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ABSTRACT 

The cooling-slope (CS) casting technique is one of the simple semi-solid processing (SSP) 
processes a foundryman uses to produce the feedstock. This study attempts to develop 
mathematical regression models and optimise the CS parameters process for predicting 
optimal feedstock performance, which utilises tensile strength and impact strength to 
reduce the number of experimental runs and material wastage. This study considers 
several parameters, including pouring temperature, pouring distance, and slanting angles 
for producing quality feedstock. Hence, multi-objective optimisation (MOO) techniques 
using computational approaches utilised alongside the caster while deciding to design are 
applied to help produce faster and more accurate output. The experiment was performed 

based on the full factorial design (FFD). 
Then, mathematical regression models 
were developed from the data obtained 
and implemented as an objective function 
equation in the MOO optimisation process. 
In this study, MOO named multi-objective 
Jaya (MOJaya) was improved in terms of 
hybrid MOJaya and inertia weight with 
archive K-Nearest Neighbor (MOiJaya-
aKNN) algorithm. The proposed algorithm 
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was improved in terms of the search process and archive selection to achieve a better feedstock 
performance through the CS. The study’s findings showed that the values of tensile and impact 
strengths from MOiJaya_aKNN are close to the experiment values. The results show that 
the hybrid MOJaya has improved the prediction of feedstock using optimal CS parameters. 

Keywords: Chaotic inertia weight, cooling-slope casting process, feedstock, impact strength, k-nearest 
neighbour, MOJaya, tensile strength

INTRODUCTION

The cooling-slope (CS) casting technique is a simple semi-solid processing (SSP) method 
utilised by foundrymen or casters to procure feedstock. The SSP is a near-net-shaped 
approach for processing metal and alloys in a semi-solid state and has been employed 
extensively in manufacturing processes (Nafisi & Ghomashchi, 2019). Among the 
advantages of SSP-fabricated components processed conventionally are reduced porosity, 
macro-segregation, and better mechanical properties (Son et al., 2021). Consequently, 
SSP has been commercially applied for producing feedstock in several approaches, such 
as cooling-slope casting (CSC), continuous casting with magneto-hydrodynamic (MHD), 
and semi-solid and gas-induced semi-solid rheocasting (GISS). 

This study uses magnesium (Mg) AZ91D as a metal in producing feedstock using 
the CS process. AZ91D is one of the earliest and lightest metal steels with potential 
applications across various industries, including electronics, aerospace, and automotive 
(Annamalai et al., 2019). The metal has also gained attention among researchers, thus 
resulting in several investigations on magnesium and its alloys, including alloy design and 
optimisation, microstructure characterisation and observation, and functional materials 
(Wu et al., 2021). Furthermore, the metal is considered the best green material in the 21st 
century due to its excellent physical and chemical properties, including low density, high 
specific strength and stiffness and good damping performance biocompatibility (Guo et 
al., 2018). Consequently, the advantages of AZ91D necessitate evaluations to produce 
feedstock via the CS casting approach. 

The CS is one of the methods employed by industries to produce feedstock. The 
technique is one of the steps applied at the precursor level to ensure the quality of the 
processed feedstock. These feedstocks, known as treatment feedstock, are utilised as raw 
materials in manufacturing to produce quality products. Accordingly, the primary challenge 
of procuring excellent feedstock is providing high-quality precursor resources, especially 
controlling process parameters during casting (Balachandran, 2018).

Grain refinement strengthening is the primary issue casters encounter during designing 
and producing quality feedstock, which, alongside numerous other parameters, would affect 
the feedstock performance (tensile and impact strengths) obtained. Commonly, experts 
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select CS casting process parameters based on experience, established processing plant 
guide, or casting handbook (Kumar et al., 2014). Nevertheless, determining the optimum 
multi-parameters for producing feedstock with excellent performance is complicated and 
costly because the best parameter combination has arguable results, as the results do not 
guarantee the CS process’s optimal performance.

