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ABSTRACT 

Damage to the bearing elements will affect the rotation of the rotor and lead to the cessation 
of motor operation. Therefore, it is imperative to monitor the condition of the bearings 
to provide information on timely maintenance actions, improve reliability, and prevent 
serious damage. One of the important keys to an effective and accurate monitoring system 
is the placement of sensors and proper signal processing. Sound signal issued by the motor 
during operation capable of describing its elements’ condition. Therefore, this study aims 
to develop a sound sensor placement strategy appropriate for monitoring the condition of 
induction motor bearing components. This study was carried out on three-phase induction 
motors’ outer-race, inner-race, and ball-bearing sections with the signal processing method 

using the spectrum analysis. Furthermore, 
the effect of sound sensor placement 
on condition monitoring accuracy was 
determined using the One-Way Analysis 
of Variance (One-Way ANOVA) approach. 
This process tests the null hypothesis and 
determines whether the average of all 
groups is the same (H0) or different (H1). 
Furthermore, Tukey’s test was applied to 
obtain effective sound sensor placement, 
with voice-based condition monitoring used 
for effective identification. The test found 
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that the accuracy of monitoring the bearing condition was 92.66% by placing the sound 
sensor at 100 cm from the motor body.

Keywords:  Bearing, condition monitoring, placement strategy, sound signal, spectrum analysis 

INTRODUCTION

An induction motor is widely used as an industrial driving machine, while 90% serve 
as prime movers compared to other engine types (Gundewar & Kane, 2021). Damage 
to its parts can occur in the stator, rotor, bearings, and other parts. Bearing is one of the 
induction motor elements that play a significant role in aiding the rotating rotor. From the 
survey carried out by Toma et al. (2020), it was discovered that over 40% of the bearing 
gets damaged. It is caused by a lack of lubrication, inappropriate lubricants, incorrect 
installation, and overload. A monitoring system is needed to avoid its negative impact on 
motor parts. Furthermore, condition monitoring is necessary for industrial sustainability 
to boost efficiency, reliability, and safety, as well as reduce maintenance costs (Lee et al., 
2021). The process was conducted by analyzing the sound generated by the motor during 
its operation. The advantage of this technique is that the microphone or sound sensor is 
relatively inexpensive, and its signal is easily captured without contact with the motor 
elements. This technique is usually recommended because it yields accurate results (Ewert 
et al., 2020). 

The studies that discuss and monitor the condition of sound-based machine elements 
have been conducted using various signal-processing methods. Meanwhile, traditional 
signal processing techniques are still being developed by other research using time and 
frequency domain analyses, as well as a combination of both procedures (Chatterjee et al., 
2020) because the adoption of Fast Fourier Transform (FFT) provides information about 
the condition of the motor elements. The signal in the time domain is transformed to the 
frequency analysis using the Fourier Series, Discrete Fourier Transform (DFT), and FFT. 
According to Nakamura et al. (2021), the advantage of frequency domain analysis is that 
it can identify signal components. Furthermore, to reduce the use of computer technology 
with high specifications, this technique is quite reliable and serves as an alternative system 
for monitoring the condition of induction motor elements (Qiao et al., 2020). 

The placement of different sensor locations results in changes in sensitivity because 
they are affected by environmental noise around the induction motor. Zhang et al. (2020) 
stated that sensor placement greatly affects the accuracy of the monitoring diagnosis results. 
Furthermore, five sensors were placed at 30 cm to obtain detailed information concerning 
the bearing condition of a single-phase induction motor (Glowacz et al., 2018). Wang 
et al. (2019) adopted an efficient sensor placement strategy, using multi-sensors with a 
Multidimensional Time-Series Analysis approach. The result showed that the higher the 
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number of sensors used, the greater the information obtained, although this requires much 
money. For this reason, it is necessary to employ an effective strategy to ensure that the 
placement of the right sensor provides accurate monitoring information concerning the 
condition of the motor elements (Goyal et al., 2019). It is in addition to the proposals of 
a sensor placement strategy with a mathematical model based on the Response Surface 
Methodology (RSM) (Bhogal et al., 2015). RSM is a statistical model used to analyze 
problems in which several independent variables positively affect the response attribute. 
It led to the developing of a mathematical relationship model between input variables and 
response parameters to determine the optimal sensor placement for monitoring gearbox 
conditions with an accuracy of 92.2% (Vanraj et al., 2017). 

