
Pertanika J. Sci. & Technol. 31 (5): 2257 - 2272 (2023)

Journal homepage: http://www.pertanika.upm.edu.my/

© Universiti Putra Malaysia Press

SCIENCE & TECHNOLOGY

ISSN: 0128-7680
e-ISSN: 2231-8526

Article history:
Received: 06 June 2022
Accepted: 25 January 2023
Published: 13 July 2023

ARTICLE INFO

DOI: https://doi.org/10.47836/pjst.31.5.08

E-mail addresses:
nizlin7374@gmail.com (Norsalina Hassan)
dzati@usm.my (Dzati Athiar Ramli) 
* Corresponding author

Underdetermined Blind Source Separation of Bioacoustic Signals 

Norsalina Hassan1 and Dzati Athiar Ramli2*
1Department of Electrical Engineering, Politeknik Seberang Perai, 13700 Jalan Permatang Pauh, Pulau 
Pinang, Malaysia
2School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Pulau 
Pinang, Malaysia

ABSTRACT

Bioacoustic signals have been used as a modality in environmental monitoring and 
biodiversity research. These signals also carry species or individual information, thus 
allowing the recognition of species and individuals based on vocals. Nevertheless, vocal 
communication in a crowded social environment is a challenging problem for automated 
bioacoustic recogniser systems due to interference problems in concurrent signals from 
multiple individuals. The bioacoustics sources are separated from the mixtures of multiple 
individual signals using a technique known as Blind source separation (BSS) to address the 
abovementioned issue. In this work, we explored the BSS of an underdetermined mixture 
based on a two-stage sparse component analysis (SCA) approach that consisted of (1) 
mixing matrix estimation and (2) source estimation. The key point of our procedure was 
to investigate the algorithm’s robustness to noise and the effect of increasing the number 
of sources. Using the two-stage SCA technique, the performances of the estimated mixing 
matrix and the estimated source were evaluated and discussed at various signal-to-noise 
ratios (SNRs). The use of different sources is also validated. Given its robustness, the SCA 
algorithm presented a stable and reliable performance in a noisy environment with small 
error changes when the noise level was increased. 

Keywords: Bioacoustic signals, blind source separation, sparse component analysis, underdetermined mixtures

INTRODUCTION

Bioacoustics can be defined as the study 
of animal sound communication and can 
be considered one of the most effective 
methods in environmental monitoring 
applications and biodiversity research 
(Huang et al., 2009). In particular, vocalising 
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animals, such as frogs, primarily rely on sound to interact with conspecies or other species 
by making a range of different calls for various purposes. Humans can use such sounds to 
extract additional detailed species information and identify species (Stevenson et al., 2015). 
Most studies on animal call recognition focused on animal species identification. However, 
identifying different animal species in accordance with recorded calls, which frequently 
contain vocalisations from more than one individual, is difficult (Hassan & Ramli, 2018). 
This situation makes identifying the source data from a given mixture of data challenging. 
Therefore, postprocessing approaches are needed to separate individual bioacoustic sources 
from sound mixtures to enhance the process further. Blind source separation (BSS) is often 
used in audio, digital communication, biomedical, and signal processing to separate source 
signals from mixed signals (Santamaria, 2013).

Depending on the number of sources, N and the number of sensors, M, BSS can be 
classified into determined (N = M), overdetermined (N < M) and underdetermined (N > M) 
cases. In determined cases, the mixing matrix A can be invertible as it is a square matrix. 
Therefore, the source can be recovered easily by multiplying the mixture with the inverse 
of A after discovering the mixing matrix. Independent component analysis is a well-known 
method for determining cases (Hyvarinen, 2012). For overdetermined cases, the mixing 
matrix can be transformed into a square using principal component analysis (Winter et 
al., 2006). Underdetermined cases are the most popular among these three cases because 
they best fit the practical application. For underdetermined mixtures cases, the mixing 
matrix is not square and is therefore insufficient for reconstructing the sources because 
of the noninvertible mixing matrix. Therefore, the algorithms used for the determined 
and overdetermined cases may not work when dealing with a complex problem, such as 
underdetermined mixtures. Therefore, important prior information from sources, such 
as sparsity, is required to resolve the underdetermined problem. If an appropriate linear 
transformation is applied, the sources not sparse in the time domain can be sparse in the 
time-frequency (TF) domain. Some algorithms for achieving sparsity in the transform 
domain, namely short-time Fourier transform (STFT) (Linh-Trung et al., 2005; Lu et al., 
2019; Su et al., 2017) and wavelet packet transform (Li et al., 2003; Miao et al., 2021; 
Sadhu et al., 2011), have been proposed thus far.

The main method for underdetermined cases is Sparse Component Analysis (SCA) 
(Li et al., 2003). Most existing SCA algorithms that exploit the sparse representation of 
the mixtures X(t) are composed of two stages, as shown in Figure 1.

