT6 methods are demonstrated
as they are contrasted with the classic Runge-Kutta method and Runge-Kutta direct methods
with exponentially-fitted and trigonometrically-fitted techniques. The selected comparative
methods contain fitting techniques or have similar order to the proposed methods.

The selected methods as below are compared numerically:

* EFIRKTG6: Three-stage sixth-order explicit improved TDRKT method with
exponentially-fitting technique.

* TFIRKT6: Three-stage sixth-order explicit improved TDRKT method with
trigonometrically-fitting technique.

* EFTDRKT®6: Exponentially-fitted explicit TDRKT method with three stages sixth-
order, the exponential technique is implemented into the method constructed by
Lee et al. (2020)

*  TFTDRKT®6: Trigonometrically fitted explicit TDRKT method with three stages
sixth-order, the trigonometrical technique is implemented into the method
constructed by Lee et al. (2020)

* RKO6S: Explicit RK method with seven-stage sixth order developed by Al-
Shimmary (2017)

* EFRKTS: Four-stage fifth-order exponential-fitted explicit Runge-Kutta type
method developed by Ghawadri et al. (2018)

*  TFRKTS: Trigonometrically-fitted explicit Runge-Kutta-type method with four
stages fifth order, developed by Ghawadri et al. (2018)

*  ATDRKT®6: Trigonometrically-fitted explicit two-derivative Runge-Kutta method
with four stages sixth order, developed by Ahmad et al. (2019)

Problem 1 (Exponential problem)

!

u = 2u(t),
u(0)=0,u'(0)=1u'(0)=0, te[0,5],
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V2eV2t  \2eV2t

whose analytic solution is u(t) = 2 2

Problem 2 (Exponential problem)
u'"" = 5u'(t) + sinh(t),

u(0) = —%,u’(O) =0,u"(0) = %, te[0,5],

et et
whose analytic solution is u(t) = — I

Problem 3 (Exponential problem)
wy" = 8us, uy' = 8uy,uy’ = uy,
u;(0) = 2,u; =4,uf =8,
u,(0) = 4,u), = 8,u; =16,
uz(0) = Lu; =2,uf =4,
whose analytic solution is u;(t) = 2¢%,1u,(t) = 4e,u(t) = %, t€[05).

Problem 4 (Exponential problem)

ug !

U =u3t1, u'2”= u'1 +2,u'3” = urz +3,
uy(0) = 2,u; = 3,y =5,
uy(0) = 1,u’2 = Z,u; =5,
13(0) = 0,13 = 4,113 = 5,

whose analytic solution is ()= Set-2t-3, (t) = Set-3t-4, 5(t) = Set - -5, te[0,9]

Problem 5 (Trigonometrical problem)

u" = =27u'(t),
u(0) = 1,u'(0)=3V3u"(0) = =27, te[0,10000),

whose analytic solution is u(t) = cos(3+/3t) + sin (3v3t).
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Problem 6 (Trigonometrical problem)
u" =-100u'(t) + 99 cos(t),

uw(0) = Lu'(0) = 11,u"(0) = =100, t[0,10000],

whose analytic solution is u(t) = cos(10t) + sin(10t) + sin (t).
Problem 7 (Trigonometrical problem)

" "_

uy’ = 2uj + 6uy, uy'= —2uj—5u,
u;(0) = 2,u; =0,uy =-2,
u(0) = -1ujy =0,uy =1,
whose analytic solution is u,(t) = 2 cos(t),u,(t) = —cos (t), te[0,10000].

Problem 8 (Application problem)

Application Problem of Third-Order ODEs-Thin Film Flow

We consider the famous fluid dynamic and engineering problem, the thin film flow of fluid
transporting over the solid surface. Usually, thin film flow simulates thermal and mass
transfer, gravity and centrifugal force (Kumar & Singh, 2012). According to Dufty and
Wilson (1997), thin film flow can describe the dynamic balance between surface tension
and viscous force in the thin film layer without gravity. Recently, various direct methods
have been developed to solve particular problems (Ghawadri et al., 2018; Lee et al., 2020;
Jikantoro et al., 2018; Haweel et al., 2018). The thin film flow problem can be represented
by Equation 46:

u'"" = f(u(t)), (46)

where
u(?) implies the cartesian coordinate system in flowing fluid, and we express f{u(?)) in
various terms:

fw) =-1+u"?
f@W=-1+Q+y+yHu? - +rHu”
fW=u?-u3,
f =u"2

Here, we focus on solving the nonlinear thin film flow problem, which is utilised to
demonstrate the fluid-depleting problem on a torrid surface as Equation 47.

