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ABSTRACT

This study presents a new way of increasing 3SAT logic programming’s efficiency in 
the Hopfield network. A new model of merging fuzzy logic with 3SAT in the Hopfield 
network is presented called HNN-3SATFuzzy. The hybridised dynamic model can avoid 
locally minimal solutions and lessen the computing burden by utilising fuzzification and 
defuzzification techniques in fuzzy logic. In addressing the 3SAT issue, the proposed 
hybrid approach can select neuron states between zero and one. Aside from that, unsatisfied 
neuron clauses will be changed using the alpha-cut method as a defuzzifier step until the 
correct neuron state is determined. The defuzzification process is a mapping stage that 
converts a fuzzy value into a crisp output. The corrected neuron state using alpha-cut in 
the defuzzification stage is either sharpening up to one or sharpening down to zero. A 
simulated data collection was utilised to evaluate the hybrid techniques’ performance. In 
the training phase, the network for HNN-3SATFuzzy was weighed using RMSE, SSE, 
MAE and MAPE metrics. The energy analysis also considers the ratio of global minima 
and processing period to assess its robustness. The findings are significant because this 
model considerably impacts Hopfield networks’ capacity to handle 3SAT problems with less 

complexity and speed. The new information 
and ideas will aid in developing innovative 
ways to gather knowledge for future research 
in logic programming. Furthermore, the 
breakthrough in dynamic learning is 
considered a significant step forward in 
neuro-symbolic integration.

Keywords: 3SAT, alpha-cut, defuzzification, 
fuzzification, fuzzy logic, Hopfield network
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INTRODUCTION

Artificial Intelligence (AI) is the impetus for today’s technological advancement. Thus, it 
leads to the advanced development of machine learning techniques to solve those problems. 
Artificial Neural Networks (ANNs) can be categorised as a sub-domain of AI widely used 
to improve decision-making in various disciplines. An ANN comprises interconnected 
neurons with discrete input and output layers inspired by the biological neuron model. 
The system is an aligned computing system created by simulating the human’s instinctive 
thinking while investigating the biological brain’s network in terms of biological neurons 
(Garcez & Zaverucha, 1999). The Hopfield Network (HNN) is a single-level recursive 
neural network (RNN) in which every single neuron output is linked to every other neuron 
response (Hopfield & Tank, 1985). HNN uses a particular symbolic learning model to 
efficiently coordinate the propagation of the input and output neurons in solving problems. 
The capacity of the HNN to resolve to the closest minimal solution determines the neuron 
state’s dynamic behaviour. Abdullah (1992) proposes a method for logic programming 
on the HNN. 

After defining the connection strengths, or mostly called the synaptic weight with 
logic programming, that is, by comparing cost and energy functions, the network 
performed a logical inconsistency reduction in programming. Abdullah (1993) introduces 
the learning phase in the HNN directly. The logic paradigm of Abdullah has become the 
most prominent and has lately been employed (Mansor & Sathasivam, 2021; Sathasivam 
et al., 2020). A mathematical framework can describe various scientific and technological 
challenges in daily life. However, one must first create methods for resolving some 
mathematical issues to do so. Many crucial problems, such as categorising or finding 
an ordered list, can be solved with realistic solutions. Nevertheless, a mathematical 
problem is the Satisfiability Problem (SAT). Unravelling these difficulties is possible 
with the aid of a computer. The Satisfiability Problem, or SAT, is one of the most well-
known issues. It is described as an approach for achieving the best task utilising Boolean 
quantities to verify that the 3SAT formula is met. A large number of NP issues can be 
simplified via SAT. 

In earlier research, the HNN model and 3SAT logic programming were combined 
to characterise the innovation as a singular data mining method. This model has been 
tested with a real-life dataset to assess its efficiency of the model. The method assesses 
various data sets related to cardiovascular disorders (Mansor et al., 2018). More logic 
mining strategies, including 3SAT in HNN, have been presented using real-life datasets 
such as the Bach Choral Harmony and German Credit (Zamri et al., 2020). However, 
the existing work’s 3SAT problem in the Hopfield network only considers zero and 
one neuron values. Hence, to resolve this problem, this model is further improved by 
incorporating fuzzy logic techniques to create a hybridised intelligent dynamic model 



1697Pertanika J. Sci. & Technol. 31 (4): 1695 - 1716 (2023)

Hybridised Intelligent Dynamic Model of 3SAT Fuzzy Logic HNN

that can choose between zero and one neuron states. Traditional logic, as well as logic 
programming languages, are incapable of dealing with uncertainty. Crisp relations are 
nonfuzzy relations that use the basic two-valued Boolean logic connectives to define 
their operations, a mathematical system based on true and false statements. Fuzzy logic 
connectives are extensions that substitute two-valued Boolean logic connectives with 
many-valued logic connectives. 

The Boolean relations and sets that are crisp and nonfuzzy are essentially particular 
examples of fuzzy relational structures, thanks to a unified approach to relations. 

MATERIALS AND METHODS

Satisfiability Problem

The challenge of establishing the exposition of an assignment using a specified Boolean 
formula that assesses it as true or false is known as Boolean Satisfiability (SAT). Every 
variable is denoted by X1, X2, . . , Xn for any 𝑛𝑛 ∈ ℕ  

𝜃𝜃 
(¬) 
𝜔𝜔𝑖𝑖  

¬𝜔𝜔𝑖𝑖 

 in a propositional formula, 
𝑛𝑛 ∈ ℕ  
𝜃𝜃 

(¬) 
𝜔𝜔𝑖𝑖  

¬𝜔𝜔𝑖𝑖 

. Each 
value from the set {0,1}, signifying false and true, can be assigned to these variables. If 
a variable has not yet been assigned a truth value, it is a free variable (Maandag, 2012). 
A propositional Boolean formula can also include the Boolean connectives of AND  (∧) 

(∨) 
, 

OR 
 (∧) 
(∨) , NOT 

𝑛𝑛 ∈ ℕ  
𝜃𝜃 

(¬) 
𝜔𝜔𝑖𝑖  

¬𝜔𝜔𝑖𝑖 

 as well as parentheses to denote precedence.
If a propositional expression contains one or more clauses, it is understood as 

conjunctive normal form (CNF). A clause is a disjunction with one or many literals from 
the set L, including all literals. Each L represents whether it is a variable 

𝑛𝑛 ∈ ℕ  
𝜃𝜃 

(¬) 
𝜔𝜔𝑖𝑖  

¬𝜔𝜔𝑖𝑖  or its negation, 

𝑛𝑛 ∈ ℕ  
𝜃𝜃 

(¬) 
𝜔𝜔𝑖𝑖  

¬𝜔𝜔𝑖𝑖 . The following is an example of a propositional formula, 
𝑛𝑛 ∈ ℕ  
𝜃𝜃 

(¬) 
𝜔𝜔𝑖𝑖  

¬𝜔𝜔𝑖𝑖 

. An i-CNF formula is a 
CNF formula in which each sentence has at most i different literals. For example, Equation 
1 below is a 2-CNF formula. 