Developing an efficient placement strategy is necessary to improve sensor data quality 
and monitoring accuracy. It enables the captured signal characteristics to represent the 
actual condition of the motor part. Therefore, this study discusses the strategy for placing 
sound sensors to monitor the condition of three-phase induction motor bearing elements. 
Spectrum analysis was employed in terms of executing this investigation. The independent 
variable is the microphone placement as a sound sensor subjected to six different distance 
treatments, with the mean difference evaluated using the ANOVA test. The results showed 
that environmental complexity affects the monitoring condition of the motor bearing as 
an industrial driving machine. Therefore, the sensor placement strategy is essential and 
contributes significantly to the industry.  

MATERIALS AND METHODS

Generally, machine condition monitoring consists of three steps: collecting relevant data, 
processing and analyzing data, and diagnostic and prognostic decision-making (Goyal et 
al, 2021). An approach flowchart of the bearing condition monitoring, which focuses on 
sensor placement strategies, is shown in Figure 1. It captures the sound signal from the 
motor operation, and the placement is tested based on six varying distances measured from 
the motor body. The sound signal captured by the microphone is analog. Then, this signal 
will be converted to a digital signal by the Analog to Digital Converter (ADC). The resulting 
digital signal is still in the time domain, so a feature generation process step is needed to 
obtain a signal in the frequency domain (using the FFT algorithm). The bearing condition 
can be diagnosed using spectrum analysis. Spectrum analysis is a diagnostic approach 
employed to monitor the bearing conditions due to its frequency characteristics. The sound 
signal is processed with FFT to obtain a sign in the frequency domain. Meanwhile, the 
spectrum analysis is used to determine the condition of the outer and inner races, as well 
as the ball bearing in the induction motor rotor. Figure 2 shows the experimental setup of 
the bearing elements condition and monitoring system. The induction motor tested has 
specifications of 3 phases, 380 V, 3.68 A 1.5 kW, and 4 poles. Monitoring data is captured 
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using a sound sensor (USB microphone). The test bearing specifications are 6205 2R, with a 
bore diameter of 25 mm, an outer diameter of 52 mm, and a number of balls of 9 pieces. The 

Figure 1. Flowchart of the proposed approach
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motor load is in the form of a mechanical 
load. Therefore, artificial damage is carried 
out to prove the monitoring accuracy by 
providing defects in the outer race bearing, 
broken ball bearing, and healthy inner race. 
The developed monitoring system should 
recognize the conditions tested, as shown 
in Figure 3.

Spectrum analysis is a diagnostic 
approach employed to monitor  the 
bearing conditions due to its frequency 
characteristics. The sound signal generated 
by a faulty motor operation conveys 
harmonic information. The flux density 
in the air gap becomes asymmetrical and 
affects the inductance, thereby increasing 
the amplitude at a certain frequency (Nirwan 
& Ramani, 2022). Meanwhile, the frequency 
of the bearing elements is determined from 
the geometry, kinematics, and rotational 
speed, where r, V, ω, N, d, Dp, and ϴ denote 
distance, linear speed, angular speed, 
number of ball bearings, diameter ball 
bearing, diameter pitch, and contact angle, 
respectively (Figure 4). 

