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ABSTRACT
Commonly, the columns and beams of glass panels are frequently subjected to in-plane 
loading, in which their joints will transfer the in-plane forces. Therefore, it is necessary 
to investigate the spring constants of the joints of these glass panels for the mechanical 
analysis of the structures. However, few issues were published on this subject, so estimating 
the spring constants of glass structure joints is important. Devote themselves to proposing 
methods to evaluate the spring constants of the joints of structural glass panels. This study 
tests two types of glass panels with thicknesses of 12 mm and 19 mm based on static and 
cycling loading. In addition, two types of Cushions: (1) aluminum and (2) rubber with 
a hardness of 65 and 90 degrees, are set between steel bolt(s) and glass panel(s) for the 
experiments. The spring constants are determined by the ratios of measured loads and the 
displacements between the glass panels and bolts. In addition, the authors proposed an 
equation to evaluate the bending spring constant from its axial spring constant determined 
by the loading tests. The experimental results showed that the joints with the aluminum 
cushion appear exactly non-linear elasticity while loading and unloading. Also, the pin 
junction within the central region (no Curve) is 0.6 mm. It is also determined that aluminum 
(cushion) slides of approximately ±0.3 mm under compression and tension. While loading 
(Tension/compression) is incremental, rubber acts nonlinearly but linear as unloaded. 

Keywords: Frameless glass structure, in-plan loading, 
joint of glass panels, spring constant, tempered glass

INTRODUCTION

The authors are researching to realize 
frameless glass structures as new structural 
art. The frameless glass structure is close 
to pure glass, composed of tempered glass 
panels and minimal metal joints, expanding 
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the possibilities of unique architectural designs with excellent lighting (Santarieso et al., 
2019; Centelles et al., 2019). However, the mechanical analysis and/or structural calculation 
for the frameless glass structures need the spring constants of its joints subjective to in-plane 
forces, as mentioned below. However, evaluating the spring constants of structural glass 
joints remains an unsolved issue. Therefore, the paper reports some important experimental 
results and methodology to evaluate the spring constant. 

Researchers proposed some new structural systems to realize frameless glass structures 
as a kind of new structural system (Hussain et al., 2021; Bedon et al., 2019; Bedon et al., 
2018a; 2019b). The frameless glass structure system comprises tempered glass panels and 
small metal joints, expanding the possibilities for unique architectural designs (Dispersyn 
et al., 2016; Chen, 2008). Inspired by the configuration of 1.5-Layer Space Frames, several 
assembling patterns for frameless glass are proposed by Chen (2011), and Figure 1 shows 
two examples of the proposals.

Figure 1. Examples of frameless glass structures: (a) Reciprocal Triple-Connecting glass structure; and (b) 
Lap panel frameless glass structure 

(a) (b)

For a frameless glass structure, the joints are important key parts. In earlier research 
by Chen (2010), some examples of three-dimensional connections are proposed. Figure 
2(a) shows a common example of connecting two glass panels with aluminum sheets and 
bolts. Another example of the Lap assembling method is shown in Figure 2(b), in which 
the joints are designed to transfer the forces. 

Figure 2. The analytical models of joints: (a) One-piece glass panel; and (b) Lap-unit
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In common, the Finite element method (FEM) can analyze a glass panel by meshing 
it into many elements, as in the meshed glass panel shown in Figure 3. However, it is 
difficult to analyze the whole structure with FEM because all the glass panels consisting 
in the structure have to mesh and analyzed (Hadimam et al., 2008; Overed et al., 2007; 
Hussain et al., 2022; Honfi et al., 2014), which may cost more Central Processing Unit 
(CPU) time. Accordingly, a methodology for structural design and mechanical analysis 
for the whole structure is proposed, which transforms the glass panels into equivalent 
beams of the same bending stiffness and axial stiffness (Chen & Tsai, 2019; Giaralis & 
Spanos, 2010). As shown in Figure 3, the glass panels are replaced by beams, and joints 
are transformed into springs in axial and rotating directions for mechanical analyses of the 
whole structure. Therefore, the investigation of the spring constant for joints is required.