𝜃𝜃 = (𝜔𝜔1 ∨ 𝜔𝜔2) ∧ (¬𝜔𝜔1 ∨ 𝜔𝜔3) ∧ (¬𝜔𝜔2 ∨ ¬𝜔𝜔3) 
𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑖𝑖  for every 𝜔𝜔 ∈ {−1,1}      

𝛽𝛽1 ∧ 𝛽𝛽2 ∧ . . .∧ 𝛽𝛽𝑚𝑚                                                                     [3] 

				    [1]

This work will emphasise 3-CNF satisfiability or 3SAT in abbreviated form. The 3SAT 
problem examines whether a 3-CNF formula has a valuation that evaluates the formula as 
true or if a particular 3-CNF formula is satisfactory.

The structure of SAT will be described below: 
1. 	 The i variables in the Boolean SAT formula as given in Equation 2:

𝜃𝜃 = (𝜔𝜔1 ∨ 𝜔𝜔2) ∧ (¬𝜔𝜔1 ∨ 𝜔𝜔3) ∧ (¬𝜔𝜔2 ∨ ¬𝜔𝜔3) 
𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑖𝑖  for every 𝜔𝜔 ∈ {−1,1}      

𝛽𝛽1 ∧ 𝛽𝛽2 ∧ . . .∧ 𝛽𝛽𝑚𝑚                                                                     [3] 
 for every 

𝜃𝜃 = (𝜔𝜔1 ∨ 𝜔𝜔2) ∧ (¬𝜔𝜔1 ∨ 𝜔𝜔3) ∧ (¬𝜔𝜔2 ∨ ¬𝜔𝜔3) 
𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑖𝑖  for every 𝜔𝜔 ∈ {−1,1}      

𝛽𝛽1 ∧ 𝛽𝛽2 ∧ . . .∧ 𝛽𝛽𝑚𝑚                                                                     [3] 
 				    [2]

Every variable of the clause is related to function OR 
 (∧) 
(∨) . Because this study will 

focus on 3SAT, it will consist of 3 literals per clause.
2.	 In a 3SAT formula, a set of a clause, 

𝜃𝜃 = (𝜔𝜔1 ∨ 𝜔𝜔2) ∧ (¬𝜔𝜔1 ∨ 𝜔𝜔3) ∧ (¬𝜔𝜔2 ∨ ¬𝜔𝜔3) 
𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑖𝑖  for every 𝜔𝜔 ∈ {−1,1}      

𝛽𝛽1 ∧ 𝛽𝛽2 ∧ . . .∧ 𝛽𝛽𝑚𝑚                                                                     [3]  joined by AND  (∧) 
(∨) 

 as given in Equation 3
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𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑖𝑖  for every 𝜔𝜔 ∈ {−1,1}      

𝛽𝛽1 ∧ 𝛽𝛽2 ∧ . . .∧ 𝛽𝛽𝑚𝑚                                                                     [3] 							       [3]

where if m = 3, the Boolean SAT will have three clauses.
3.	 The literal’s status can then be either the negative or the positive of the variables.

The logical formula is derived from the randomised 3SAT formula in this study. The 
propositional logic formula, including the 3SAT formula, can be translated into logic 
programming notations (Abdullah, 1992; Kowalski & Sergot, 1986). The ideal performance 
measures define and evaluate the 3SAT problem in the HNN. The example of 3SAT logic 
programming is shown in Equation 4.

						      [4]

Given the goal as Equation 5,                                 

← 𝜗𝜗 									         [5]

where 𝜔𝜔1,𝜔𝜔2  … . .𝜔𝜔𝑛𝑛   for any 𝑛𝑛 ∈ ℕ  
𝜃𝜃 

(¬) 
𝜔𝜔𝑖𝑖  

¬𝜔𝜔𝑖𝑖 

 refers to the literals in the clauses and ← describes 
the implication and the given goal is ← 𝜗𝜗 .

The general formula for 3SAT is expressed in Equation 6.

𝜃𝜃 =∧𝑖𝑖=1
𝑛𝑛 𝛽𝛽𝑚𝑚                                                                                   

𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (𝜔𝜔1 ∨ ¬𝜔𝜔2 ∨ ¬𝜔𝜔3) ∧ (𝜔𝜔4 ∨ 𝜔𝜔5 ∨ ¬𝜔𝜔6) ∧ (𝜔𝜔7 ∨ 𝜔𝜔8 ∨ 𝜔𝜔9)                      [7] 

¬𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (¬𝜔𝜔1 ∧ 𝜔𝜔2 ∧ 𝜔𝜔3) ∨ (¬𝜔𝜔4 ∧ ¬𝜔𝜔5 ∧ 𝜔𝜔6) ∨ (¬𝜔𝜔7 ∧ ¬𝜔𝜔8 ∧ ¬𝜔𝜔9)          [8] 

								        [6]

where 𝜃𝜃 =∧𝑖𝑖=1
𝑛𝑛 𝛽𝛽𝑚𝑚                                                                                   

𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (𝜔𝜔1 ∨ ¬𝜔𝜔2 ∨ ¬𝜔𝜔3) ∧ (𝜔𝜔4 ∨ 𝜔𝜔5 ∨ ¬𝜔𝜔6) ∧ (𝜔𝜔7 ∨ 𝜔𝜔8 ∨ 𝜔𝜔9)                      [7] 

¬𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (¬𝜔𝜔1 ∧ 𝜔𝜔2 ∧ 𝜔𝜔3) ∨ (¬𝜔𝜔4 ∧ ¬𝜔𝜔5 ∧ 𝜔𝜔6) ∨ (¬𝜔𝜔7 ∧ ¬𝜔𝜔8 ∧ ¬𝜔𝜔9)          [8] 

 signifies a set of a clause and i indicates the number of the clause.
The 3SAT logical representation in Boolean algebraic form with strictly three literals 

per sentence is known as discrete logic representation, as demonstrated in Equation 7.
𝜃𝜃 =∧𝑖𝑖=1

𝑛𝑛 𝛽𝛽𝑚𝑚                                                                                   
𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (𝜔𝜔1 ∨ ¬𝜔𝜔2 ∨ ¬𝜔𝜔3) ∧ (𝜔𝜔4 ∨ 𝜔𝜔5 ∨ ¬𝜔𝜔6) ∧ (𝜔𝜔7 ∨ 𝜔𝜔8 ∨ 𝜔𝜔9)                      [7] 

¬𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (¬𝜔𝜔1 ∧ 𝜔𝜔2 ∧ 𝜔𝜔3) ∨ (¬𝜔𝜔4 ∧ ¬𝜔𝜔5 ∧ 𝜔𝜔6) ∨ (¬𝜔𝜔7 ∧ ¬𝜔𝜔8 ∧ ¬𝜔𝜔9)          [8] 
		 [7]

where 

𝜃𝜃 =∧𝑖𝑖=1
𝑛𝑛 𝛽𝛽𝑚𝑚                                                                                   

𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (𝜔𝜔1 ∨ ¬𝜔𝜔2 ∨ ¬𝜔𝜔3) ∧ (𝜔𝜔4 ∨ 𝜔𝜔5 ∨ ¬𝜔𝜔6) ∧ (𝜔𝜔7 ∨ 𝜔𝜔8 ∨ 𝜔𝜔9)                      [7] 