Figure 2. Experimental setup for monitoring condition-bearing
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When the bearing rotates, it produces a 
linear speed within the following range, as 
described in Equation 1:
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Figure 3. Bearing shaft rotor used for condition monitoring system test

Bearing specifications
Type: 6205 2R
Bore diameter: 25 mm
Outside diameter: 52 mm
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Number of balls: 9 pieces
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Figure 4. Bearing front view
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Additionally, a defect in the outer race causes a spike in amplitude at a certain frequency. 
Its bearing rotation frequency, namely the Ball Pass Frequency of Outer Race (BPFO), is 
calculated as follows:  
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− 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

2
 and 𝑟𝑟𝑜𝑜

𝐷𝐷𝑝𝑝
2

+ 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
2

 

𝑉𝑉𝑐𝑐 = 𝜔𝜔𝑐𝑐𝑟𝑟𝑐𝑐 = 𝜔𝜔𝑐𝑐 �
𝐷𝐷𝑝𝑝
2
� if  𝑟𝑟𝑐𝑐 = 𝐷𝐷𝑝𝑝

2
 

Therefore, the angular speed of cage bearing formulated in Equation 2: 

𝜔𝜔𝑐𝑐 = �2𝑉𝑉𝑐𝑐
𝐷𝐷𝑝𝑝
� = � 2

𝐷𝐷𝑝𝑝
� .𝑉𝑉𝑐𝑐 = � 2

𝐷𝐷𝑝𝑝
� 𝑥𝑥 �𝜔𝜔𝑖𝑖𝑟𝑟𝑖𝑖+𝜔𝜔𝑜𝑜𝑟𝑟𝑜𝑜

2
� = 𝜔𝜔𝑖𝑖𝑟𝑟𝑖𝑖+𝜔𝜔𝑜𝑜𝑟𝑟𝑜𝑜

𝐷𝐷𝑝𝑝
    (2) 

The distance between the inner and outer races is as follows: 

𝑟𝑟𝑖𝑖 = 𝐷𝐷𝑝𝑝
2
− 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

2
  and  𝑟𝑟𝑜𝑜

𝐷𝐷𝑝𝑝
2

+ 𝑑𝑑 𝑐𝑐𝑜𝑜𝑜𝑜 𝜃𝜃
2

 

Hence, the angular speed of the cage bearing is shown in Equation 3 

𝜔𝜔𝑐𝑐 =
𝜔𝜔𝑖𝑖�

𝐷𝐷𝑝𝑝
2 −𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃2 �+𝜔𝜔𝑜𝑜�

𝐷𝐷𝑝𝑝
2 +𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

2 �

𝐷𝐷𝑝𝑝
= 1

2
�𝜔𝜔𝑖𝑖 �1− 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
� + 𝜔𝜔𝑜𝑜 �1 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
��   (3) 

Because ω is 2πf then the frequency of cage baring formulated in Equation 4: 

𝑓𝑓𝑐𝑐 = 1
2
�𝑓𝑓𝑖𝑖 �1− 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
� + 𝑓𝑓𝑜𝑜 �1 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
��        (4) 

Additionally, a defect in the outer race causes a spike in amplitude at a certain frequency. Its bearing 

rotation frequency, namely the Ball Pass Frequency of Outer Race (BPFO), is calculated as follows:   

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁(𝜔𝜔𝑐𝑐 − 𝜔𝜔𝑜𝑜) = 𝑁𝑁
2

(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑜𝑜). �1− 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

�   

The outer race bearing frequency is assumed to be 0 because it is locked with the 
external casing, where the inner race and the motor rotor shaft frequency (fi = fs) are 
the same (Barusu & Deivasigamani, 2020). Therefore, the outer race bearing frequency 
formulated in Equation 5:

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁
2
𝑓𝑓𝑠𝑠 �1− 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�         (5) 

Similarly, the Ball Pass Frequency of Inner Race (BPFI) is shown in Equation 6: 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁(𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑐𝑐) = 𝑁𝑁
2

(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑜𝑜) �1 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

�   

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁
2
𝑓𝑓𝑠𝑠 �1 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�        (6) 

The ball bearing frequency can be formulated as Ball Spin Frequency (BSF) using the following 

equation: 