u'" = u—2 _ u—3'u(0) - 1' U.’(O) = 1, u’l(o) =0 (47)
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The numerical curve of thin film flow is demonstrated in Figure 1 to exhibit the thin film

flow model.
2.6 T T T T T

24 -

22 -

u(t)
o

1.6

14

1.2

1 I I | | 1 I | | 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t
Figure 1. Numerical solution curves for thin film flow

For comparison purposes, the classical order 4 Runge-Kutta method with tremendously
low step size, & = 10°is used to compare the selected methods for obtaining numerical
approximation due to the absence of an exact solution in a thin film flow problem. Figure
1 exhibits the numerical results of the Runge-Kutta method with step size 2 = 10 in
solving problem 8.

Figures 2 to 9 exhibit the performance of selected methods numerically measured
through the maximum global truncation error against computational time.

5 T T

-5+
-10 F
15 F

——k— EFIRKT6 \
o5 | |—#*— EFRKTS

—©—— EFTDRKT6
—*— RKS6

log 1 O(Max global error)

30 ‘ ‘ . ‘ ‘ .
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time of computation
Figure 2. Numerical curves of selected methods of problem 1 with h = —,i =0, ..., 4.

2t
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5 1
O _
5 i
-10 B
-15 B
-20 b
—*— EFIRKT6
o5 | | —#*—EFRKT5 i
—©—EFTDRKT6
—%—RKS6
_30 1 |
0 0.05 0.1 0.15
Time of computation
. . 0.5
Figure 3. Numerical curves of selected methods of problem 2 with p = ?,i =0,..,4
5
0 - -
5t 4
-10 ¢ a
-15 7
20 F 4
—*—— EFIRKT6
95 || —#*—EFRKTS ]
—O— EFTDRKT6
—*— RKS6
_30 1 1 1 1 1 1 1 1 1
0 005 01 015 02 025 03 035 04 045 05
Time of computation
—,0i=0,..,4

Figure 4. Numerical curves of selected methods of problem 3 with h =

866

20!

Pertanika J. Sci. & Technol. 31 (2): 843 - 873 (2023)



Explicit Improved Two-Derivative Runge-Kutta Type Methods
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_25 1 1 1 1 1 1 1
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Figure 5. Numerical curves of selected methods of problem 4 with h = ?t =0,..,4
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Figure 6. Numerical curves of selected methods of problem 5 with h =
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0
2+ i
4+ B
B i
8+ g
—%— TFIRKT6
-10 - | —&—TFRKT5 :
—o— TFTDRKTS
—<—ARK5
_12 L L L L L L
0 50 100 150 200 250 300 350

Time of computation

Figure 7. Numerical curves of selected methods of problem 6 with 2= 0.25, 0.2, 0.1, 0.05, 0.025

Figure 8. Numerical curves of selected methods of problem 7 with h =

868

Iogm(l\/lax global error)

-5

—*%— TFIRKT®6
—#— TFRKT5
—S— TFTDRKT6

—<$— ARK5
|

20 40 60 80 100 120 140 160 180 200

Time of computation

7,1’ =0,..,4.
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_2 T T T T T
——k— TFIRKT6
8 r —#— EFRKT5 R
—©—EFTDRKT6
4L —<— RKS6
S 5- 1
>
T o5 |
8 -
[=)]
s 7k i
=
e
= -8r .
o
9 i
-10 - 1
_11 L L 1 1 L L L L L