¬𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (¬𝜔𝜔1 ∧ 𝜔𝜔2 ∧ 𝜔𝜔3) ∨ (¬𝜔𝜔4 ∧ ¬𝜔𝜔5 ∧ 𝜔𝜔6) ∨ (¬𝜔𝜔7 ∧ ¬𝜔𝜔8 ∧ ¬𝜔𝜔9)          [8]  will be fulfilled if 

𝜃𝜃 =∧𝑖𝑖=1
𝑛𝑛 𝛽𝛽𝑚𝑚                                                                                   

𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (𝜔𝜔1 ∨ ¬𝜔𝜔2 ∨ ¬𝜔𝜔3) ∧ (𝜔𝜔4 ∨ 𝜔𝜔5 ∨ ¬𝜔𝜔6) ∧ (𝜔𝜔7 ∨ 𝜔𝜔8 ∨ 𝜔𝜔9)                      [7] 

¬𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (¬𝜔𝜔1 ∧ 𝜔𝜔2 ∧ 𝜔𝜔3) ∨ (¬𝜔𝜔4 ∧ ¬𝜔𝜔5 ∧ 𝜔𝜔6) ∨ (¬𝜔𝜔7 ∧ ¬𝜔𝜔8 ∧ ¬𝜔𝜔9)          [8]  = 1, the capacity to store information in Bipolar 
states, in which each state represents a significant structure for the dataset, is one of the 
critical reasons for encoding the variable in the form Equation 6. The logic program’s 
primary goal is to find an interpretation of the structure that satisfies the whole clause. 
The hybridised dynamic model of HNN will have the 3SAT logical rule encoded in it. 
As a result, finding the logical inconsistencies transforms Equation 7 into the negation of 

𝜃𝜃 =∧𝑖𝑖=1
𝑛𝑛 𝛽𝛽𝑚𝑚                                                                                   

𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (𝜔𝜔1 ∨ ¬𝜔𝜔2 ∨ ¬𝜔𝜔3) ∧ (𝜔𝜔4 ∨ 𝜔𝜔5 ∨ ¬𝜔𝜔6) ∧ (𝜔𝜔7 ∨ 𝜔𝜔8 ∨ 𝜔𝜔9)                      [7] 

¬𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (¬𝜔𝜔1 ∧ 𝜔𝜔2 ∧ 𝜔𝜔3) ∨ (¬𝜔𝜔4 ∧ ¬𝜔𝜔5 ∧ 𝜔𝜔6) ∨ (¬𝜔𝜔7 ∧ ¬𝜔𝜔8 ∧ ¬𝜔𝜔9)          [8]  as presented in Equation 8.
𝜃𝜃 =∧𝑖𝑖=1

𝑛𝑛 𝛽𝛽𝑚𝑚                                                                                   
𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (𝜔𝜔1 ∨ ¬𝜔𝜔2 ∨ ¬𝜔𝜔3) ∧ (𝜔𝜔4 ∨ 𝜔𝜔5 ∨ ¬𝜔𝜔6) ∧ (𝜔𝜔7 ∨ 𝜔𝜔8 ∨ 𝜔𝜔9)                      [7] 

¬𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = (¬𝜔𝜔1 ∧ 𝜔𝜔2 ∧ 𝜔𝜔3) ∨ (¬𝜔𝜔4 ∧ ¬𝜔𝜔5 ∧ 𝜔𝜔6) ∨ (¬𝜔𝜔7 ∧ ¬𝜔𝜔8 ∧ ¬𝜔𝜔9)          [8] 	 [8]
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Logic Programming in Hopfield Neural Network

HNN maintains the discrete nature of the difficulty and resolves it by minimising the energy 
function related to the outcome. HNNs are particularly good at pattern recognition (Fung et al., 
2019) and defect identification (Pan et al., 2020). According to Little (1974), the dynamics of 
this model are asynchronous, with each neuron changing its state deterministically. According 
to most studies, HNN is regarded to have good properties, such as parallel execution for quick 
calculation and outstanding stability. Considering the structure of HNN is non-symbolic, 
the logical concept of 3SAT can enhance its ability with exceptional storage. The neuron’s 
activation can be mathematically formulated as Equation 9:

𝜔𝜔𝑖𝑖 = �
1         𝑖𝑖𝑖𝑖 �𝜑𝜑𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖 >  𝛾𝛾

𝑗𝑗
−1      𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                          

 

ℎ𝑖𝑖 = �𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

𝛿𝛿𝜔𝜔𝑗𝑗 𝛿𝛿𝜔𝜔𝑘𝑘 + �𝜑𝜑𝑖𝑖𝑖𝑖
𝑗𝑗

𝛿𝛿𝜔𝜔𝑗𝑗 + 𝜑𝜑𝑖𝑖     , for 𝑚𝑚 = 3   

𝛿𝛿𝜔𝜔𝑖𝑖(𝑡𝑡 + 1) = 𝑠𝑠𝑠𝑠𝑠𝑠[ℎ𝑖𝑖(𝑡𝑡)] 

𝜑𝜑𝑖𝑖𝑖𝑖
(2) = 𝜑𝜑𝑗𝑗𝑗𝑗

(2) = 𝜑𝜑𝑘𝑘𝑘𝑘
(2) = 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖

(3) = 𝜑𝜑𝑗𝑗𝑗𝑗𝑗𝑗
(3) = 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘

(3) = 0 

						      [9]

where 
𝜔𝜔𝑖𝑖 = �

1         𝑖𝑖𝑖𝑖 �𝜑𝜑𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖 >  𝛾𝛾
𝑗𝑗

−1      𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                          
 

ℎ𝑖𝑖 = �𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

𝛿𝛿𝜔𝜔𝑗𝑗 𝛿𝛿𝜔𝜔𝑘𝑘 + �𝜑𝜑𝑖𝑖𝑖𝑖
𝑗𝑗

𝛿𝛿𝜔𝜔𝑗𝑗 + 𝜑𝜑𝑖𝑖     , for 𝑚𝑚 = 3   

𝛿𝛿𝜔𝜔𝑖𝑖(𝑡𝑡 + 1) = 𝑠𝑠𝑠𝑠𝑠𝑠[ℎ𝑖𝑖(𝑡𝑡)] 

𝜑𝜑𝑖𝑖𝑖𝑖
(2) = 𝜑𝜑𝑗𝑗𝑗𝑗

(2) = 𝜑𝜑𝑘𝑘𝑘𝑘
(2) = 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖

(3) = 𝜑𝜑𝑗𝑗𝑗𝑗𝑗𝑗
(3) = 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘

(3) = 0 

 denotes the weight for part j to i, along with 
𝜔𝜔𝑖𝑖 = �

1         𝑖𝑖𝑖𝑖 �𝜑𝜑𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖 >  𝛾𝛾
𝑗𝑗

−1      𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                          
 

ℎ𝑖𝑖 = �𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

𝛿𝛿𝜔𝜔𝑗𝑗 𝛿𝛿𝜔𝜔𝑘𝑘 + �𝜑𝜑𝑖𝑖𝑖𝑖
𝑗𝑗

𝛿𝛿𝜔𝜔𝑗𝑗 + 𝜑𝜑𝑖𝑖     , for 𝑚𝑚 = 3   

𝛿𝛿𝜔𝜔𝑖𝑖(𝑡𝑡 + 1) = 𝑠𝑠𝑠𝑠𝑠𝑠[ℎ𝑖𝑖(𝑡𝑡)] 