Figure 3. Replacing a glass panel with an equivalent beam method
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However, few or no previous issues focused on the spring constants of the joints 
connecting glass panels. Accordingly, due to the lack of experimental research on such a 
topic, it appears vital to investigate the mechanical properties and develop a methodology 
to calculate the spring constants of joints of the structural glass panels. The design method 
of the three-dimensional combined glass panel structure proposed in the previous research, 
structural analysis, was proposed by the substitution method, as shown in Figure 3. When 
replacing the glass panel with an equivalent beam, the structure with a cylindrical curved 
surface cannot generate axial force in the glass surface. Therefore, here authors propose 
a structural design method in which a glass panel is used as an equivalent beam, and the 
joint portion is replaced with a spring. Therefore, a spring constant for the junction portion 
is required, and it is necessary to obtain this by experiment. 
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The final objective of this research is to complete the structural design theory of 
frameless glass structures and to put it into practical use. This paper evaluates the 
mechanical properties of glass joints, which are essential for structural analysis and 
calculation, especially their spring constants. The spring constants of tempered glass plate 
joints are experimental. The purpose of this research is to propose methods for calculating 
the spring constants of the joints for the structural glass panel. Based on the experimental 
results, the authors propose an equation to evaluate the bending spring constant for the 
mechanical analysis of the frameless glass structures.

MATERIALS AND METHODS

Mechanical Principle 

In common, the seismic and/or wind loads could be considered recycling loading acting 
on the members and the joints connecting the structural members. Therefore, the authors 
experiment with recycling loading (compression/tension) to investigate the spring constant 
of the joints. This study uses an experimental setup to measure the displacements between 
the joint bolts and the glass panels with the recycling load. In subsequence, the spring 
constant can be calculated as the load-displacement ratio.

Experimental Setup 

The experimental setup frame shown in Figure 4 is used for compression-tension tests to 
measure the displacements between the glass panels and the bolts. Notably, the load is 
applied with a double-action jack, and the load cell connected to the jack is used to measure 
the compression and tension load.

Figure 4. Assembly of the experimental setup (dimensions in mm)

measure the compression and tension load.  

 

Figure 4. Assembly of 
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Figure 5 exhibits that between the bolts and holes, there is a cushion. The bolt (a) is 
used to fix the glass panel to the experimental setup frame. The load is transferred through 
bolt (d) from the load cell connecting to the jack. The displacement meters are connected 
to the aluminum bars on both sides, which are used to measure the displacement between 
the stoppers and bolts (b)-(c); the stoppers are connected to the glass panel surface.

Figure 5. Details of specimen position during loading

are connected to the glass panel surface.  

 

Figure 5. Details of specimen position during loading 
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As illustrated in Figure 6, two cushion materials are 
used,1) chloroprene rubber (CR), a couple of hardness 
(Hs) types (90, 65), labeled as CR Hs90 and CR Hs65, 
respectively, and 2) aluminum A5052 Japanese Industrial 
Standards (JIS) labeled as A5052. 

Consequently, these cushion materials prevent direct 
contact between the bolt and the glass. The bolt-hole 
diameter is 32 mm, and the thickness of the cushion 
material is 5 mm. Bolts of M22 (S45C material, JIS) are 
utilized.