The underdetermined problem is solved by estimating the sources from the observed 
signals using the mixing matrix estimated in the first stage. If the mixing matrix is identified 
as inaccurate, the source cannot recover. Hence, the first stage is very important. The 
mixing matrix estimation method can further be classified into two categories, i.e., single 
source point (SSP) detection and clustering. In the second stage, a series of least-squares 
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problems is used to recover the estimated sources. Recently, many studies have focused 
on underdetermined problems based on the SCA framework. For example, the works of 
(Reju et al., 2009) identified SSPs by the fact that the absolute orientations of the real and 
imaginary sections of the Fourier transform coefficient vectors of the mixed signals are the 
same. The detected SSPs are then used to estimate the mixing matrix using hierarchical 
clustering. Finally, the degenerate unmixing estimation algorithm introduced by (Jourjine 
et al., 2000) recovers the source signals based on the ratio of the observed mixing signals’ 
TF transforms. 

The performances of the algorithms (Jourjine et al., 2000; Reju et al., 2009) depend on 
this ratio to detect SSPs. (Li et al., 2016) present an improved algorithm by utilising the TF 
coefficients of the mixed signals and complex conjugates of the coefficient for identifying 
SSPs. On the other hand, most SSPs-based underdetermined mixtures only consider a 
single SSP and ignore the relationship between SSPs. As a result of this situation, SSPs 
have low identification accuracy, particularly in noisy cases. The work of (Zhen et al., 
2017) introduced blind source separation for underdetermined mixtures based on STFT, 
with SSPs identified using sparse coding. This method can exhibit excellent estimation 
performance even in low signal-to-noise ratio (SNR) cases, as the sparse coding strategy 
considers the linear relations between SSPs. This work aims to investigate the performance 
of BSS for underdetermined mixtures using the method of (Zhen et al., 2017) on our 
bioacoustic signals. As in real life, the underdetermined mixtures are formed by a pair of 
random mixing matrices with different selected source vectors. The mixture of sources is 
dynamic because the position of sources and the sensors are subject to change with time.

METHODOLOGY

The underdetermined mixtures’ linear instantaneous mixed model can be written as 
Equation 1:

𝑋𝑋(𝑡𝑡) =  𝐴𝐴𝐴𝐴(𝑡𝑡), 

𝑋𝑋(𝑡𝑡) = [𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑀𝑀]𝑇𝑇  and 𝑆𝑆(𝑡𝑡) = [𝑆𝑆1,𝑆𝑆2, … . , 𝑆𝑆𝑁𝑁]𝑇𝑇   

𝑁𝑁.  𝐴𝐴 = [𝑎𝑎1,𝑎𝑎2, . . . . ,𝑎𝑎𝑁𝑁] 

,								        [1]

where 

𝑋𝑋(𝑡𝑡) =  𝐴𝐴𝐴𝐴(𝑡𝑡), 

𝑋𝑋(𝑡𝑡) = [𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑀𝑀]𝑇𝑇  and 𝑆𝑆(𝑡𝑡) = [𝑆𝑆1,𝑆𝑆2, … . , 𝑆𝑆𝑁𝑁]𝑇𝑇   

𝑁𝑁.  𝐴𝐴 = [𝑎𝑎1,𝑎𝑎2, . . . . ,𝑎𝑎𝑁𝑁] 

 and 

𝑋𝑋(𝑡𝑡) =  𝐴𝐴𝐴𝐴(𝑡𝑡), 

𝑋𝑋(𝑡𝑡) = [𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑀𝑀]𝑇𝑇  and 𝑆𝑆(𝑡𝑡) = [𝑆𝑆1,𝑆𝑆2, … . , 𝑆𝑆𝑁𝑁]𝑇𝑇   

𝑁𝑁.  𝐴𝐴 = [𝑎𝑎1,𝑎𝑎2, . . . . ,𝑎𝑎𝑁𝑁] 

 are the vectors of the mixtures 
and sources in the time domain of transposition operation. M and N are the numbers of 

Figure 1. Two-stage method for SCA
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mixed and source signals, respectively, where M is lesser than N. 

𝑋𝑋(𝑡𝑡) =  𝐴𝐴𝐴𝐴(𝑡𝑡), 

𝑋𝑋(𝑡𝑡) = [𝑋𝑋1,𝑋𝑋2, … . ,𝑋𝑋𝑀𝑀]𝑇𝑇  and 𝑆𝑆(𝑡𝑡) = [𝑆𝑆1,𝑆𝑆2, … . , 𝑆𝑆𝑁𝑁]𝑇𝑇   

𝑁𝑁.  𝐴𝐴 = [𝑎𝑎1,𝑎𝑎2, . . . . ,𝑎𝑎𝑁𝑁]  is 
the mixing matrix. The entries of each matrix A are determined by several characteristics, 
which include source locations, sensor locations, and acoustical properties. The BSS of 
underdetermined mixtures aims to estimate the source signals when A and S are unknown.