𝜑𝜑𝑖𝑖𝑖𝑖
(2) = 𝜑𝜑𝑗𝑗𝑗𝑗

(2) = 𝜑𝜑𝑘𝑘𝑘𝑘
(2) = 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖

(3) = 𝜑𝜑𝑗𝑗𝑗𝑗𝑗𝑗
(3) = 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘

(3) = 0 

 implies the threshold value. This 
paper executes 3SAT in HNN called HNN-3SAT, where we only incorporate three neurons 
for each clause. The local field efficiently suppressed the obtained output before producing 
the final state. Equation 10 shows the formulation for the local field with m = 3.𝜔𝜔𝑖𝑖 = �

1         𝑖𝑖𝑖𝑖 �𝜑𝜑𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖 >  𝛾𝛾
𝑗𝑗

−1      𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                          
 

ℎ𝑖𝑖 = �𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

𝛿𝛿𝜔𝜔𝑗𝑗 𝛿𝛿𝜔𝜔𝑘𝑘 + �𝜑𝜑𝑖𝑖𝑖𝑖
𝑗𝑗

𝛿𝛿𝜔𝜔𝑗𝑗 + 𝜑𝜑𝑖𝑖     , for 𝑚𝑚 = 3   

𝛿𝛿𝜔𝜔𝑖𝑖(𝑡𝑡 + 1) = 𝑠𝑠𝑠𝑠𝑠𝑠[ℎ𝑖𝑖(𝑡𝑡)] 

𝜑𝜑𝑖𝑖𝑖𝑖
(2) = 𝜑𝜑𝑗𝑗𝑗𝑗

(2) = 𝜑𝜑𝑘𝑘𝑘𝑘
(2) = 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖

(3) = 𝜑𝜑𝑗𝑗𝑗𝑗𝑗𝑗
(3) = 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘

(3) = 0 

			   [10]

These local fields will determine the functionality as well as the flexibility of the last 
states. As a result, the last interpretation will decide whether the result is overfitted. The 
updating rule remains as Equation 11.

𝜔𝜔𝑖𝑖 = �
1         𝑖𝑖𝑖𝑖 �𝜑𝜑𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖 >  𝛾𝛾

𝑗𝑗
−1      𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                          

 

ℎ𝑖𝑖 = �𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

𝛿𝛿𝜔𝜔𝑗𝑗 𝛿𝛿𝜔𝜔𝑘𝑘 + �𝜑𝜑𝑖𝑖𝑖𝑖
𝑗𝑗

𝛿𝛿𝜔𝜔𝑗𝑗 + 𝜑𝜑𝑖𝑖     , for 𝑚𝑚 = 3   

𝛿𝛿𝜔𝜔𝑖𝑖(𝑡𝑡 + 1) = 𝑠𝑠𝑠𝑠𝑠𝑠[ℎ𝑖𝑖(𝑡𝑡)] 

𝜑𝜑𝑖𝑖𝑖𝑖
(2) = 𝜑𝜑𝑗𝑗𝑗𝑗

(2) = 𝜑𝜑𝑘𝑘𝑘𝑘
(2) = 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖

(3) = 𝜑𝜑𝑗𝑗𝑗𝑗𝑗𝑗
(3) = 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘

(3) = 0 
							       [11]

The neuron connection is symmetric and zeroes diagonal. Such cases are as given in 
Equation 12:

𝜔𝜔𝑖𝑖 = �
1         𝑖𝑖𝑖𝑖 �𝜑𝜑𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖 >  𝛾𝛾

𝑗𝑗
−1      𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                          

 

ℎ𝑖𝑖 = �𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

𝛿𝛿𝜔𝜔𝑗𝑗 𝛿𝛿𝜔𝜔𝑘𝑘 + �𝜑𝜑𝑖𝑖𝑖𝑖
𝑗𝑗

𝛿𝛿𝜔𝜔𝑗𝑗 + 𝜑𝜑𝑖𝑖     , for 𝑚𝑚 = 3   

𝛿𝛿𝜔𝜔𝑖𝑖(𝑡𝑡 + 1) = 𝑠𝑠𝑠𝑠𝑠𝑠[ℎ𝑖𝑖(𝑡𝑡)] 

𝜑𝜑𝑖𝑖𝑖𝑖
(2) = 𝜑𝜑𝑗𝑗𝑗𝑗

(2) = 𝜑𝜑𝑘𝑘𝑘𝑘
(2) = 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖

(3) = 𝜑𝜑𝑗𝑗𝑗𝑗𝑗𝑗
(3) = 𝜑𝜑𝑘𝑘𝑘𝑘𝑘𝑘

(3) = 0 				    [12]

The structure of the generalised Lyapunov final energy of each variation of HNN-3SAT 
is in Equation 13:

𝐸𝐸 = −
1
3
���𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘

𝛿𝛿𝜔𝜔𝑖𝑖𝛿𝛿𝜔𝜔𝑗𝑗 𝛿𝛿𝜔𝜔𝑘𝑘
𝑗𝑗𝑖𝑖

−
1
2
��𝜑𝜑𝑖𝑖𝑖𝑖

𝑗𝑗𝑖𝑖

𝛿𝛿𝜔𝜔𝑖𝑖𝛿𝛿𝜔𝜔𝑗𝑗 −�𝜑𝜑𝑖𝑖
𝑖𝑖

𝛿𝛿𝜔𝜔𝑖𝑖    	 [13]

The Lyapunov energy function is always minimised when HNN is used. The HNN 
energy landscape comprises a high-level-dimensional formation with hills and valleys 
(Lee & Gyvez, 1996).
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Fuzzy Logic

The fuzzy logic development is built on fuzzy set theory, the development of classical 
set theory. A fuzzy clause is when each variable is true to a certain degree, which can be 
any real integer between zero and one. Fuzzy logic is a multivalued logic that allows for 
intermediate numbers within typical classification evaluations like correct or incorrect, 
yes or no, high or low, and so on (Badawi et al., 2022). As a result, when dealing with 
inconsistency and vagueness, fuzzy logic allows us to be more adaptable in our argument 
(Halaby & Abdalla, 2016). The truth numbers in Boolean can only be the binary numbers 
of zero or one, 𝑥𝑥 ∈ {0,1} 

𝜇𝜇 ∈ (0,1) 
 (Novák et al., 1999). Meanwhile, fuzzy logic offers truth numbers 

between zero and 
𝑥𝑥 ∈ {0,1} 
𝜇𝜇 ∈ (0,1) . 