𝜔𝜔𝑟𝑟 = 𝑉𝑉𝑟𝑟
𝑟𝑟𝑟𝑟

= (𝜔𝜔𝑖𝑖−𝜔𝜔𝑐𝑐)𝑟𝑟𝑖𝑖
𝑟𝑟𝑟𝑟

=
�𝜔𝜔𝑖𝑖−�

1
2�𝜔𝜔𝑖𝑖�1−𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝐷𝐷𝑝𝑝

�+𝜔𝜔𝑖𝑖�1+𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

����.𝑟𝑟𝑖𝑖

𝑟𝑟𝑟𝑟
  

𝜔𝜔𝑟𝑟 = 𝐷𝐷𝑝𝑝
2𝑑𝑑

(𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑜𝑜) �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

�
2
� then 𝑓𝑓𝑟𝑟 = 𝐷𝐷𝑝𝑝

2𝑑𝑑
(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑜𝑜) �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�

2
� 

The Ball Spin Frequency (BSF) is described in Equation 7: 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑓𝑓𝑟𝑟 = 𝐷𝐷𝑝𝑝
2𝑑𝑑
𝑓𝑓𝑠𝑠 �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�

2
�        (7) 

							       (5)

Similarly, the Ball Pass Frequency of Inner Race (BPFI) is shown in Equation 6:

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁
2
𝑓𝑓𝑠𝑠 �1− 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�         (5) 

Similarly, the Ball Pass Frequency of Inner Race (BPFI) is shown in Equation 6: 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁(𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑐𝑐) = 𝑁𝑁
2

(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑜𝑜) �1 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

�   

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁
2
𝑓𝑓𝑠𝑠 �1 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�        (6) 

The ball bearing frequency can be formulated as Ball Spin Frequency (BSF) using the following 

equation: 

𝜔𝜔𝑟𝑟 = 𝑉𝑉𝑟𝑟
𝑟𝑟𝑟𝑟

= (𝜔𝜔𝑖𝑖−𝜔𝜔𝑐𝑐)𝑟𝑟𝑖𝑖
𝑟𝑟𝑟𝑟

=
�𝜔𝜔𝑖𝑖−�

1
2�𝜔𝜔𝑖𝑖�1−𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝐷𝐷𝑝𝑝

�+𝜔𝜔𝑖𝑖�1+𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

����.𝑟𝑟𝑖𝑖

𝑟𝑟𝑟𝑟
  

𝜔𝜔𝑟𝑟 = 𝐷𝐷𝑝𝑝
2𝑑𝑑

(𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑜𝑜) �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

�
2
� then 𝑓𝑓𝑟𝑟 = 𝐷𝐷𝑝𝑝

2𝑑𝑑
(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑜𝑜) �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�

2
� 

The Ball Spin Frequency (BSF) is described in Equation 7: 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑓𝑓𝑟𝑟 = 𝐷𝐷𝑝𝑝
2𝑑𝑑
𝑓𝑓𝑠𝑠 �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�

2
�        (7) 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁
2
𝑓𝑓𝑠𝑠 �1− 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�         (5) 

Similarly, the Ball Pass Frequency of Inner Race (BPFI) is shown in Equation 6: 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁(𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑐𝑐) = 𝑁𝑁
2

(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑜𝑜) �1 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

�   

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁
2
𝑓𝑓𝑠𝑠 �1 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�        (6) 

The ball bearing frequency can be formulated as Ball Spin Frequency (BSF) using the following 

equation: 

𝜔𝜔𝑟𝑟 = 𝑉𝑉𝑟𝑟
𝑟𝑟𝑟𝑟

= (𝜔𝜔𝑖𝑖−𝜔𝜔𝑐𝑐)𝑟𝑟𝑖𝑖
𝑟𝑟𝑟𝑟

=
�𝜔𝜔𝑖𝑖−�

1
2�𝜔𝜔𝑖𝑖�1−𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝐷𝐷𝑝𝑝

�+𝜔𝜔𝑖𝑖�1+𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

����.𝑟𝑟𝑖𝑖

𝑟𝑟𝑟𝑟
  

𝜔𝜔𝑟𝑟 = 𝐷𝐷𝑝𝑝
2𝑑𝑑

(𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑜𝑜) �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

�
2
� then 𝑓𝑓𝑟𝑟 = 𝐷𝐷𝑝𝑝

2𝑑𝑑
(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑜𝑜) �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�

2
� 

The Ball Spin Frequency (BSF) is described in Equation 7: 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑓𝑓𝑟𝑟 = 𝐷𝐷𝑝𝑝
2𝑑𝑑
𝑓𝑓𝑠𝑠 �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�

2
�        (7) 

							       (6)

The ball bearing frequency can be formulated as Ball Spin Frequency (BSF) using 
the following equation:

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁
2
𝑓𝑓𝑠𝑠 �1− 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�         (5) 

Similarly, the Ball Pass Frequency of Inner Race (BPFI) is shown in Equation 6: 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁(𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑐𝑐) = 𝑁𝑁
2

(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑜𝑜) �1 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

�   

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁
2
𝑓𝑓𝑠𝑠 �1 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�        (6) 

The ball bearing frequency can be formulated as Ball Spin Frequency (BSF) using the following 

equation: 

𝜔𝜔𝑟𝑟 = 𝑉𝑉𝑟𝑟
𝑟𝑟𝑟𝑟

= (𝜔𝜔𝑖𝑖−𝜔𝜔𝑐𝑐)𝑟𝑟𝑖𝑖
𝑟𝑟𝑟𝑟

=
�𝜔𝜔𝑖𝑖−�

1
2�𝜔𝜔𝑖𝑖�1−𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝐷𝐷𝑝𝑝

�+𝜔𝜔𝑖𝑖�1+𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

����.𝑟𝑟𝑖𝑖

𝑟𝑟𝑟𝑟
  

𝜔𝜔𝑟𝑟 = 𝐷𝐷𝑝𝑝
2𝑑𝑑

(𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑜𝑜) �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

�
2
� then 𝑓𝑓𝑟𝑟 = 𝐷𝐷𝑝𝑝

2𝑑𝑑
(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑜𝑜) �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�

2
� 

The Ball Spin Frequency (BSF) is described in Equation 7: 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑓𝑓𝑟𝑟 = 𝐷𝐷𝑝𝑝
2𝑑𝑑
𝑓𝑓𝑠𝑠 �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�

2
�        (7) 

The Ball Spin Frequency (BSF) is described in Equation 7:

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁
2
𝑓𝑓𝑠𝑠 �1− 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�         (5) 

Similarly, the Ball Pass Frequency of Inner Race (BPFI) is shown in Equation 6: 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁(𝜔𝜔𝑖𝑖 − 𝜔𝜔𝑐𝑐) = 𝑁𝑁
2

(𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑜𝑜) �1 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝐷𝐷𝑝𝑝

�   

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁
2
𝑓𝑓𝑠𝑠 �1 + 𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�        (6) 

The ball bearing frequency can be formulated as Ball Spin Frequency (BSF) using the following 

equation: 
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The Ball Spin Frequency (BSF) is described in Equation 7: 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑓𝑓𝑟𝑟 = 𝐷𝐷𝑝𝑝
2𝑑𝑑
𝑓𝑓𝑠𝑠 �1 − �𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

𝐷𝐷𝑝𝑝
�

2
�        (7) 						      (7)

The characteristics of the sound signal at the fBPFO, fBPFi, and fBSF frequencies indicate 
the condition of each bearing section. 

Monitoring accuracy is proven by the percentage of correctness based on the condition 
of the bearing elements tested. Interestingly, a one-way ANOVA approach was used to test 
the hypothesis. This comparative evaluation examines the difference in the mean data of two 
or more groups. The hypothesis (H1) states that the sound sensor placement significantly 
affects the accuracy of monitoring the motor bearing condition. On the other hand, the (H0) 
hypothesis states that sensor placement has an insignificant effect on monitoring accuracy. 
The one-way ANOVA hypothesis test formulation is shown in Equation 8:
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H0 : α1 = α2 = … = αk

H1 = not all group means are equal 						      (8)