Data Preparation

Seven bioacoustic sources from an in-house database are used in this experiment. Figure 
2 presents the dataset of the bioacoustic signals SN(t) employed in this study. The species 
name of each source is given below:

Source 1: Ameerega trivittata
Source 2: Adenomera andre

Figure 2. Dataset of bioacoustic source signals



2261Pertanika J. Sci. & Technol. 31 (5): 2257 - 2272 (2023)

Underdetermined Blind Source Separation

Source 3: Leptodactylus hylaedactylus 
Source 4: Leptodactylus fuscus 
Source 5: Geocrinia victoriana 
Source 6: Geocrinia victoriana
Source 7: Limnodynastes convexiusculus
The signals were recorded in wav format in the monochannel at 16-bit and 16 kHz.

Mixed Signal Generation

In a real-life environment, the nature of mixtures varies in accordance with the position 
of animals and sensors. Mixed signals were generated using Equation 1 with the random 

Figure 3. The procedure of mixed-signal generation

selection of sources from 1: N and with a 
random mixing matrix (M × N) to mimic 
the behaviour of the real-life system. Each 
nerated mixed signal X(t) had a different 
entry of sources and mixing matrix. To 
our knowledge, no standard way exists for 
the dynamic/nonstatic underdetermined 
mixtures of bioacoustic signals. In our 
case, the term dynamic indicates that the 
sources and weight are not static but subject 
to change. Therefore, we decided to create 
one based on our data through the procedure 
illustrated in Figure 3. Here, A represents 
the weight from a source to a sensor, and 
the different selections of sources represent 
the different locations of sources.

Domain Transformation
Natural signals, such as bioacoustic ones, are sparse in the time domain. Therefore, the 
STFT transformation was applied to Equation 1 to increase the sparsity of source signals. 
The STFT of the m-th mixture xm(t) is given by Equation 2:

𝑋𝑋𝑚𝑚 (𝑡𝑡,𝑓𝑓) = � 𝑥𝑥𝑚𝑚 (𝜏𝜏)ℎ(𝑡𝑡 −
∞

−∞
𝜏𝜏)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑 

𝑋𝑋�(𝑡𝑡,𝑓𝑓)  =  𝐴𝐴𝑆𝑆�(𝑡𝑡,𝑓𝑓), 

𝑋𝑋�(𝑡𝑡,𝑓𝑓 )  =  [𝑋𝑋�1 (𝑡𝑡,𝑓𝑓 ),𝑋𝑋�2 (𝑡𝑡,𝑓𝑓 ), . . . . ,𝑋𝑋�𝑀𝑀]𝑇𝑇 and 𝑆̃𝑆(𝑡𝑡,𝑓𝑓 )  =  [𝑆̃𝑆1 (𝑡𝑡,𝑓𝑓 ), 𝑆̃𝑆2 (𝑡𝑡,𝑓𝑓 ), . . . . , 𝑆̃𝑆𝑁𝑁]𝑇𝑇  

					     [2]

where h(t) is the window function. Given that A is constant and that STFT is used on 
both sides of Equation 1, the mixing model in the time-frequency domain is obtained as 
Equation 3:
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𝑋𝑋𝑚𝑚 (𝑡𝑡,𝑓𝑓) = � 𝑥𝑥𝑚𝑚 (𝜏𝜏)ℎ(𝑡𝑡 −

∞

−∞
𝜏𝜏)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑 

𝑋𝑋�(𝑡𝑡,𝑓𝑓)  =  𝐴𝐴𝑆𝑆�(𝑡𝑡,𝑓𝑓), 

𝑋𝑋�(𝑡𝑡,𝑓𝑓 )  =  [𝑋𝑋�1 (𝑡𝑡,𝑓𝑓 ),𝑋𝑋�2 (𝑡𝑡,𝑓𝑓 ), . . . . ,𝑋𝑋�𝑀𝑀]𝑇𝑇 and 𝑆̃𝑆(𝑡𝑡,𝑓𝑓 )  =  [𝑆̃𝑆1 (𝑡𝑡,𝑓𝑓 ), 𝑆̃𝑆2 (𝑡𝑡,𝑓𝑓 ), . . . . , 𝑆̃𝑆𝑁𝑁]𝑇𝑇  

							       [3]

w h e r e  

𝑋𝑋𝑚𝑚 (𝑡𝑡,𝑓𝑓) = � 𝑥𝑥𝑚𝑚 (𝜏𝜏)ℎ(𝑡𝑡 −
∞

−∞
𝜏𝜏)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑 

𝑋𝑋�(𝑡𝑡,𝑓𝑓)  =  𝐴𝐴𝑆𝑆�(𝑡𝑡,𝑓𝑓), 

𝑋𝑋�(𝑡𝑡,𝑓𝑓 )  =  [𝑋𝑋�1 (𝑡𝑡,𝑓𝑓 ),𝑋𝑋�2 (𝑡𝑡,𝑓𝑓 ), . . . . ,𝑋𝑋�𝑀𝑀]𝑇𝑇 and 𝑆̃𝑆(𝑡𝑡,𝑓𝑓 )  =  [𝑆̃𝑆1 (𝑡𝑡,𝑓𝑓 ), 𝑆̃𝑆2 (𝑡𝑡,𝑓𝑓 ), . . . . , 𝑆̃𝑆𝑁𝑁]𝑇𝑇  a n d  