A fuzzy set A is a function on universe X that matches into the range [0,1] and is 
probably bound to fit into a group such  𝜇𝜇𝐴𝐴:𝑋𝑋 → [0,1] 

𝜇𝜇𝐴𝐴 
0 ≤ 𝜇𝜇𝐴𝐴(𝑥𝑥) ≤ 1 

. As seen in Equation 14, the 
membership function of A is symbolised by the symbol 

 𝜇𝜇𝐴𝐴:𝑋𝑋 → [0,1] 
𝜇𝜇𝐴𝐴 

0 ≤ 𝜇𝜇𝐴𝐴(𝑥𝑥) ≤ 1 
:

𝐴𝐴 = ��𝑥𝑥, 𝜇𝜇𝐴𝐴(𝑥𝑥)�|𝑥𝑥 ∈ 𝑋𝑋�   

𝐴𝐴 =
𝜇𝜇𝐴𝐴(𝑥𝑥1)
𝑥𝑥1

+
𝜇𝜇𝐴𝐴(𝑥𝑥2)
𝑥𝑥2

+ ⋯+
𝜇𝜇𝐴𝐴(𝑥𝑥𝑛𝑛)
𝑥𝑥𝑛𝑛

= �
𝜇𝜇𝐴𝐴(𝑥𝑥)
𝑥𝑥

𝑥𝑥∈𝑋𝑋

                           [15] 

							       [14]

in which 

 𝜇𝜇𝐴𝐴:𝑋𝑋 → [0,1] 
𝜇𝜇𝐴𝐴 

0 ≤ 𝜇𝜇𝐴𝐴(𝑥𝑥) ≤ 1 . The notation can be used for discrete universe X, as stated in 
Equation 15, to illustrate the set (Zadeh, 1973).

𝐴𝐴 = ��𝑥𝑥, 𝜇𝜇𝐴𝐴(𝑥𝑥)�|𝑥𝑥 ∈ 𝑋𝑋�   

𝐴𝐴 =
𝜇𝜇𝐴𝐴(𝑥𝑥1)
𝑥𝑥1

+
𝜇𝜇𝐴𝐴(𝑥𝑥2)
𝑥𝑥2

+ ⋯+
𝜇𝜇𝐴𝐴(𝑥𝑥𝑛𝑛)
𝑥𝑥𝑛𝑛

= �
𝜇𝜇𝐴𝐴(𝑥𝑥)
𝑥𝑥

𝑥𝑥∈𝑋𝑋

                           [15] 				    [15]

where  ∑ 
𝑥𝑥 ∈ 𝑋𝑋 
𝜇𝜇𝐴𝐴(𝑥𝑥) 

 implies union across all 
 ∑ 

𝑥𝑥 ∈ 𝑋𝑋 
𝜇𝜇𝐴𝐴(𝑥𝑥) 

. The degree of membership of x in A is known as 
the value of 

 ∑ 
𝑥𝑥 ∈ 𝑋𝑋 
𝜇𝜇𝐴𝐴(𝑥𝑥) .

Traditional formal logic has been effectively applied for computations problems such 
as in Horn clause form (Sathasivam & Abdullah, 2008) and has shown to be a powerful 
reasoning technique. While this type of logic is solid, it is also restricted and lacks 
expression. It is especially true when there is much ambiguity. Fuzzy logic provides an 
intriguing result to this dilemma because it allows for manipulating propositions containing 
ambiguity (Zadeh, 1974, 1979). Therefore, its clause needs the equivalent common structure 
as a standard clause, excluding its vagueness (Rhodes & Menani, 1992). Because of the 
complexity of many computation problems and the difficulty of coping with uncertainty, 
researchers have turned to fuzzy logic theory to solve optimisation problems (Nasir et 
al., 2021). Furthermore, the distinctive and valuable characteristics of fuzzy logic and 
the Hopfield network have caused each of these ways to reinforce itself by leveraging the 
strengths of both methods. 

In fuzzy logic, connectives from classical logic are often linked to operators like 
conjunction, disjunction, implication, and negation (Brys et al., 2012). Table 1 shows the 
operands of fuzzy logic.
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A fuzzy logic system’s basic design consists of a fuzzifier, rule evaluator, and 
defuzzifier. In the fuzzifier step, it converts crisp inputs into fuzzy sets. For OR and AND, 
fuzzy set operations assess Max and Min rules, respectively. The defuzzifier is a mapping 
stage in a fuzzy system that converts a fuzzy set into a crisp output. In the defuzzification 
process, the crisp production is generated using the alpha-cut form of a fuzzy collection. 
Because the alpha-cut method may extract the crisp value of a fuzzy set (Bodjanova, 2002), 
the theory of alpha-cut is crucial in combining fuzzy sets and crisp sets. Figure 1 shows 
the fundamental model of a fuzzy logic structure.

Table 1 
Operators in fuzzy logic

Operators Formula

Negation, NOT (¬)

Operators Formula 

Negation, NOT (¬) 𝐹𝐹¬(𝜔𝜔𝑖𝑖) = 1 − 𝜇𝜇𝜔𝜔𝑖𝑖  

Disjunction, OR (∨) 𝐹𝐹∨�𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑗𝑗 � = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑗𝑗 � 

Conjunction, AND (∧) 𝐹𝐹∧�𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑗𝑗 � = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑗𝑗 � 

Implication 𝐹𝐹→�𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑗𝑗 � = 𝑚𝑚𝑚𝑚𝑚𝑚�1,1 −𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑗𝑗 � 

 

Disjunction, OR (˅)

Conjunction, AND (˄)

Implication

Figure 1. Fuzzy logic structure’s fundamental design
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3-Satisfiability Fuzzy Logic Hopfield Neural Network Using Abdullah (1992) 
Method

To assess synaptic weight methodically, we use a solid training strategy. According to 
Abdullah (1992), logic programming may be integrated into a neural network. When 
Abdullah’s technique seeks the optimum solutions for the logic program’s clauses, the 
subsequent results may shift as new clauses are introduced. As a result, we train the 
3SAT using the Abdullah approach. The method was the first in formal synaptic weight 
derivation of superficial logical contradictions (Abdullah, 1992). Following that, Abdullah 
(1993) introduced a logic programming paradigm for Horn clauses in a neural network. 
Sathasivam (2010) expanded the work by introducing neural symbolic integration in HNN. 
Velavan et al. (2015) published the result on logic programming, which focused on logic 
programming for higher-order clauses using mean-field theory.
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It is an excellent way to train the HNN, especially when accumulating synaptic weight. 
A set of systematic approaches are used in the training phase of 3SAT logic programming. 
The selection logic formula is critical for providing the neural network with good 
instructions. Synaptic weight will be computed using Abdullah (1992). A comprehensive 
learning approach calculates the corresponding synaptic weight using Boolean logical 
inconsistencies. The fuzzification and defuzzification algorithms will be connected with the 
network in the 3SAT programming to link a neuron’s membership function to its identity. 
The 3SAT problem will be treated as an optimisation problem that HNN will solve. The 
clauses have a cost function that removes logical inconsistencies.

With the third-degree network, we created an HNN-3SAT method using the Abdullah 
approach during the training phase. The proposed method included a fuzzy logic technique 
to the network to improve the algorithm and name it HNN-3SATFuzzy. An HNN-
3SATFuzzy algorithm is an integrated framework created using the fuzzification and 
defuzzification procedures until it achieves its final state. The last condition’s stability was 
analysed to achieve a global minimum solution. 

Fuzzification. The fuzzification technique connects a neuron’s identity to its membership 
function. The function 𝜇𝜇𝜔𝜔𝑋𝑋  

𝜇𝜇𝜔𝜔𝑖𝑖(𝑖𝑖): 𝐼𝐼 → [0,1]                                                                    
 defines a fuzzy set by pairing each component of the universe 

of discourse by its membership degree (Equation 16):
𝜇𝜇𝜔𝜔𝑋𝑋  

𝜇𝜇𝜔𝜔𝑖𝑖(𝑖𝑖): 𝐼𝐼 → [0,1]                                                                    								        [16]

where 𝜇𝜇𝜔𝜔𝑖𝑖 = 0  
𝜇𝜇𝜔𝜔𝑖𝑖 = 1  
 𝜇𝜇𝜔𝜔𝑖𝑖  

 signifies that a part i does not belong to a fuzzy set, and 
𝜇𝜇𝜔𝜔𝑖𝑖 = 0  
𝜇𝜇𝜔𝜔𝑖𝑖 = 1  
 𝜇𝜇𝜔𝜔𝑖𝑖  

  denotes 
that i is a component of a fuzzy set (Zadeh, 1974).