The Specimens 

The specimens are two types of tempered glass panels 
with 19 mm and 12 mm thicknesses, respectively. 
Moreover, two types of joints with two holes and one 
hole are used, as shown in Figure 7. The panels are 450 
mm and 120 mm long and wide, respectively. In addition, 

Figure 6. Cushion material and 
dimensions: (a) Diameter of 
cushioning; and (b) Cushion 
material (dimensions in mm)
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spacing of 90 mm bolt-to-bolt and 65 mm between the edges of the glass panel and bolt 
hole is provided. Further details of the specimens are presented in Table 1.
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Table 1 
Details of experimental specimens

Specimen type 
Symbols  

Cushion CR Hs90 Cushion CR Hs65 Cushion A5052
19mm-2 19-2-CR Hs90, 19-2-CR Hs65 19-2-A5052
19mm-1 19-1-CR Hs90 19-1-CR Hs65 19-1-A5052
12mm-2 12-2-CR Hs90 12-2-CR Hs65 12-2-A5052
12mm-1 12-1-CR Hs90 12-1-CR Hs65 12-1-A5052

The Recycle Loading

For the joints with rubber Cushions (90,65) degrees, the peak load is ±3600N, and ten 
times recycling loading is performed for the experiments. At the same time, each time 
incremental of repeating load is set as a ±400N. For the joints with aluminum cushion, ten 
times of recycling loading are performed for tests, and the peak load for each repeating is 
set as ±5000N, ±7000N, ±10000N, and ±15000N.

RESULTS AND DISCUSSION

Summary of the Experimental Results

Experimental testing of glass panels is illustrated in Figure 8. The load-displacement curves 
are shown in Figures 9 to 12. The displacement measured in the experiments is the average 
of the two displacement meters set on both sites of the glass panel.

Figure 9(a) shows the results of specimens 19-2-CR Hs90, and the maximum applied 
load is ±3600N. The maximum and minimum displacements are 2.409 mm and -3.149 
mm, respectively. Figure 9(b) shows the outcomes of 19-2-CR Hs65. It is indicated that 
the maximum and minimum displacements are 3.487mm and -3.806 mm, respectively. 
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Figure 8. Experimental setup and specimens during the performing test

Figure 9. Recycling loading of test of 19mm thickness glass panel with 2 bolt holes: (a) 19-2-CR Hs90; (b) 
19-2-CR Hs65; and (c) 19-20A5052
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The average displacement is 0.159 mm. In Figure 9(c), the outcome of 19-2-A5052, the 
maximum applied load is ±15000N; consequently, the maximum displacement is 0.456 
mm, and the minimum displacement is -0.576 mm. Moreover, the load does not enhance 
up to a displacement of ±0.3 mm, and bolts and glass panels slide with each other.

Figure 10(a) presents the result of 19-1-CR Hs90, in which the maximum load 
implicates to ±3600N. As a result, the maximum and minimum displacement is found 
to be 3.804 mm and - 4.149 mm, respectively. The average of the peak displacements is 
3.999 mm. Figure 10(b) expresses the load-displacement curves for 19-1-CR Hs65, where 
the maximum load is ±3600N. The maximum and minimum displacements were 3.958 
mm and -3.918 mm, respectively. It is illustrated in Figure 10(c) for 19-1-A5052, and it is 
observed that the maximum load is ±7000N, and the maximum displacement was 0.975 
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mm; the minimum displacement was -0.388 mm. Furthermore, the average displacement 
is ±0.2935 mm.

Figure 11(a) indicates the result of 12-2-CR Hs90 with a maximum load of ±3600N, 
3.884 mm is the maximum displacement, and minimum displacement is determined as 
-3.662 mm, which the average displacement is ±0.111 mm. Figure 11(b) presents the 
displacement results for 12-2-CR-Hs65. The maximum and minimum displacements were 
3.395mm and -3.707 mm, respectively. The maximum load is 3600 N, and the average 
displacement is ±0.156 mm. Figure 11(c) indicates the outcome of 12-2-A5052; the max 
load is ±10000N. As a result, the maximum displacement is 0.495 mm, the minimum 
displacement is -0.746 mm and the average displacement is ±0.6205 mm.

Figure 12(a) depicts the result of 12-1-CR Hs90 on a maximum load of ±3600N, and 
the average displacement is 4.093 mm. Figure 12(b) shows the outcomes of 12-1-CR 
Hs65 with the maximum load of ±3600N. The maximum displacement is 4.560 mm, the 
minimum is 3.315 mm, and the average is 3.938 mm. Figure 12(c) shows the result of 12-
1-A5052 with a maximum load of 5000N. The maximum and minimum displacements are 
0.785 mm and 0.283 mm, respectively. Moreover, the average displacement is ±0.251 mm.