𝑋𝑋𝑚𝑚 (𝑡𝑡,𝑓𝑓) = � 𝑥𝑥𝑚𝑚 (𝜏𝜏)ℎ(𝑡𝑡 −
∞

−∞
𝜏𝜏)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑 

𝑋𝑋�(𝑡𝑡,𝑓𝑓)  =  𝐴𝐴𝑆𝑆�(𝑡𝑡,𝑓𝑓), 

𝑋𝑋�(𝑡𝑡,𝑓𝑓 )  =  [𝑋𝑋�1 (𝑡𝑡,𝑓𝑓 ),𝑋𝑋�2 (𝑡𝑡,𝑓𝑓 ), . . . . ,𝑋𝑋�𝑀𝑀]𝑇𝑇 and 𝑆̃𝑆(𝑡𝑡,𝑓𝑓 )  =  [𝑆̃𝑆1 (𝑡𝑡,𝑓𝑓 ), 𝑆̃𝑆2 (𝑡𝑡,𝑓𝑓 ), . . . . , 𝑆̃𝑆𝑁𝑁]𝑇𝑇   

𝑋𝑋𝑚𝑚 (𝑡𝑡,𝑓𝑓) = � 𝑥𝑥𝑚𝑚 (𝜏𝜏)ℎ(𝑡𝑡 −
∞

−∞
𝜏𝜏)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑 

𝑋𝑋�(𝑡𝑡,𝑓𝑓)  =  𝐴𝐴𝑆𝑆�(𝑡𝑡,𝑓𝑓), 

𝑋𝑋�(𝑡𝑡,𝑓𝑓 )  =  [𝑋𝑋�1 (𝑡𝑡,𝑓𝑓 ),𝑋𝑋�2 (𝑡𝑡,𝑓𝑓 ), . . . . ,𝑋𝑋�𝑀𝑀]𝑇𝑇 and 𝑆̃𝑆(𝑡𝑡,𝑓𝑓 )  =  [𝑆̃𝑆1 (𝑡𝑡,𝑓𝑓 ), 𝑆̃𝑆2 (𝑡𝑡,𝑓𝑓 ), . . . . , 𝑆̃𝑆𝑁𝑁]𝑇𝑇  represent the STFT complex coefficients of X(t) and S(t) at TF point 
(t , f ) , respectively. The underdetermined mixtures in the time domain and the TF domain 
of three mixtures and four sources are illustrated in Figures 4 and 5, respectively. Figure 
4 shows that the mixtures’ direction is unclear due to the sources’ weak sparsity. After the 
STFT is addressed, the scatter plot in Figure 5 clearly shows the column directions of the 
mixing matrix.

Figure 4. Mixed bioacoustic signals in the time-domain Figure 5. Mixed bioacoustic signals in the TF domain

The Mixing Matrix Estimation

The mixing matrix was estimated using the TF domain mixing model. Mixing matrix 
estimation is an important procedure in SCA and can be improved in two ways: SSP 
detection and clustering. Two assumptions were made to estimate the mixing matrix:

A1) Any column vector is linearly independent in the mixing matrix A.
A2) There are some TF points (t , f )  for each source (𝑡𝑡, 𝑓𝑓) for each source 𝑠𝑠𝑖𝑖′  in which only 𝑠𝑠𝑖𝑖′  is dominant, �𝑆̃𝑆𝑖𝑖(𝑡𝑡,𝑓𝑓)� ≥ �𝑆̃𝑆𝑗𝑗 (𝑡𝑡,𝑓𝑓)�∀𝑗𝑗≠ 𝑖𝑖.  in which only (𝑡𝑡, 𝑓𝑓) for each source 𝑠𝑠𝑖𝑖′  in which only 𝑠𝑠𝑖𝑖′  is dominant, �𝑆̃𝑆𝑖𝑖(𝑡𝑡,𝑓𝑓)� ≥ �𝑆̃𝑆𝑗𝑗 (𝑡𝑡,𝑓𝑓)�∀𝑗𝑗≠ 𝑖𝑖.  is dominant, 

(𝑡𝑡, 𝑓𝑓) for each source 𝑠𝑠𝑖𝑖′  in which only 𝑠𝑠𝑖𝑖′  is dominant, �𝑆̃𝑆𝑖𝑖(𝑡𝑡,𝑓𝑓)� ≥ �𝑆̃𝑆𝑗𝑗 (𝑡𝑡,𝑓𝑓)�∀𝑗𝑗≠ 𝑖𝑖. .
The stability of SSP detection can be increased by using both assumptions. The steps 

of mixing matrix estimation can be summarised as follows:
1.	 Generate the underdetermined mixtures.
2.	 Transform the time domain underdetermined mixtures X(t) into the TF domain 

𝑋𝑋�(𝑡𝑡,𝑓𝑓) .
3.	 Detect the SSP: Compute the sparse coding coefficients
4.	 Through l1-norm optimisation to detect the SSP for each of the TF vectorisation. 