Fuzzy Rules. Union, intersection, and complement are all characterised and linked to 
membership functions for fuzzy sets. Allow the membership function of 

𝜇𝜇𝜔𝜔𝑖𝑖 = 0  
𝜇𝜇𝜔𝜔𝑖𝑖 = 1  
 𝜇𝜇𝜔𝜔𝑖𝑖  

 where i = 1,2 
... n for n = 9 to express the fuzzy logical sets. 

The membership function in Equation 17 is an example of one definition of the fuzzy 
union. 

𝜇𝜇𝜔𝜔1∪𝜔𝜔2 (𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜇𝜇𝜔𝜔1 (𝑥𝑥), 𝜇𝜇𝜔𝜔1 (𝑥𝑥)�                                         
𝜇𝜇𝜔𝜔1∩𝜔𝜔2 (𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜇𝜇𝜔𝜔1 (𝑥𝑥),𝜇𝜇𝜔𝜔1 (𝑥𝑥)�  

𝜇𝜇𝜔𝜔1����(𝑥𝑥) = 1 − 𝜇𝜇𝜔𝜔1  

					     [17]

Equation 18 implies the membership function of one definition of fuzzy intersection. 𝜇𝜇𝜔𝜔1∪𝜔𝜔2 (𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜇𝜇𝜔𝜔1 (𝑥𝑥), 𝜇𝜇𝜔𝜔1 (𝑥𝑥)�                                         
𝜇𝜇𝜔𝜔1∩𝜔𝜔2 (𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜇𝜇𝜔𝜔1 (𝑥𝑥),𝜇𝜇𝜔𝜔1 (𝑥𝑥)�  

𝜇𝜇𝜔𝜔1����(𝑥𝑥) = 1 − 𝜇𝜇𝜔𝜔1  
						     [18]

Moreover, the membership function in Equation 19 implies a fuzzy complement. 
𝜇𝜇𝜔𝜔1∪𝜔𝜔2 (𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜇𝜇𝜔𝜔1 (𝑥𝑥), 𝜇𝜇𝜔𝜔1 (𝑥𝑥)�                                         

𝜇𝜇𝜔𝜔1∩𝜔𝜔2 (𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜇𝜇𝜔𝜔1 (𝑥𝑥),𝜇𝜇𝜔𝜔1 (𝑥𝑥)�  
𝜇𝜇𝜔𝜔1����(𝑥𝑥) = 1 − 𝜇𝜇𝜔𝜔1  								        [19]
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We can assess rules using fuzzy logic properties by transforming the 3SAT problem 
in Equation 5 into a fuzzy logic structure. Then, consider Equation 21 as the negation of 
Equation 20. The formulas are as follows:

              		  [20]

	           					    [21]

If the program allocates value  to be accurate and  to be false, then 
 indicates a consistent interpretation and  implies the clauses in 

the structure are not fulfilled. 

Defuzzification. Aside from that, the HNN-3SATFuzzy algorithm will use the alpha-cut 
approach in the defuzzification phase to adjust the unsatisfied neuron clauses until the 
proper neuron state is determined. The defuzzifier is a mapping stage that converts a fuzzy 
value into a crisp output. It is referred to as a stable state when the state acquired is constant 
across both algorithms. The alpha-cut defuzzification technique, which is used to make 
the estimation, is stated in Equations 22 and 23:

if if 𝜇𝜇𝜔𝜔𝑖𝑖 ≥ 𝛼𝛼, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝛿𝛿𝜔𝜔𝑖𝑖𝑖𝑖 = 1         
if 𝜇𝜇𝜔𝜔𝑖𝑖 < 𝛼𝛼, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝛿𝛿𝜔𝜔𝑖𝑖𝑖𝑖 = 0                                                              

 							       [22]

if 
if 𝜇𝜇𝜔𝜔𝑖𝑖 ≥ 𝛼𝛼, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝛿𝛿𝜔𝜔𝑖𝑖𝑖𝑖 = 1         
if 𝜇𝜇𝜔𝜔𝑖𝑖 < 𝛼𝛼, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝛿𝛿𝜔𝜔𝑖𝑖𝑖𝑖 = 0                                                              							       [23]

Alpha-Cut. A subset of the universe with membership grades, 𝜇𝜇 
𝛼𝛼 

𝛼𝛼 ∈ [0,1] 

 which are greater than 
or equal to alpha, 

𝜇𝜇 
𝛼𝛼 

𝛼𝛼 ∈ [0,1] 
 for any 

𝜇𝜇 
𝛼𝛼 

𝛼𝛼 ∈ [0,1]   is called an alpha-cut (Wang, 1996). The idea of 
alpha-cut is critical in connecting fuzzy and crisp sets. Sharpening produces a clean set, 
which is dependent on the alpha value. During defuzzification, neuron clauses will be 
adjusted using the alpha-cut method until the right neuron state is obtained (Pourabdollah 
et al., 2020). Equation 24 is the modified alpha-cut defuzzification:

alpha-cut =
∑ 𝛼𝛼𝑖𝑖�𝜇𝜇𝜔𝜔𝑖𝑖 �

�������
𝑖𝑖

∑ 𝛼𝛼𝑖𝑖𝑖𝑖
               𝑖𝑖 = 1, … 𝐿𝐿       					     [24]

where �𝜇𝜇𝜔𝜔𝑖𝑖 �  represents the average of the membership value of neurons, and L is the number 
of discretisation stages along the vertical axis. 

The learning algorithm of the hybridised intelligent dynamic model of 3SAT using 
fuzzy logic in HNN is shown in Figure 2. The initial stage is constructing a 3SAT logic 
programming that must demonstrate inconsistency to prove a certain objective. After that, 
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the process continues to convert the logic structure into a Boolean algebraic structure and 
negation. The advanced model includes the fuzzification method, which links a neuron’s 
identity to its membership function. We can evaluate rules using fuzzy logic attributes 
by changing the Boolean model into a fuzzy structure. Next, we employ the alpha-cut 
defuzzification technique. The principle of alpha-cut is critical in the connection between 
fuzzy and crisp sets. The cost function is then required to determine the synaptic weights. 
The estimates of synaptic weights are then obtained by analysing the cost function in 
conjunction with the energy function. Finally, let the neural networks evolve until they 
reach a minimum energy state.