Figure 11. Recycling loading of 12mm thickness glass panel test with 2 bolt holes: (a) 12-2-CR Hs90: (b) 
12-2-CR Hs65; and (c) 12-2-A5052

(a) (c)(b)

-4000

-2000

0

2000

4000

-5 -2.5 0 2.5 5

Fo
rc

e 
(N

)

Disp. (mm)

-4000

-2000

0

2000

4000

-4 -2 0 2 4

Fo
rc

e 
(N

)

Disp. (mm)

-12000
-8000
-4000

0
4000
8000

12000

-0.7 -0.2 0.3 0.8

Fo
rc

e 
(N

)

Disp. (mm)

Figure 10. Recycling loading of test of 19mm thickness glass panel with 1 bolt hole: (a) 19-1-CR Hs90: 
(b) 19-1-CR Hs65; and (c) 19-1-A5052
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Estimation of the Spring Constants

In the frameless glass structure, axial forces are applied in the tempered glass panels. 
As mentioned, the authors proposed replacing the tempered glass panels with equivalent 
beams and the joints with springs for the mechanical analysis with a model consisting of 
all structural members. The spring constants can be obtained from the load-displacement 
ratio, in which the displacement is measured between the glass panel and bolts under in-
plane loading.

Figure 13(a) presents the recycling curve of the specimens with a rubber cushion, 
which is close to a straight line during increasing loading and shows a non-linear curve 
during unloading. Figure 13(b) shows the load and displacement curve of the specimens 
with the aluminum cushion, which shows non-linear elasticity while loading and unloading. 
Furthermore, the curve appears as a pin junction within the central region, as shown in the 
diagram. It is also determined that aluminum (cushion) slides of approximately ±0.3 mm 
under compression and tension.

Figure 13. Mechanical behavior of the spring constants joint: (a) Chloroprene rubber cushioning material; 
and (b) Aluminum cushioning material
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Figure 12. Recycling loading of test of 12mm thickness glass panel and 1 bolt hole: (a) 12-1-CR Hs90: (b) 
12-1-CR Hs65; and (c) 12-1-A5052
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The proposed mechanical analysis methodology, especially for dynamic mechanical 
analysis during seismic design, is based on equivalent linearization. The equivalent 
linearization replaces each non-linear stiffness with a quasilinear stiffness (Koliopulos et 
al., 1994; Overend, 2007). It inspires authors to find the spring constant for the mechanical 
analysis with equivalent linearization. The spring constant of equivalent linearization is 
directly proportional to the average forces (Pmax and Pmin) and the associated values of the 
average displacements (δmax and δmin). Figure 13 shows the image of spring constants of 
equivalent linearization with the slope of red lines, which connects the peak points of forces 
and displacements. The spring constant of equivalent linearization Keq is calculated in Table 2.

Table 2
Spring constants for equivalent linearization (unit: N/mm)

Spring constants, Keq CR Hs90 CR Hs65 A5052
19mm-2 1248.60 942.65 27363.73
19mm-1 863.72 863.56 1040.5
12mm-2 911.37 955.33 16120.06
12mm-1 829.02 850.44 9641.47

Calculation Formula of Spring Constant for Bending 

This discussion elaborates an equation to calculate the bending spring constant KR from its 
axial spring constant KA determined by the loading tests. Figure 14 exhibits the calculation 
model; a and l indicate the distances between the bolts, C1, C2 and T describe the forces 
acting on the bolts, and δ1, δ2, and δ3 in Equation 1 represent the displacements between 
the bolts and glass panel. 

In this calculation and derivation model shown in Appendix A, the distance from the 
top bolt center to the neutral axis is xn, which the following calculation can derive. 