The problem of  sparse coding can be formulated as Equation 4:



2263Pertanika J. Sci. & Technol. 31 (5): 2257 - 2272 (2023)

Underdetermined Blind Source Separation

𝐽𝐽(𝑐𝑐𝑖𝑖 : 𝜆𝜆)  =  
1
2 �

𝑦𝑦𝑖𝑖 − 𝑌𝑌𝐶𝐶𝑖𝑖�2
2 + 𝜆𝜆‖𝑐𝑐𝑖𝑖‖1 𝑠𝑠. 𝑡𝑡𝑐𝑐𝑖𝑖𝑖𝑖  =  0 ,				    [4]

where 𝑐𝑐𝑖𝑖  is the  ‖𝑐𝑐𝑖𝑖‖1 𝑙𝑙1-norm and 𝑦𝑦𝑖𝑖 − 𝑌𝑌𝐶𝐶𝑖𝑖   is the reconstruction error between each mixture 
TF vector and the linear combination of it. The SSP is the sparse coding coefficient with 
only one nonzero element at the TF point.

Apply the hierarchical clustering technique to the detected single-source mixture TF 
vectors to obtain clustering centres, which can then be used to calculate the estimated 
mixing matrix 𝐴̃𝐴 .

The Source Recovery Estimation

Following the estimation of the mixing matrix, the bioacoustic source 𝑆̃𝑆 

𝑀𝑀𝑀𝑀(𝑀𝑀 − 1) 

𝑨𝑨 =  �𝑨𝑨𝒊𝒊�𝑨𝑨𝒊𝒊 = [ 𝒂𝒂�𝜽𝜽𝟏𝟏,𝒂𝒂�𝜽𝜽𝟐𝟐,.....,𝒂𝒂�𝜽𝜽𝑴𝑴−𝟏𝟏 ]� 

𝑨𝑨∗ =  �𝑨𝑨𝒊𝒊�𝑨𝑨𝒊𝒊 = [ 𝒂𝒂�𝜽𝜽𝟏𝟏,𝒂𝒂�𝜽𝜽𝟐𝟐,.....,𝒂𝒂�𝜽𝜽𝑴𝑴−𝟏𝟏 ]� 

 is estimated. 
Given that Equation 1 is underdetermined, its solution is not unique even when 𝐴̃𝐴  is 
known. Assumption A2 is needed to achieve source recovery. Let A be a set consisting of 
all 

𝑆̃𝑆 

𝑀𝑀𝑀𝑀(𝑀𝑀 − 1) 

𝑨𝑨 =  �𝑨𝑨𝒊𝒊�𝑨𝑨𝒊𝒊 = [ 𝒂𝒂�𝜽𝜽𝟏𝟏,𝒂𝒂�𝜽𝜽𝟐𝟐,.....,𝒂𝒂�𝜽𝜽𝑴𝑴−𝟏𝟏 ]� 

𝑨𝑨∗ =  �𝑨𝑨𝒊𝒊�𝑨𝑨𝒊𝒊 = [ 𝒂𝒂�𝜽𝜽𝟏𝟏,𝒂𝒂�𝜽𝜽𝟐𝟐,.....,𝒂𝒂�𝜽𝜽𝑴𝑴−𝟏𝟏 ]� 

 submatrices of 𝐴̃𝐴  (Equation 5):
𝑆̃𝑆 

𝑀𝑀𝑀𝑀(𝑀𝑀 − 1) 

𝑨𝑨 =  �𝑨𝑨𝒊𝒊�𝑨𝑨𝒊𝒊 = [ 𝒂𝒂�𝜽𝜽𝟏𝟏,𝒂𝒂�𝜽𝜽𝟐𝟐,.....,𝒂𝒂�𝜽𝜽𝑴𝑴−𝟏𝟏 ]� 

𝑨𝑨∗ =  �𝑨𝑨𝒊𝒊�𝑨𝑨𝒊𝒊 = [ 𝒂𝒂�𝜽𝜽𝟏𝟏,𝒂𝒂�𝜽𝜽𝟐𝟐,.....,𝒂𝒂�𝜽𝜽𝑴𝑴−𝟏𝟏 ]� 

.					     [5]

Then, for any TF point (t , f )  there must exist a matrix element 
𝑨𝑨∗ =  �𝑨𝑨𝒊𝒊�𝑨𝑨𝒊𝒊 = [ 𝒂𝒂�𝜽𝜽𝟏𝟏,𝒂𝒂�𝜽𝜽𝟐𝟐,.....,𝒂𝒂�𝜽𝜽𝑴𝑴−𝟏𝟏 ]� 