The primary objective of the designing stage is to produce high-quality feedstock and 
products at optimal conditions. Consequently, choosing ideal process parameters is crucial 
(Rao, 2011). Nonetheless, the selection process is currently conducted on a trial-and-error 
basis due to a lack of fixed theoretical procedures (Kor et al., 2011). The present study 
proposed utilising computational techniques to acquire the optimal conditions during the 
decision-making step. The application of the approach during design process selection 
could aid in faster and more accurate output procurement. 

Rao (2018) highlighted the modelling and optimisation stages to obtain ideal 
parameters. The report also specified that representing the manufacturing process as a 
model for optimisation is necessary. Accordingly, developing the mathematical model is 
the first step of process parameter enhancement. The process is critical as the model is 
developed as an objective function for optimisation. 

Researchers considered several approaches to model a casting process, such as 
regression (Brezocnik & Župerl, 2021), response surface methodology (RSM) (Patel et 
al., 2015), numerical simulation (Zheng et al., 2020), and artificial neural network (ANN) 
(Zhou et al., 2022). The regression model is one of the most practical and well-known 
modelling techniques applicable to soft computing (Esonye et al., 2021; Fadaee et al., 2022; 
Onifade et al., 2022; Singh et al., 2021). For example, Khosravi et al. (2014) adopted the 
regression approach to model the CS parameters: the pouring temperature (Pt), pouring 
distance (Pd), and slanting slope angle (Sa). 

Most studies on casting optimisation that applied the multi-objective approach 
employed regression as a modelling technique. Binesh and Aghaie-Khafri (2017) generated 
a polynomial regression model to represent the relationship between casting performance 
and the process parameters. In another report, the non-linear regression model was utilised 
to procure the model denoting the relationship between the squeeze cast process parameters 
and its performance before optimising it via a genetic algorithm (Patel et al., 2015). 
Moreover, multiple regression is a flexible method to examine the relationship between a 
variable and multiple outcome variables. This model was used as the objective function 
in the optimisation process. 

In optimisation, algorithms are designed and developed to solve the problems using 
computers. It can be classified into two categories: deterministic and stochastic. The 
deterministic approach finds the same solution in each run but becomes trapped in locally 
optimal solutions due to local optimisation. However, stochastic approaches find different 
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solutions in each run due to stochastic mechanisms. It assists them in avoiding sub-optimal 
solutions better. Most stochastic approaches are applied in most heuristic and metaheuristic 
approaches that can be classified into single and multi-objective optimisation (Premkumar 
et al., 2021).

Optimisation could be classified into single- and multi-objective (MOO) optimisations. 
Nevertheless, the single-objective approach provides insufficient information for casters 
to analyse decisions holistically. Consequently, MOO provides a practical technique for 
selecting ideal casting process conditions (Rao, 2018). The MOO approach is employed in 
casting optimisation to solve design issues, including multiple design variables, conflicting 
objectives, and numerous constraints. Furthermore, MOO computing methods are easy 
to implement and require lower energy, time, and cost than the trial-and-error practice. 

Recently, the metaheuristic algorithm (MA), which is more flexible and convenient, 
has been widely utilised to procure near-optimum solutions in manufacturing processes 
(Li et al., 2020; Mishra & Sahu, 2018; Agarwal et al., 2018; Mohd Said et al., 2021; 
Tavakolpour-Saleh, 2017). A variety of MA has been investigated for application in 
manufacturing processes, such as multi-objective genetic algorithm (MOGA) (Feng & 
Zhou, 2019), non-dominate sorting genetic algorithm II (NSGA II) (Asadollahi-Yazdi et 
al., 2018), multi-objective partial swarm optimisation (MOPSO) (Patel et al., 2016; Wu et 
al., 2021) multi-objective whale optimisation algorithm (MOWOA) (Tanvir et al., 2020), 
and multi-objective artificial bee colony (MOABC) (Feng et al., 2018; García-Alcaraz & 
Pérez-Domínguez, 2014), multi-objective ant colony optimisation (MOOACO) (Ji & Xie, 
2008), and multi-objective Jaya (MOJaya) (Rao et al., 2016). 