In this calculation and derivation model shown in Appendix A, the distance from the top 
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Consequently, the moment can be expressed by the distance between the neutral axis and 
bolts, which can be modified using Equation 2 in Appendix A.
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CONCLUSION

In this study, the authors conducted experiments and theoretical research to evaluate the 
spring constants of structural glass panel joints. Moreover, the spring constant for equivalent 
linearization Keq was summarized in 800-1000N/mm. It was found that the specimen with 
rubber cushion exhibited non-linear behavior. Specimens with aluminum cushions exhibit 
a slip of approximately ±0.3 mm and behavior elastic non-linear during compression 
and tension. It can be set as a pin joint in this region. The spring constant for equivalent 
linearization of specimens with aluminum cushions is summarized as 10000-27000N/mm. 
Future issues include a problem with the mechanism of this test specimen, which caused 
errors and a large amount of residual strain and slippage. The rubber may behave similarly 
and plasticize when the load is increased. It is considered feasible to propose a joint using 
aluminum or other materials. It is also necessary to study the spring constant by changing 
the approximation method based on the results of this experiment. Glass panel bolts from 
the market were investigated to limit the scope of the research. The bolts and their designs, 
including the, serve as the in-plane testing. The thickness of the glass is chosen based on 
experience, consultation, and avoiding too many sets of testing.

The future purpose of this study is to propose the structural design theory of the 
frameless glass structures, a three-dimensional combination glass panel structure. In 
addition, it determines the non-linear behavior elastic region behavior of spring constants 
in material joints and glass panels.
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APPENDIX A

In the session of results and discussions, Figure 14 demonstrates the calculation formula 
of spring constant for the bending model; a and l indicate the distances between the bolts, 
C1, C2, and T describe the forces acting on the bolts, and δ1, δ2, and δ3 represents the 
displacements between the bolts and glass panel. The following Equation 4 indicates the 
basic conditions of force equilibrium. 

T = C1+C2    ;    δ3KA = δ1KA+δ2KA (4) 

In this calculation model, the distance from the top bolt center to the n eutral axis is 𝑥𝑥𝑛𝑛 , 

Equation 5, which the following calculation can derive.  

𝛿𝛿1

𝑥𝑥𝑛𝑛
=

𝛿𝛿2

𝑥𝑥𝑛𝑛 − 𝑎𝑎
=

𝛿𝛿3

𝑙𝑙 − 𝑥𝑥𝑛𝑛
 ;    

𝑙𝑙 − 𝑥𝑥𝑛𝑛
𝑥𝑥𝑛𝑛

∙ 𝛿𝛿1 = 𝛿𝛿1 +
𝑥𝑥𝑛𝑛 − 𝑎𝑎
𝑥𝑥𝑛𝑛

∙ 𝛿𝛿1 ;  

 xn=
a+l
3

(5) 

Consequently, the moment can be expressed by the distance between the neutral axis and the 

bolts as in Equation 6, which can be modified as Equation 7 using Equation 2. 

   M= xn∙C1+(xn-a)∙C2+(l-xn)∙T (6) 

 M=
xn

2+(xn-a)2+(l-xn)2

xn
∙δ1KA (7) 

The bending spring constant KR is defined as Equation 8, where the bending angle 𝜃𝜃 can be 

calculated by Equation 7. Therefore, the bending rigidity spring constant KR can be obtained by 

substituting Equations 8 and 9 into Equation 10.  

   KR=
M
θ

(8) 

 θ=
δ1+δ3

l
= �δ1+

l-xn

xn
∙δ1� ∙

1
l

=
δ1

xn
(9) 

   KR=
2
3

∙�a2+l2- a∙l� (10) 

					     (4)
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Consequently, the moment can be expressed by the distance between the neutral axis 
and the bolts as in Equation 6, which can be modified as Equation 7 using Equation 2.
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The bending spring constant KR is defined as Equation 8, where the bending angle 
KR=

M
θ
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