𝑋𝑋�(𝑡𝑡,𝑓𝑓) = 𝑨𝑨∗𝑨𝑨∗
† 𝑋𝑋�(𝑡𝑡,𝑓𝑓), 

 that fulfils Equation 6:𝑨𝑨∗ =  �𝑨𝑨𝒊𝒊�𝑨𝑨𝒊𝒊 = [ 𝒂𝒂�𝜽𝜽𝟏𝟏,𝒂𝒂�𝜽𝜽𝟐𝟐,.....,𝒂𝒂�𝜽𝜽𝑴𝑴−𝟏𝟏 ]� 

𝑋𝑋�(𝑡𝑡,𝑓𝑓) = 𝑨𝑨∗𝑨𝑨∗
† 𝑋𝑋�(𝑡𝑡,𝑓𝑓), ,							       [6]

where † is the pseudoinverse of 𝑨𝑨∗ =  �𝑨𝑨𝒊𝒊�𝑨𝑨𝒊𝒊 = [ 𝒂𝒂�𝜽𝜽𝟏𝟏,𝒂𝒂�𝜽𝜽𝟐𝟐,.....,𝒂𝒂�𝜽𝜽𝑴𝑴−𝟏𝟏 ]� 

𝑋𝑋�(𝑡𝑡,𝑓𝑓) = 𝑨𝑨∗𝑨𝑨∗
† 𝑋𝑋�(𝑡𝑡,𝑓𝑓), 

. Then, Equation 7 can estimate source signals:

𝑆̃𝑆𝑗𝑗 (𝑡𝑡, 𝑓𝑓)  = � 𝑖𝑖 ,
0,

𝑖𝑖𝑖𝑖  𝑗𝑗=∅1
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 

𝑨𝑨∗  =  �𝑋𝑋�(𝑡𝑡,𝑓𝑓)  −  𝑨𝑨∗𝑨𝑨∗
† 𝑋𝑋�(𝑡𝑡,𝑓𝑓) �𝟐𝟐𝑨𝑨𝒊𝒊 ∈ 𝑨𝑨  

𝒂𝒂𝒂𝒂𝒂𝒂 𝒎𝒎𝒎𝒎𝒎𝒎
. 

							      [7]

where  𝑒𝑒 = [𝑒𝑒1, 𝑒𝑒2, . . . . . , 𝑒𝑒𝑀𝑀−1]𝑇𝑇 = 𝑨𝑨∗† 𝑋𝑋�(𝑡𝑡,𝑓𝑓) and 𝐴𝐴∗  and 𝑨𝑨∗ =  �𝑨𝑨𝒊𝒊�𝑨𝑨𝒊𝒊 = [ 𝒂𝒂�𝜽𝜽𝟏𝟏,𝒂𝒂�𝜽𝜽𝟐𝟐,.....,𝒂𝒂�𝜽𝜽𝑴𝑴−𝟏𝟏 ]� 

𝑋𝑋�(𝑡𝑡,𝑓𝑓) = 𝑨𝑨∗𝑨𝑨∗
† 𝑋𝑋�(𝑡𝑡,𝑓𝑓), 

 is produced by Equation 8:𝑆̃𝑆𝑗𝑗 (𝑡𝑡, 𝑓𝑓)  = � 𝑖𝑖 ,
0,

𝑖𝑖𝑖𝑖  𝑗𝑗=∅1
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 

𝑨𝑨∗  =  �𝑋𝑋�(𝑡𝑡,𝑓𝑓)  −  𝑨𝑨∗𝑨𝑨∗
† 𝑋𝑋�(𝑡𝑡,𝑓𝑓) �𝟐𝟐𝑨𝑨𝒊𝒊 ∈ 𝑨𝑨  

𝒂𝒂𝒂𝒂𝒂𝒂 𝒎𝒎𝒎𝒎𝒎𝒎
. .				    [8]

Finally, using inverse STFT, the time domain of the estimated bioacoustic signal S (t) 
can be easily obtained.

RESULTS AND DISCUSSION

Experimental Setup

For the experimental setup, randomly selected sources from 1: N of S(t) were mixed with 
100 random mixing matrices using Equation 1 to generate 100 random mixtures X(t). 
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This setup was intended to represent a real environment wherein some sensors are placed 
in different positions to receive mixed signals. The algorithm was implemented on each 
mixture signal to separate the bioacoustic source signals. The STFT size of each mixture 
signal was set to 1024 with the time step was 512, and the weighting function was a 
Hamming window. The averages of 100 Monte Carlo simulation tests were obtained to 
evaluate the performance of the SCA method. We performed the following at each stage 
of the SCA algorithm: 

(1)	 We investigated the algorithm’s robustness concerning the noise by evaluating 
system performance at different SNRs. Compared to background noise, SNR is a 
metric that measures the level of the desired signal with that of the background. 

(2)	 We also assessed the algorithm’s performance by using the setting of different 
numbers of mixtures M and the numbers of sources N where M×N = 3×4, 3×5, 
3×6, 4×5, 4×6.