Where αk is the average group k, and k is the total number of groups. Assuming the one-way 
ANOVA test value states that (H1) is accepted, a post hoc test is carried out to determine 
the optimal sensor placement. The approach proposed by Tukey (honestly significant 
difference) is a post hoc test that is applied if (H0) is rejected (Shabbir et al., 2020). The 
Tukey test formula is shown in Equation 9:

|𝑡𝑡| = �𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗 �

�𝑀𝑀𝑀𝑀𝑀𝑀� 1
𝑛𝑛𝑖𝑖
− 1
𝑛𝑛𝑗𝑗
�

> 1
√2
𝑞𝑞𝛼𝛼 ,𝑘𝑘 ,𝑁𝑁−𝑘𝑘   

						      (9)

where the sample means of the group i and j are symbolized by yi and yj, MSE is a mean 
squared error, ni and nj are sample size group, qα,k,N-k is Tukey table, α is the significance 
level, N is the total number of observations, and k is the number of groups.

RESULTS AND DISCUSSION

The microphone captures a signal in the time domain as a sound sensor. Sound data is 
retrieved for 30 seconds with a sampling frequency of 44.1 kHz. The data acquired in the 
time domain is transformed into that of the frequency using the FFT algorithm. Then, 
spectrum analysis is carried out by calculating the frequency of its characteristics to 
determine the condition of the bearing elements. Referring to the specifications in Figure 
3 and the application of Equations 5, 6, and 7, the frequency of each bearing element is:

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 9
2

24.96 �1 − 7.25 𝑐𝑐𝑐𝑐𝑐𝑐 0𝑜𝑜

38.5
� = 91.18 𝐻𝐻𝐻𝐻  

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 9
2

24.96 �1 + 7.25 𝑐𝑐𝑐𝑐𝑐𝑐 0𝑜𝑜

38.5
� = 133.50 𝐻𝐻𝐻𝐻     

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 38.5
2𝑥𝑥7.25

24.96 �1 − �7.25 𝑐𝑐𝑐𝑐𝑐𝑐 0𝑜𝑜

38.5
�

2
� = 43.67 𝐻𝐻𝐻𝐻  

The following 91.18 Hz, 133.50 Hz, and 43.67 Hz are the fundamental frequencies 
of the outer and inner races, as well as the ball bearing. Each frequency of the harmonic 
element bearing was further observed. A sample spectrum of 800 Hz generates 6, 8, and 
18 frequencies at fBSF, fBPFO and fBPFI. Therefore, one sample data spectrum analysis is used 
to observe the amplitude at 32 harmonic frequencies. 

Figure 5 shows spectrum analysis at the fundamental frequency, where (a) depicts 
the sound spectrum with sensor placements of 50 cm, (b) 100 cm, and (c) 150 cm. The 
blue signal is the reference sound spectrum obtained from the operational bearing under 
a healthy condition, while the red is the test spectrum. If the test amplitude exceeds the 
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reference, the element bearing is declared to be in a damaged condition. On the other 
hand, assuming the reverse was the case, the element bearing is declared fit. Based on the 
test on the sensor placement of 50 cm from the motor body, the ball bearing was detected 
under a healthy condition; likewise, the outer race, while the inner one, was damaged. The 
monitoring results are inappropriate because the bearing elements were detected under 
damage conditions. In this case, the condition monitoring system is less accurate. However, 
this is different when reviewing the spectrum analysis results with the 100 cm sensor 
placement, as shown in Figure 5(b). The frequency of all bearing elements indicates the 
actual condition monitoring where the ball bearing and outer race are detected under faulty 
conditions while the inner one is in a healthy state. Figure 5(c) shows the sound spectrum 
with 150 cm sensor placement; the results of condition monitoring are less accurate.

The condition monitoring results of the bearing elements up to the fourth harmonic 
frequency shown in Table 1 is a detailed test of the first data where accuracy is calculated 
based on the percentage truth for the condition monitoring results of all bearing elements. 
Data was retrieved on each sensor placement variation four times to get valid results. 