Figure 2. Algorithm in the learning phase for HNN-3SATFuzzy

Implementation and Experimental Setup

The discussion will cover the HNN-3SATFuzzy experimental simulation and algorithm 
descriptions (Table 2). 
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The performance of the fuzzy logic techniques in training HNN to execute 3SAT is 
carried out using Matlab 2020b software in this experimental simulation. HNN-3SAT models 
integrated with fuzzy logic algorithm (HNN-3SATFuzzy) are the hybrid HNN models 
investigated in this work. The HNN models in this study used simulated datasets to generate 
3SAT clauses with varying difficulty levels. The simulations of this experiment are carried 
out with varying numbers of neurons (NN) ranging from 9 to 135. The CPU time cutoff for 
generating data will be 24 hours (Kho et al., 2020), and if the CPU time exceeds 24 hours, the 
experiment will be aborted. Aside from that, we employed HTAF in this work because HTAF 
is regarded as an example of good quality activation functions to be developed in HNN based 
on its stability. Furthermore, the suggested network operates even if no activation function is 
used. The final energy execution requirements were set to 0.001 since this reduced statistical 
errors better (Sathasivam, 2010). The success of this study will be evaluated by comparing 
the accuracy and efficiency of two models: HNN-3SAT and HNN-3SATFuzzy. 

The experiment is divided into three phases to validate the success of the suggested 
approach: training phase, retrieval phase, and energy analysis. As noted below, each 
subsection represents a distinct purpose. The list of the three subsections and their metrics 
may be found in Table 3. 

Table 3 
List of the phases and metrics used in all performance evaluation measures

Phases Description Metrics
Learning phase to achieve ideal weight management through 

well-structured training programming.
RMSELearn
MAELearn
SSELearn
MAPELearn

Retrieval phase to assess the quality of the HNN-3SATFuzzy 
generated solution

RMSERetrieve
MAERetrieve
SSERetrieve
MAPERetrieve

Energy analysis to investigate the energy difference obtained by 
HNN-3SATFuzzy

NLocal
NGlobal

Table 2 
Listing of related factors utilised in HNN-3SATFuzzy

Parameter Value
Number of neurons 9 ≤ NN ≤ 135
Total of combinations 100
Tolerance measurement 0.001
CPU time threshold 24H
Activation function HTAF
The initialisation of fuzzy membership neuron μωi ϵ[0,1]
Finalised neuron states δωi ϵ[–1,1]
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Figure 3 shows the summary flowchart of the successful integration of HNN-3SAT 
with fuzzy logic. Figure 3 shows how the HNN-3SATFuzzy is distributed into the learning 
and retrieval phases, with the fuzzy logic being implemented in the learning phase. The 
goal of the proposed network is to achieve the final global states of HNN-3SAT.

Figure 3. Flowchart of HNN-3SATFuzzy
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Performance Evaluation Metrics for HNN-3SATFuzzy

Two measurement methods will be used to assess the competence of HNN-3SATFuzzy 
models, such as error analysis and energy analysis. The explanations for each metric will 
be discussed further down in greater detail.

Root Mean Square Error (RMSE). RMSE reports the actual divergence of the anticipated 
amounts and the computed value (Equation 25) (Willmott & Matsuura, 2005)
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where Ix is the network’s computed value, Ihighest is the network’s highest value, and n is 
the total number of iterations.

Mean Absolute Error (MAE). By computing the disparity of the average gap between the 
calculated values and the expected values, MAE proves to be a good metric for analysing 
the model (Equation 26) (Alzaeemi & Sathasivam, 2021).𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��1
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where Ix stands for the generated values, n for the number of iterations, and Ihighest for the 
most significant values by the network, which describes the number of clauses in the kSAT.

Sum Squared Error (SSE). SSE is a statistical technique for calculating how much the 
data deviates from expected values (Equation 27) (Bilal et al., 2012)
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where Ix denotes the computed values, and Ihighest is the largest number, which relates to 
the value of the kSAT logic clauses.

Mean Absolute Percentage Error (MAPE). MAPE is a modified form of the MAE in 
which the results are normalised to a percentage (De Myttenaere et al., 2016). MAPE’s 
formulation is given as Equation 28:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��1
𝑛𝑛 �
𝐼𝐼ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐼𝐼𝑥𝑥�

2
𝑛𝑛

𝑖𝑖=1

 

𝑀𝑀𝑀𝑀𝑀𝑀 = �
1
𝑛𝑛 �
𝐼𝐼ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐼𝐼𝑥𝑥�

𝑛𝑛

𝑖𝑖=1

 

𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝐼𝐼ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐼𝐼𝑥𝑥�
2

𝑛𝑛

𝑖𝑖=1

                                                            [27] 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �
100
𝑛𝑛

�𝐼𝐼ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐼𝐼𝑥𝑥�
|𝐼𝐼𝑥𝑥 |

𝑛𝑛

𝑖𝑖=1

 						      [28]



1708 Pertanika J. Sci. & Technol. 31 (4): 1695 - 1716 (2023)

Farah Liyana Azizan, Saratha Sathasivam and Majid Khan Majahar Ali

where Ix is the network’s computed value, Ihighest is the network’s highest value, and n is 
the total number of iterations.

Global Minima Ratio (Zm). In prior research, global minima are employed to thoroughly 
investigate energy analysis (Alzaeemi et al., 2021; Mansor & Sathasivam, 2021). The 
energy process is also an indicator of the program’s efficacy (Equation 29).

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
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�𝑁𝑁
𝑛𝑛

𝑖𝑖=1

 					     [29]

where NT is the total of testing, COMBMAX is the combination of neurons, N is the number 
of global minima of the network. A network is believed to be strong if the amount of global 
minima is close to one.

CPU (Central Processing Unit) Time. Processing time generally refers to the total time to 
finish a simulation. The processing time is used to determine the robustness and stability. 
This investigation will employ the second SI unit for processing time. When the model’s 
CPU period is reduced, the simulation’s productivity is believed to be improved. Equation 
30 shows the CPU time calculation:

Processing time = Training phase time + Retrieval phase time 		  [30]

RESULTS AND DISCUSSION

Figures 4 to 9 show the performance of HNN-3SAT and HNN-3SATFuzzy in terms of 
RMSE, MAE, SSE, MAPE, global minima and CPU time, respectively. 

Figure 4. Root Mean Square Error (RMSE)
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The output of RMSE and MAE in the training stage for HNN-3SAT and HNN-
3SATFuzzy are shown in Figures 4 and 5, respectively. During the training phase, 
HNN-3SATFuzzy beat its equivalent, HNN-3SAT, as per RMSE and MAE indicators. 
The results show that the RMSE and MAE values for HNN-3SATFuzzy are lower than 
the HNN-3SAT network, even as the total of neurons (NN) increases. As a result, the 
HNN-3SATFuzzy solutions diverged less from the potential solutions. At the start of the 
simulations, the outcomes for both networks appeared to have close results during 9 ≤ 
NN ≤ 45. The performance for RMSE and MAE in HNN-3SAT seemed to rise once it 
reached NN = 54 slowly, and subsequently, the results rose significantly to about 600% 
and 2000%, respectively, towards the end of the simulations. The suggested technique, 
HNN-3SATFuzzy, achieves 𝜓𝜓 𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = 0  

𝜓𝜓 𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = 0 
 at lower results than HNN-3SAT, based on 

RMSE and MAE calculation. The fundamental reason is that 3SAT’s fuzzy logic technique 
partitions solution is better, allowing 𝜓𝜓 𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = 0  

𝜓𝜓 𝜃𝜃3𝑆𝑆𝑆𝑆𝑆𝑆 = 0 
 to be obtained in fewer rounds. The 

fuzzy logic algorithm’s increased likelihood of exploring for accurate interpretations 
during training is owing to it. Similarly, the HNN-3SATFuzzy used a systematic strategy 
using the fuzzification and defuzzification methods throughout the searching neuron stage. 
Furthermore, HNN-3SATFuzzy could check the correct interpretation efficiently and handle 
additional limitations compared to the other network. 