3×4, 3×5 and 3×6 indicate that four, five, and six sources are received by three sensors, 
respectively, whereas 4×5, 4×6, and 4×7 indicate that five, six and seven sources are 
received by four sensors, respectively.

First Stage: Performance of Mixing Matrix Estimation

The following Equation 9 was used to quantify the performance of mixing matrix estimation:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  1
𝑁𝑁
∑ (1 −  𝑎𝑎𝑖𝑖

𝑇𝑇𝑎𝑎�𝑖𝑖
‖𝑎𝑎𝑖𝑖‖‖𝑎𝑎�𝑖𝑖‖

𝑛𝑛
𝑡𝑡−1 ), ,						     [9]

where the number of sources is represented by N and  𝑎𝑎�𝑖𝑖   represents the estimation of mixing 
vector  𝑎𝑎�𝑖𝑖  . As the error decreases, the accuracy of mixing matrix estimation increases. 
Gaussian white noise is added to the mixed signal to compare how robust the method is 
to noise. The noise performance of the algorithm at various signal-to-noise ratios (SNR) 
ranging from 5 dB to 45 dB was tested.

Figures 6 and 7 show the averaged error obtained by 100 Monte Carlo tests in 
estimating the mixing matrix for three and four mixtures with different numbers of sources, 
respectively. As inferred from Figure 6, the error values tended to decrease as the SNR was 
increased in all settings. Figure 7 also illustrates the same trend. This result indicated that 
the mixing matrix’s accuracy improved as the SNR value was increased. The robustness of 
SCA concerning noise was demonstrated here, given that it presented a stable and reliable 
performance when the noise level was increased from 45 dB to 5 dB with error changes 
less than 0.15. Comparing the performances of different settings in Figures 6 and 7 revealed 
that the three mixture settings obtained small average errors at the SNR of 45 dB. This 
result showed that mixing matrix estimation in the three-mixture setting was superior to 
that in the four-mixture setting. Figures 6 and 7 illustrated that the performances under 
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Figure 6. Comparison of the mixing matrix estimation 
performances of three mixtures with different 
numbers of sources at different SNRs

Figure 7 .  Comparison of the mixing matrix 
estimation performances of four mixtures with 
different numbers of sources at different SNRs

Figure 8. Comparison of the mixing matrix estimation 
performances of three mixtures for different methods 
at different SNRs

different sensor settings degraded when the number of sources was increased. This finding 
indicated that the number of sources and sensors strongly correlates with performance. 

Next, the three-mixture setting using Zhen’s method, which utilised sparse coding 
to identify the SSPs, was chosen for a quantitative comparison in estimating the mixing 
matrix with V.G. Reju’s (Reju et al., 2009) and the TIFROM (Abrard & Deville, 2005) 
methods. We applied the same setting to both comparison methods. Figure 8 compares 
the performance of different mixing matrix estimation methods after 100 Monte Carlo 
trials for bioacoustic signals. Observing the error with changes in SNR from 5 to 45dB 
shows that all errors from different approaches diminish with rising SNR for bioacoustic 
signals. The estimation performance of V.G. 
Reju, TIFROM and the method proposed 
by Zhen differs significantly when the SNR 
is less than 30 dB. All methods have lower 
estimation performance when the SNR 
is greater than 30dB. The three-mixture 
setting using Zhen’s method has a more 
consistent and dependable performance. 
In the noisy case, the three-mixture setting 
using Zhen’s method outperforms V.G. Reju 
and TIFROM by more than 0.5dB in error 
when SNR declines from 45dB to 5dB. The 
suggested technique provides a low error 
rate when implemented for bioacoustic 
signals. 
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Second Stage: The Source Recovery Estimation 

After estimating the mixing matrix, the source recovery was quantified. The accuracy of 
source recovery is determined by how well we estimate the mixing matrix. The quality of 
the separation was tested by using the following measures to achieve bioacoustic source 
recovery (Equation 10):

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝑀𝑀𝑀𝑀𝑀𝑀 = 10𝑙𝑙𝑙𝑙𝑙𝑙10(1
𝑛𝑛
∑ 𝑚𝑚𝑚𝑚𝑚𝑚

𝛿𝛿

�𝑠𝑠𝑖𝑖 
′ − 𝛿𝛿𝑠𝑠�𝑖𝑖

′ �2
2

�𝑠𝑠𝑖𝑖
′ �2

2
𝑛𝑛𝑛𝑛
𝑡𝑡=1 ), ,	 [10]

where (𝑡𝑡, 𝑓𝑓) for each source 𝑠𝑠𝑖𝑖′  in which only 𝑠𝑠𝑖𝑖′  is dominant, �𝑆̃𝑆𝑖𝑖(𝑡𝑡,𝑓𝑓)� ≥ �𝑆̃𝑆𝑗𝑗 (𝑡𝑡,𝑓𝑓)�∀𝑗𝑗≠ 𝑖𝑖.  represents the ith source, 𝑠𝑠�𝑖𝑖′    is the estimated source, and δ is a scalar that reflects 
the scalar ambiguity. Figures 9 and 10 show the comparison of the performances of the 
three and four mixtures with different numbers of sources in source recoveries at different 
SNRs. The average results were taken from 100 Monte Carlo simulations. The trend in 
Figures 9 and 10 showed that as the SNR was increased, the MSE decreased under all 
settings, in agreement with the finding reported by (Zhen et al., 2017). At 45dB SNR, the 
three-mixture setting provided a smaller MSE value than the four-mixture setting. A small 
MSE indicates high accuracy in source recovery. Figures 9 and 10 indicate that accuracy 
degraded when the number of sources was increased. When additional sources were used, 
the performance degradation may be attributed to the difficulty in satisfying the restriction 
in assumption A2, wherein only one source is active at any TF point.