The accuracy of the condition monitoring for all data repetitions is shown in Table 2. 
One-way ANOVA is performed using the data in Table 2 with respect to the hypothesis 
test. The requirements are that the sample data used should be normally distributed, 
its population must have a homogeneous variance, and the samples do not need to be 
related to each other. The normality test shows that the acquired information has been 
normally distributed with a P-value greater than 0.05, relatively 0.546. Meanwhile, the 
data homogeneity test was used to obtain a value of 0.275, meaning it is homogeneous.

Table 3 is a one-way sensor placement ANOVA regarding accurately monitoring 
the bearing elements’ conditions. It shows that the P-value is less than 5%. Therefore, it 
was concluded that (H1) is accepted, indicating that the sensor placement significantly 
affects the monitoring accuracy of bearing elements. The post hoc and Tukey tests were 
conducted to detect the best placement. Figure 6 shows the Tukey test results with a 95% 
confidence level. Based on the data grouping, the 100 cm sensor placement is the best 
location for monitoring the condition of bearing elements, with an average accuracy of 
92.66%. Relatively high accuracy is achieved with the proposed approach, thereby being 
highly recommended as an alternative for monitoring the condition of an induction motor.

Similar studies are shown in Table 4 as a discourse on developing motor condition 
monitoring. It also depicts studies that discuss monitoring the condition of motor elements 
based on sound and vibration data, where both are strongly influenced by ambient noise. 
Previous analyses presented this challenge to develop a condition-monitoring system by 
examining the effect of noise on accuracy (AlShorman et al., 2021). Therefore, the present 
study examines the optimal and effective sensor placement because the sound is susceptible 
to ambient noise.
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Figure 5. Spectrum analysis on the different sensor placements: (a) 50 cm; (b) 100 cm; and (c) 150 cm  
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Table 1 
Spectrum analysis for condition monitoring and detection accuracy

Placement Bearing
Condition

Freq
(Hz)

Amplitude (dB)
Result Accuracy

(%)Ref Test
50 cm Ball bearing 

defect
f 0.000068 0.000028 False 49.07 %

f x 2 0.000121 0.000038 False
f x 3 0.000168 0.000071 False
f x 4 0.003058 0.004393 True

Outer-race 
defect

f 0.000197 0.000033 False
f x 2 0.000190 0.000218 True
f x 3 0.000174 0.000237 True
f x 4 0.000138 0.000203 True

Inner-race 
healthy

f 0.000129 0.000133 False
f x 2 0.000158 0.000227 False
f x 3 0.000387 0.000633 False
f x 4 0.000157 0.000359 False

100 cm Ball bearing 
defect

f 0.000004 0.000137 True 94.44 %
f x 2 0.000018 0.000288 True
f x 3 0.000032 0.000109 True
f x 4 0.006436 0.056430 True

Outer-race 
defect

f 0.000037 0.000205 True
f x 2 0.000138 0.000425 True
f x 3 0.000018 0.000279 True
f x 4 0.000191 0.000199 True

Inner-race 
healthy

f 0.000026 0.000014 True
f x 2 0.000138 0.000077 True
f x 3 0.000310 0.000242 True
f x 4 0.000228 0.000139 True

150 cm Ball bearing 
defect

f 0.000037 0.000012 False 60.55 %
f x 2 0.000037 0.000073 True
f x 3 0.000055 0.000067 True
f x 4 0.008330 0.035380 True

Outer-race 
defect

f 0.000056 0.000020 False
f x 2 0.000079 0.000171 True
f x 3 0.000168 0.000506 True
f x 4 0.000204 0.000216 True

Inner-race 
healthy

f 0.000035 0.000049 False
f x 2 0.000351 0.000106 True
f x 3 0.000107 0.000077 True
f x 4 0.000298 0.000620 False
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Table 2 
Detection accuracy in all test cases

Placement
(cm)

Repetition (r) Average
1 2 3 4

0 13,33 % 15,18 % 20 % 24,16 % 18,17 %
50 49,07 % 60,55 % 47,87 % 56,38 % 53,47 %
100 94,44 % 87,77 % 92,12 % 96,29 % 92,66 %
150 60,55 % 56,20 % 58,70 % 54,53 % 57,49 %
200 59,90 % 44,90 % 57,59 % 50,92 % 53,33 %
250 50,18 % 41,85 % 47,87 % 52,03 % 47,98 %