The MOJaya technique that Rao introduced has been successfully applied in several 
real-world settings (Raed et al., 2020). The method is a simple, flexible, and efficient 
population-based search algorithm to solve constrained and unconstrained optimisation 
issues. The MOJaya algorithm is a parameters-less approach that iterates towards the best 
solution search space. Furthermore, the MOJaya algorithm has the advantage of avoiding 
the difficulty of adjusting parameters as well as reducing the amount of time required for 
optimisation. Recently, the Jaya or MOJaya technique gained attention due to the simplicity 
of its framework and the fact that it only requires a single operator. The approach has also 
reportedly solved optimisation issues in various fields (El-Ashmawi et al., 2020; Jian & 
Weng, 2020; Rao et al., 2019; Vinh & Nguyen, 2020; Zamli et al., 2018). However, as a 
metaheuristic algorithm, MOJaya suffers from a few limitations and inescapable drawbacks 
during the search process. The search process in MOJaya focuses more on exploitation 
than exploration. It causes the solution to be easily trapped in local minima and get less 
diversified solutions.

Several improvements in the exploitation abilities of the search process in MOJaya 
were proposed to ensure the optimal solution is not easily trapped in local minimal. Wu 
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and He (2020) combined the basic Jaya algorithm with the mutation and crossover operator 
to enhance the diversity of the population and exploration ability. The results showed 
that both improvement algorithms from their studies obtained superior results in terms 
of solution quality, such as diversity and convergence. Goudos et al. (2019) proposed 
hybrid Jaya algorithms and self-adaptive differential evolution algorithms. The simulation 
results showed the efficiency of the purpose algorithms, such as the Jaya-JDE algorithm, 
by achieving good trade-off solutions.

Zhenghao et al. (2020) enhanced the Jaya algorithm using a combination of the Tree 
Seeds algorithm and K-means clustering, namely C-Jaya-TSA. The clustering strategy 
is used to replace solutions with low-quality objective values. The results show the 
effectiveness of the C-Jaya-TSA algorithm to enhance the exploitation ability. Premkumar et 
al. (2021) enhanced the Jaya algorithm with a chaotic mechanism to classify the parameters 
of various photovoltaic models, including single-diode and double-diode models. Adaptive 
weight chaos is added to the proposed algorithm to regulate the trend and avoid the worst 
solution. The proposed technique utilises self-adaptive weights to reach the best solution 
during the first phase, followed by a second phase that includes a local search, which 
increases exploration capacity. Based on comprehensive analysis and experimental results, 
the suggested algorithm is highly competitive in accuracy and reliability compared to other 
algorithms in the literature.

Based on Narayanan et al. (2023), early MOO algorithms evaluated two solutions 
simultaneously based on Pareto dominance throughout the iterative process to find the 
optimal solution to achieve ultimate outcomes. An effective approach for multi-objective 
optimisation problems is the Pareto optimal front method, which can elicit sets of optimum 
solutions widely known as Pareto-optimal front solutions (Zitzler et al., 1999). Recently, 
many researchers used Pareto optimal front approach to solve MOO problems such as 
Multi-objective Moth Flame Optimization (MaOMFO), Decomposition-based multi-
objective symbiotic organism search (MOSOS/D), Multi-Objective Marine-Predator 
Algorithm (MOMPA), Multi-Objective Generalized Normal Distribution Optimization 
(MOGNDO), and Multi-Objective Plasma Generation Optimization (MOPGO) (Abdin et 
al., 2022; Ganesh et al., 2023; Jangir et al., 2023; Kumar et al., 2021; Pandya et al., 2022). 
However, another limitation reported in the literature is the selection criteria of solutions 
for solving MOJaya problems using the Pareto approach. Warid et al. (2018) proposed 
fuzzy decision-making and incorporated it into the Jaya algorithm as selection criteria for 
best and worst solutions using the Pareto approach.