We evaluated performance by using three metrics, namely, signal-to-distortion ratio 
(SDR), signal-to-interferences ratio (SIR), and signal-to-artefacts ratio (SAR), to measure 
the quality of the separated bioacoustic source signals (Vincent et al., 2006). High values 
of the metrics indicate good quality of separation. The results summarised in Figure 11 

Figure 9 .  Comparison of  source recovery 
performances by the three-mixture setting with 
different numbers of sources at different SNRs 

Figure 10. Comparison of the source recovery 
performances of the four-mixture setting with 
different numbers of sources at different SNRs
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demonstrated that 3×4 and 3×5 exhibited high SDR, SIR, and SAR values under all 
settings, thus showing that the sources were well separated. On the other hand, the 3×6 
setting obtained low SDR and SIR values for Source 2. This situation showed that the 
increasing number of sources does impact the source recovery performance. Figure 12 
depicts that for each setting, 4×5 can separate all the sources well, whereas the setting 
for 4×6 can only separate sources 2 and 3, and 4×7 can only separate source 1. In short, 
the discrepancy between the number of sources and the number of sensors influences the 
separation performance of our underdetermined bioacoustic mixtures.

Some simulation results are also presented to illustrate the performance of the 
separation algorithms. The simulation results related to the performance in Figure 11 are 
shown in Figures 13, 14, and 15. Figure 13 presents the simulation result of separating four 
sources from three mixtures. All estimated sources were sufficiently close to the sources. 
Figure 14 provides the simulation result of separating five sources from three mixtures. 
Given the simulation results, the estimated source 5 was not fully recovered but can still 
be identified as source 5. Figure 15 gives the simulation result of separating six sources 
from three mixtures, indicating that four sources were effectively recovered while source 
2 was incompletely recovered. The simulation results related to the performance depicted 
in Figure 12 are shown in Figures 16, 17, and 18, illustrating the results of separating five, 
six, and seven sources from four mixtures, respectively. In Figure 16, all estimated sources 
were fully recovered except for estimated source 5. Figure 17 shows that only estimated 
sources 2 and 4 were recognisable. Meanwhile, in Figure 18, only estimated source 1 was 
recovered. The results indicated that the SCA algorithm using our bioacoustic signals 
performed best with three mixtures with increasing numbers of sources at different SNRs.

Figure 11. Comparison of the bioacoustic signal separation performances of three mixtures with different 
numbers of sources
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Figure 12. Comparison of the bioacoustic signal separation performances of four mixtures with different 
numbers of sources

Figure 13. Simulation result of the separation of four sources from three mixtures. First row: Bioacoustic 
source signals. Second row: Mixtures. Third row: Estimated source signals
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Figure 14. Simulation result of separating five sources from three mixtures. First row: Bioacoustic source 
signals. Second row: Mixtures. Third row: Estimated source signals

Figure 15. Simulation result of separating six sources from three mixtures. First row: Bioacoustic source 
signals. Second row: Mixtures. Third row: Estimated source signals

Figure 16. Simulation result of separating five sources from four mixtures. First row: Bioacoustic source 
signals. Second row: Mixtures. Third row: Estimated source signals
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CONCLUSION

This study exploited the SCA algorithm miming the real environment procedure for 
underdetermined bioacoustic mixtures. The sources in the underdetermined mixtures 
presented here exhibited sparse behaviour after being transformed into the TF domain 
using STFT. SSPs were discovered by estimating the mixing matrix with sparse coding. A 
series of least-square problems were used to recover the estimated sources. The robustness 
of the SCA algorithm also demonstrated that the algorithm presented a stable and reliable 

Figure 18. Simulation result of separating seven sources from four mixtures. First row: Bioacoustic source 
signals. Second row: Mixtures. Third row: Estimated source signals

Figure 17. Simulation result of separating six sources from four mixtures. First row: Bioacoustic source signals. 
Second row: Mixtures. Third row: Estimated source signals
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performance in a noisy environment with small error changes when the SNR was increased. 
The influences of different numbers of sources and sensors on the SCA algorithm were 
examined. The experimental results revealed that the performances varied when different 
numbers of sources and sensors were used. Moreover, the performances of the SCA 
algorithm using bioacoustic signals degraded when the number of sources was increased, 
and the number of sensors was fixed.
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