Table 3 
One-way analysis of variance placement sensor 

Source of Diversity Degrees Free Sum of squares Middle square F-Value P-Value
Treatment 5 11308.4 2261.68 92.57 0.000

Galat 18 439.8 24.43
Total 23 11748.2

Figure 6. Tukey test

Model Summary

S R-sq R-sq (adj) R-sq (pred)

4,94301 96,26% 95,22% 93,34%

Means

Placement 
sensor N Mean StDev 95% CI
0 cm 4 18,17 4,89 (12,98; 23,36)

100 cm 4 92,66 3,68 (87,46; 97,85)
150 cm 4 57,49 2,66 (52,39; 62,69)
200 cm 4 53,33 6,79 (48,14; 58,52)
250 cm 4 47,98 4,43 (42,79; 53,17)
50 cm 4 53,47 6,04 (48,28; 58,66)

Pooled StDev = 4,94301

Turkey Pairwise Comparisons

Grouping Information Using the Turkey Method and 95% Confidence

Placement 
sensor N Mean Grouping
0 cm 4 92,66 A
100 cm 4 57,49 B
150 cm 4 53,47 B
200 cm 4 53,33 B
250 cm 4 47,98 B
50 cm 4 18,17 C

Means that do not share a letter are significantly different.
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Table 4 
Comparison of similar research with proposed research

Reference Feature extraction 
method Sensor Placement 

strategy Highlight

Vanraj et al., 
2017

No discussion Microphone RSM Sensor placement strategy using 
RSM approach with 112.5 cm.

Glowacs et 
al., 2018

MSAF-20-
MULTIEXPANDED

Microphone 30 cm sensor 
placement 

The sensor placement strategy 
approach is not discussed.

Wang et al., 
2019

MultiDTSA
and ARIMA

Microphone 
and 
accelerometer

No 
discussion

Future studies are recommended to 
optimize sensor settings. 

Vamsi et al., 
2019

wavelet 
decomposition

Microphone 
and 
accelerometer

No 
discussion

The placement of the sound sensor 
is free and more accurate than that 
of the vibration.

Goyal et al., 
2019

FFT Accelerometer NC-OSP 
strategy 

RSM can be used to track the 
optimal non-contact sensor 
location.

Nirwan & 
Ramani, 
2022

FFT Microphone, 
Accelerometer

No 
discussion

The bearing monitoring results 
using sound data are better than a 
vibration.

Zhang et al., 
2020

FFT Accelerometer No 
discussion

A sound and vibration sensor 
placement strategy is needed to get 
high accuracy.

AlShorman 
et al., 2021

Review all 
technique

Microphone No 
discussion

Review, challenges, and future 
trends are discussed for developing 
the effect of noise on monitoring 
accuracy. This factor may be 
affected by providing the sensor 
placement treatment.

Proposed 
method

Spectrum analysis Microphone One way 
ANOVA

The sensor placement is the best 
strategy to get the accuracy of 
bearing elements monitoring.

CONCLUSION

The sound characteristics are used to describe the condition of the motor elements, and 
their monitoring is strongly influenced by ambient noise. The right placement of the 
sound sensor is extremely important in determining the follow-up actions for motor 
maintenance. It provides an opportunity for the noise signal to overlap with that generated 
by the operation of the motor. Furthermore, spectrum analysis is a reliable solution for 
monitoring the condition of bearing elements with an overview of its conditions strongly 
influenced by sound sensor placement. The accuracy of bearing elements monitoring 
is determined using the One-way ANOVA test. Based on the Tukey test, the placement 
of the sensor 100 cm from the motor body gives the best accuracy of all treatments, 
which is 92.66%. Future studies are expected to examine the sensor placement in more 
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detail because the treatment applied in the present study has a difference of 50 cm. This 
research contributes to the right sensor placement strategy to obtain accurate monitoring 
results. It enables the industrial community to carry out diagnostics and prognostics of 
the motor as the main driver. 
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