Moreover, some recent work used an archive mechanism of non-dominated solutions to 
approximately the Pareto front to solve MOO problems. Britto et al. (2012) explored several 
archiving methods from the literature used by MOPSO to store the selected leaders into 
MOO problems. The main goal was to observe how each method influences the MOPSO 
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algorithm in terms of convergence and diversity over the Pareto front. This method guided 
the MOPSO search to a region near the knee of the Pareto front. 

Li et al. (2019) proposed two archives evolutionary algorithms for constrained to 
solve MOO problems. The author highlighted an important issue in MOO: balancing 
convergence, diversity, and feasibility. This paper proposes a parameter-free constraint 
handling technique, a two-archive evolutionary algorithm, for constrained multi-objective 
optimisation to address this issue. The first archive, denoted as the convergence archive, is 
the driving force that pushes the population toward the Pareto front. The second archive, 
denoted as the diversity archive, mainly tends to maintain population diversity.

Premkumar et al. (2022) have developed a bio-inspired multi-objective grey wolf 
optimisation algorithm (MOGWO) that includes Pareto optimality, dominance, and external 
archiving. Archives are storage units that store or retrieve the non-dominated Pareto optimal 
solution. Archives are managed by archive controllers when solutions enter the archive, 
or the archive is completely occupied. According to the performance comparison of the 
MOGWO algorithm with other algorithms selected, the MOGWO algorithm provides 
the best solution. Thus, it is motivated to propose MOiJaya_aKNN to enhance MOJaya 
performance and get the optimal CS casting parameters to produce optimal feedstock 
performances.

Although researchers have proposed various MOO approaches to solving the issues 
involved during the casting process, most are based on different metals employed in 
other casting processes. Moreover, limited studies have considered MOO to improve 
manufacturing processes. Accordingly, the present study developed a mathematical 
regression model and enhanced the MOJaya algorithm for estimating optimised CS casting 
process parameters to predict two feedstock performance mechanical properties: tensile 
and impact strength. 

MATERIALS AND METHODS 

The current study focused on the material used, modelling and optimising feedstock 
performances to assess the optimal machining conditions in CS casting. Overall, this study 
comprised three major stages as follows (Figure 1): 

1.	 Experiment and casting data: Experimental data of feedstock performances, 
parameters, and boundaries were collected. Two mechanical properties, 

Figure 1. The basic flow of the study

Experiment Modelling Optimisation

tensile and impact strengths, 
were considered feedstock 
performance. The parameters 
involved were Pt, Pd, and Sa. 

2.	 Model l ing:  Polynomial 
r e g r e s s i o n  m o d e l s  f o r 
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feedstock performance were developed and utilised as an objective function for 
optimisation. Statistical analyses were performed to evaluate the validity of the 
models before conducting optimisation. 

3.	 Optimisation: The final step comprised CS-produced feedstock performance 
optimisation with the improved MOJaya. The results were compared with actual 
experiment results, which were considered benchmarks.

Material

A commercially available Mg AZ91D composite was employed in the present study. The 
detailed chemical composition and mechanical properties of the metal are listed in Table 1.

Table 1
The chemical composition of AZ91D

Element Mass (%)
Aluminium (Al) 8.50
Manganese (Mn) 0.20
Zinc (Zn) 0.55
Silicon (Si) 0.10
Copper (Cu) 0.03
Nickel (Ni) 0.002
Iron (Fe) 0.005
Mg Balance

The CS Casting Process

The present study utilises the CS casting 
process, a gravity-based casting technique. 
800g of AZ91D magnesium ingot was fed 
inside the stainless-steel melting crucible 
in the heating furnace and melted at 680oC, 
700oC and 720oC. Then, the melt was poured 
onto the cooling plate and flowed into a 
metal mould according to the parameter’s 
setup. K-type thermocouples were placed 

Figure 2. (a) Computer Aided Diagram (CAD) diagram of C and (b) CS experiment setup
(a) (b)

Melting crucible

Melt

Cooling slope plate

Melt

Tensile mould

Water inlet

Cooling chamber

Water outlet
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on the cooling slope to measure the temperature. The cooling slope experimental process 
was performed by varying the pouring temperature, slanting angle, and pouring distance 
(Table 2). Finally, the molten metal flow was full of the mould and defined as as-cast. 
Figure 2(a) shows the Computer Aided Diagram (CAD) diagram of CS, while Figure 2(b) 
details the CS experiment setup.