Figures 6 and 7 show that HNN-3SATFuzzy has a lower SSE and MAPE value than 
HNN-3SAT. HNN-3SATFuzzy has a more robust capability to train the simulated data set 
than HNN-3SAT since it has a lower SSE value. It was clear that HNN-3SATFuzzy was 
found to have good quality results with a lower SSE value for all hidden neuron counts. 
Although at the beginning of the simulations, when 9 ≤ NN ≤ 45 of SSE for both networks 
seemed to obtain almost similar results, the results for HNN-3SAT dramatically increased 

Figure 5. Mean Absolute Error (MAE)
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when it reached NN = 54 till the last simulations. The results of HNN-3SAT increased by 
about 500% compared to HNN-3SATFuzzy at the final NN, which makes it a poor network. 
Compared to HNN-3SAT and HNN-3SATFuzzy, a comparable output was obtained for the 
MAPE values. The MAPE value also has offered strong evidence of fuzzy logic’s ability 
to work well with HNN-3SATFuzzy. The outcomes for HNN-3SAT significantly rose after 
it hit NN = 54. At NN = 135, the outcomes of HNN-3SAT converged by roughly 400% 
compared to HNN-3SATFuzzy. In conclusion, compared to the two results, the HNN-

Figure 6. Sum Squared Error (SSE)

Figure 7. Mean Absolute Percentage Error (MAPE)

HNN-3SAT

HNN-3SATFuzzy

22000
20000
18000
16000
14000
12000
10000

8000
6000
4000
2000

0

SS
E

Number of neurons (NN)
9      18     27     36     45     54     63     72     81     90     99    108    117   126    135

HNN-3SAT

HNN-3SATFuzzy

100
90
80
70
60
50
40
30
20
10

0

M
A

PE

Number of neurons (NN)
9      18      27     36      45      54     63     72      81      90     99     108   117   126    135



1711Pertanika J. Sci. & Technol. 31 (4): 1695 - 1716 (2023)

Hybridised Intelligent Dynamic Model of 3SAT Fuzzy Logic HNN

3SATFuzzy method performs substantially better. It is owing to the efficient operators in 
the training phase, such as the fuzzification and defuzzification features of fuzzy logic, 
which increased the compatibility of the solutions. HNN-3SATFuzzy can recover a more 
accurate end state than HNN-3SAT.

For varied numbers of neurons, Figure 8 illustrates the global minima ratio recorded 
by HNN-3SAT and HNN-3SATFuzzy. Sathasivam (2006) discovered a link between the 
global minima value and the type of energy gained at the last part of the program. Given 
that the suggested hybrid network’s global minima ratio is reaching value one, the results 
in the system have tentatively achieved minimum global energy except for HNN-3SAT. 
Compared to HNN- 3SATFuzzy have the potential to provide more exact and correct 
states. It is because the fuzzy logic algorithm’s searching technique is very efficient. The 
HNN-3SATFuzzy solution has achieved the best minimum global energy of value 1. It is 
due to HNN’s use of the fuzzy logic approach in conjunction with the 3SAT network. The 
proposed method can accept additional neurons since fuzzy logic reduces computing load 
by fuzzifying and defuzzifying the state of the neurons to find the appropriate states. Aside 
from that, during the defuzzification process, unsatisfied neuron clauses will be refined 
using the alpha-cut method until the correct neuron state is identified. Compared to the 
other network, this property effectively causes fuzzification and defuzzification techniques 
to converge to global minima. The network in HNN-3SAT becomes stuck in a suboptimal 
state when the number of neurons increases. The fuzzy logic algorithm has been shown to 
reduce the network’s complexity, and in comparison to HNN-3SAT, the global minimum 
solutions of the HNN-3SATFuzzy converged to optimal solutions with beneficial results.

The calculation time is a critical metric or indicator for evaluating the effectiveness 
of our suggested algorithm. The efficacy of the entire calculation process can be used to 

Figure 8. Global Minima Ratio (zM)
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indicate our techniques’ robustness roughly. The computing time sometimes called the 
CPU period, can be described as the point it took our system to finish the entire calculation 
procedure in the investigation (Kubat, 1999). The computation method uses our suggested 
framework to train and generate the most satisfying phrases. The computing time for the 
HNN-3SAT and HNN-3SATFuzzy is displayed in Figure 9. As the number of neurons rose, 
the possibility of the identical neuron being implicated in an additional phrase increased 
(Sathasivam & Abdullah, 2008). As the network grew more extensive and complex, it was 
more likely to become stuck in local minima and consume more processing time. For all 
hybrid networks, the CPU moment rises as the number of neurons increases. Since the 
logical contradictions have been resolved, the HNN’s rigorous search process will examine 
the appropriate option. As a result, a system that accelerates the training process is required. 
Furthermore, Figure 9 clearly shows that HNN-3SATFuzzy surpasses its contemporary 
HNN-3SAT. Even though the time spent by all networks for fewer clauses is not much 
different, the HNN-3SATFuzzy improved faster than the other network as the number of 
clauses for each amount of neurons rose. Due to the efficiency of the fuzzification and 
defuzzification methods, the CPU time was faster when the fuzzy logic technique was used. 
HNN-3SATFuzzy is slightly quicker than the HNN-3SAT network due to the potential 
to improve interpretations using fuzzy logic. The computation time was lowered when 
fuzzy logic was applied because the state of the fuzziness neurons was provided before 
starting the defuzzification process, which methodically turned the dissatisfied clause into 
a satisfied clause. 

Figure 9. Processing time
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CONCLUSION

The findings proved that HNN-3SATFuzzy is a unique approach to increasing the efficiency 
of logic programming that integrates fuzzy logic and 3SAT in the Hopfield network. 
Fuzzification and defuzzification techniques with the alpha-cut approach were applied to 
improve the strategies of avoiding local minimum solutions and reducing the computer 
handling load of constructing the best results. When employing the HNN-3SATFuzzy 
to compute stability, the strength of this technique outperformed HNN-3SAT in terms 
of the error analysis, as stated in this publication. Furthermore, the suggested paradigm 
provides a global minima ratio of roughly one. The CPU time of the hybrid method is more 
rapidly compared to HNN-3SAT. As a result, the HNN-3SATFuzzy has proven to be more 
potent than the HNN-3SAT in 3SAT logic programming elements, such as better global 
minima ratio, constant lower error analysis values, and faster CPU time. The discoveries 
are crucial because the hybrid model considerably impacts Hopfield networks’ capacity 
to solve difficulties with less complexity rapidly. The new knowledge and ideas will 
aid in developing creative approaches for extracting information in logic programming. 
Furthermore, dynamic learning advancement is considered a significant breakthrough in 
the neuro-symbolic field. The results of the suggested model have shown that the network 
is stable, making it clear that it is a long-lasting hybrid network. In the future, HNN-
3SATFuzzy can be further improved to solve satisfiability problems by integrating with a 
metaheuristic algorithm.
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