0.01 0.02 003 004 005 006 0.07 008 0.09 01 0.11
Time of computation

Figure 9. Numerical curves of selected methods of a thin film flow problem

The proposed methods, TDRKT methods fitting techniques are used to contrast with
other existing numerical methods in solving third-order ordinary initial value problems
with exponential and trigonometrical solutions based on a maximum global error against
computation time. The numerical results are plotted in Figures 2 to 9. The numerical
approach solves the selected problems by taking step size with smaller values for subsequent
approximation and comparing the solutions to illustrate the convergence performance and
accuracy curves obtained by all selected methods. Global errors obtained by all methods are
getting lesser when the step size becomes smaller. It is because the local truncation error
in approximating the numerical problem is reduced when the step size becomes smaller
and causes the accuracy for the next approximation to become higher. Improved Runge-
Kutta comprises the previous step in the function evaluation, which highly improves the
method’s accuracy. Hence, the results in Figures 2 to 5 clearly show that the EFIRKT6
method outperforms EFTDRKT6, RKS6 and EFRKTS methods for solving exponential
third-order ODEs by yielding the lowest maximum global error in similar time computation
with the same step size. RKS6 acquires a higher number of function evaluations because
it requires converting higher-order differential equations into three first-order differential
equations and solving them subsequently. Meanwhile, the complexity of function evaluation
of the RK6 method is the least compared to the other three selected methods, causing the
computation time is not too large comparatively. The complexity of each function evaluation
for EFIRKT6 methods is higher than other existing methods because of the inclusion of
derivative of f~evaluation; however, due to the advantage of a low number of function
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evaluations and the extremely low global error, EFIRKT6 method is the best-performed
method among the selected methods by generating the least maximum global error with
similar computational time.

In addition, the TFIRKT6 method performs better than TFTDRKT6, ARK6 and
TFRKTS methods by obtaining the least maximum global error in integrating third-order
ODEs with the oscillatory solution shown in Figures 6 to 8. The numerical curves are
displayed in Figures 6 to 8 as the logarithms of maximum global errors are plotted against
the computational time in seconds. Maximum global error obtained by all selected methods
reduces readily as the step size becomes lower due to the convergence property acquired
by all methods. Even though the complexity of the function for the TFIRKT6 method
is higher compared to other methods, the number of function evaluations is one of the
lowest in all selected methods, leading to low computation time. Improved Runge-Kutta-
type methods collocate with the fitting technique have the largest advantage in accuracy
compared to other methods due to the inclusion of a few previous steps in approximating
the next term. In dealing with third-order application problems, the EFIRKT6 method is
more proficient than the selected existing methods in solving thin film flow problems by
generating the least maximum global error for all step sizes compared to existing methods.

CONCLUSION

In this article, we combined two-derivative Runge-Kutta-type methods with exponentially
and trigonometrically-fitting techniques by developing exponentially-fitted and
trigonometrically-fitted explicit improved two-derivative Runge-Kutta type methods with
three-stage sixth-order denoted as EFIRKT6 and TFIRKT6 methods respectively. This
article contributes to constructing improved two-derivative Runge-Kutta-type methods. It
demonstrates how to adopt exponentially-fitting and trigonometrically-fitting techniques
on the proposed methods to solve third-order periodic and exponential third-order ODEs
with a much lower time of computation. The formulation comprises the previous step,
b-;, which vastly improves the accuracy of the existing two-derivative Runge-Kutta-type
methods. Third and multiple fourth derivatives are formulated into the proposed methods
to solve third-order ODEs in u'"’(t) = f(t,u(t), u'(t)) with exponential or oscillatory
solutions. The order conditions of generally improved two-derivative Runge-Kutta-type
methods are proposed. Then exponential and trigonometrical techniques are implemented
to construct frequency-reliant coefficients which integrate exactly suitable exponential and
trigonometrical polynomials with exponential and periodic types.

Numerical tests prove the efficacy of EFIRKT6 and TFIRKT6 methods in solving
third-order ODEs with exponential and trigonometrical solutions by generating the least
maximum global error and low time of computation in similar step sizes when compared
with other sixth-order existing methods. Through this research, a few topics can be explored.
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EFIRKT6 and TFIRKT6 methods can be modified to solve and delay differential equations
in the form of u"'(t) = f(tw (t) w (t — D)u'()u'(t — 7)) with the exponential
and oscillatory solution. Also, the symmetric and symplectic properties can be adapted
into exponentially-fitted and trigonometrically-fitted improved TDRKT methods to form
modified methods with zero-dissipative and algebraically stable. Characterisations of
symmetric and symplectic can be analysed, and numerical efficiency can be proved by
solving oscillatory Hamiltonian systems effectively.
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