Figure 3 demonstrates an as-cast specimen post the CS procedure. After machining 
them into specific shapes, the specimens obtained were subjected to tensile and impact 
strength evaluations. Figures 4(a) and (b) and Figures 5(a) and (b) display the respective 
measurements and shapes of the as-cast samples for the tensile and impact strength 
evaluations. The as-cast subjected to impact strength assessment was prismatic bar-shaped, 
while the sample evaluated for its tensile strength had a transverse notch cut in the middle 
of a side.

Figure 3. An as-cast specimen

Figure 4. The (a) measurement and (b) shape 
of the tensile strength test specimen (unit 
dimension = mm)

(a) (b)

(a)

(b)
Figure 5. The (a) measurement and (b) shape of the impact 
strength test specimen (unit dimension = mm)

Tensile strength assesses the ability of a metal to 
resist breaking or pulling apart into two pieces. On the 
other hand, the value of impact energy absorbed by a 
material during fracturing under impact denotes the 
strength of the material. The tensile strengths of the 
specimens in this study were evaluated with a Universal 
Tensile Machine, Instron 5982, while an Instron Ceast 
9050 Test Machine was utilised to determine their impact 
strengths. The estimation models in the present study 
were then developed with a design of experimental 
(DOE) software by employing the CS casting process 
parameters data.
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Design of Experimental (DOE)

The DOE is a systematic and efficient method of examining the relationship between 
multiple input (factors) and key output (responses) variables. This study performed 
experiments based on a full factorial design (FFD) that involved three levels and three 
parameters as input variables. The three selected CS parameters, namely the Pd, Pt, and 
Sa, were considered the most significant factors affecting the related response based on 
previous reports. The selection of the range for  CS parameters is based on the type of metal 
used, which is AZ91D magnesium that has a characteristic and chemical composition that 
needs to be considered and also based on previous researcher recommendations (Abdelgneia 
et al., 2019; Khosravi et al., 2014; Kumar et al., 2014; Kumar et al., 2013; Tugiman et 
al., 2019). The fractional combinations of the conditions were obtained by employing 
the Design Expert 11.0 software. Table 2 summarises the range values of the parameters.

Table 2  
The range value of CS parameters

Casting parameters Unit
Level

1 2 3
Pouring temperature Celsius 680 700 720
Pouring Distance mm 300 400 500
Slanting angle Degree 30 45 60

In this study, the Pt employed ranged between 680–720℃, Pd was from 300 to 500 
cm, and Sa was between 30–60°. Based on the values, 27 runs with four centre points 
resulted in a 33 FFD. A full factorial denotes a design setting that includes all possible 
input parameters. Table 3 shows the full factorial design experimental layout of the CS.

The regression estimation models in the current study were developed from the CS 
casting parameters with the Design expert software. The adequacy and significance of 
the models, indicated by coefficient (R2) values, were determined with variance analysis 
(ANOVA). Each model was validated with mean square error (MSE) and root means square 
error (RMSE). Equation 1 expresses the Stepwise regression model of the CS process, and 
the modelling process flow of the CS casting is illustrated in Figure 6.

4 5

6 7 8 9 [1]

( ) ( ) ( ) ( )( ) ( )( )0 1 2 3
2 2 2( )( ) ( ) ( ) ( ) x

y b b Pt b Pd b Sa b Pt Pd b Pt Sa

b Pd Sa b Pt b Pd b Sa ε+

= + + + + + +

+ + + + 		         [1]

Where is b0 constant, b is the coefficient of regression mode. The input process parameters 
are slanting angle (Sa), pouring distance (Pd) and pouring temperature (Pt). The flow 
process of modelling for the CS casting process is illustrated in Figure 6. The tensile and 
impact strength equations were expressed as Equations 2 and 3.
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Table 3
The full factorial design experimental layout of the CS 

Standard 
order

CS parameters Feedstock performance
Pouring 

Temperature Slanting angle Pouring distance Tensile
strength Impact strength

1 680 30 300 90.6208 4.013
2 680 45 300 104.06 3.276
3 680 60 300 100.527 4.521
4 680 30 400 97.6055 4.225
5 680 45 400 111.444 3.644

24 720 60 400 138.033 4.334
25 720 30 500 126.499 4.112
26 720 45 500 131.116 4.581
27 720 60 500 129.1 4.578

Figure 6. The process of modelling for the CS casting process

Regression 
modeling

INPUT:
Slanting angle

Pouring temperature
Travelling distance

OUTPUT:
Tensile strength model
Impact strength model

Maximize tensile strength = a + slanting angle + Pouring temperature + 
Travelling distance + slanting angle 2 + Pouring 
temperatue 2 + . . .  + e                                             [2]

Maximize impact strength = a + slanting angle + Pouring temperature + 
Travelling distance + slanting angle 2 + Pouring 
temperatue 2 + . . .  + e                                             [3]

Multi-Objective Optimisation (MOO) Problems

Optimisation problems are among the most common problems in engineering practical 
and scientific research. The MOO problem is an area of multiple criteria decision-making 
that concerns mathematical optimisation problems involving more than one objective 
function being optimised simultaneously. The primary study objective for conducting MOO 
optimisation and using the Pareto front approach to solve MOO optimisation problems is 
to find the optimal solution. The standard equation for the MOO optimisation process is 
given in Equations 4 to 6.  
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Therefore, the MOO will take the following mathematical formulation:
Maximise or minimise: 

1 2( , ) [ ( , ), ( , )] ,. . . , ( , )] [4]T T
kF x u f x u f x u f x u= 					           [4]

Subject to:  

( , ) 0 [5]g x u = 									               [5]

and

( , ) 0 [6]h x u ≤ 									              [6]

where F(x,u)  and k represents the vector and a total number of objective functions, g(x,u)  
is a set of equality constraints, h (x,u) is the set of inequality constraints, x  is the vector 
of dependent variables or state variables, and u  is the vector of independent or control 
variables.

Hybrid Chaotic Inertia and Archive K Nearest Neighbour in MOJaya

There is a two-phase improvement for MOJaya in this study. The first phase, the movement 
update equation operator, is improved by adding a chaotic random inertia weight called 
MOiJaya. 

In the first phase of improvement, adding the chaotic inertia weight in the MOJaya 
solation update equation possesses specific attributes, including ergodicity and randomicity, 
which enabled the algorithm to overcome the optimal local solution. During the early 
iteration of the algorithm, the current study selected the best and random solution to explore 
more search space processes. The optimal solution was chosen to guide the population 
to a better region, while the random solution was selected to expand the search space. 
Nevertheless, the best solution at each generation might be trapped in local minima when 
solving conflicting objectives, affecting the succeeding solution update equation. Hence, 
the modified solution update equation in the present study was conducted according to 
the following steps: 

Step 1: Select a random number, Z , in the interval of [0,1] then, select a random number, 
rand ( ), in the interval [0,1].
Step 2: Produce logistic mapping: z  = 4 × z  × (1 – z ) ;
Step 3: ( )0.5 0.5rand zϖ = × +  
Step 4: Modify the solution update Equation 7 by incorporating the chaotic inertia 
weight mechanism.
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* *( 1, , ) ( , , ) ( , ,1) ( , ,) ( , , ) ( , ,2) ( , , ) ( , , ) [7]x x r x x r x xi j k i j k i j i j i j k i j i j w i j kϖ ϖ= + − − −+
   
    [7]

Where '
, ,i j kX  denotes the modified value of the i-th design variable, the second term 

represents the approach of the modified solution to proceed nearer to the optimum solution, 
and the third expression is attributed to the proclivity of the solution to avoid the worst 
solution.

The next improvement is made in the selection criteria process where archive 
K-nearest neighbour (aKNN) is employed and known as MOiJaya_aKNN. In this phase, 
improvements are made to the selection criteria, which are the best and worst solutions. 
The selection of the first P is based on the non-dominated ranking and crowding distance. 
The selection is important during the selection process because this solution is a guide 
and search towards the Pareto-optimal set. Potential solutions might be rejected and not 
selected due to the crowded region during the selection search space. Consequently, the 
process is crucial to choose a set of solutions that could lead to convergence toward true 
Pareto-optimal. Furthermore, the step is essential to avoid Pareto breakouts when it is 
stuck in local optima, which would occur. An improper selection might also delay the 
convergence as it is required to break the local optima. Hence, the rejected or not selected 
solutions in the crowded region were considered for the next iteration during the step and 
applied to the archive KNN.

This study employed an external archive mechanism as a repository to store potential 
solutions among the rejected and not selected solutions. Consequently, the archive could 
potentially possess solutions closer to the Pareto front as it possesses higher chances of 
comprising the best potential solution. The KNN was employed to obtain the possible solution 
close to the Pareto front. The method is a simple classification algorithm that utilises the 
Euclidean metric as the distance metric, where the K parameter controls the classification. 
The KNN was also employed to reduce the archive size by manipulating the K values and 
selecting archive members close to the most optimum solution in the Pareto front.

The second strategy adopted in the present study was improving the selection process 
to reduce the complexity of multi-objective problems based on Pareto dominance. Figure 7 
demonstrates the improvements implemented on the hybrid MOJaya. The hybrid MOJaya 
with chaotic inertia weight and archive KNN (MOiJaya_aKNN) was then utilised to 
optimise the CS casting parameters process to predict optimal feedstock performance.

Algorithm Performance

These proposed improvement algorithms were evaluated using ZDT bio-objective test 
problems. These test problems are chosen because ZDT is a set of test problems that focuses 
on multi-objective optimisation and consists of two objective functions (Table 4). These 
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types of problems are suitable for CS casting process optimisation, which consists of two 
objective functions: tensile strength and impact strength. Then, the proposed algorithm 
performance using the ZDT test problem was evaluated using the convergence metric 
(Generational distance) and diversity metric (spread). ZDT is also easy to implement 
and has several test cases with different difficulties. For each ZDT test problem, 30 times 
experiments were conducted. Then, the results of MOiJaya and MOiJaya_aKNN algorithms 
were compared with previously published results. All analyses regarding the algorithm’s 
performance are discussed.  

The main evaluation of algorithm performance used in this study is convergence and 
diversity metrics. Convergence metrics were developed and introduced by Deb et al. (2002). 
These metrics measure the distance between the reference set and the obtained Pareto front. 

Figure 7. Flowchart of MOiJaya_aKNN algorithm

Initialize the number of objectives, population size (P), variables, and number of 
terminations.

Identify the Best and Worst solutions using the non-dominate solution (NDS) and 
crowding distance (CD)

Modify and update the current solution using equation (4)

Combined modified and initial solutions and then rank the combined solution.

Select the first P solutions from ranked for the next iteration.

Euclidean distance assignment for rejection solution (P’)

Update population size:
P = P + P’

Is the 
termination 
condition 
satisfied?

Report the 
optimum solution

NO

YES
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A reference set (Pareto-optimal front) can be defined as a set of optimal true Pareto Front 
solutions or a non-dominated set of solutions. The convergence measurement produces a 
better algorithm when the solution obtained is closer to the reference point. Then, a lower 
convergence metric value can produce a better MOO algorithm.

Convergence Metric 

The following steps can compute the convergence metric:
Step 1: 	 Find the non-dominated F(t) population set.
Step 2: 	 For each solution, i in F(t), calculate the smallest normalised 
		  Euclidian Distance, di  to the reference set as Equation 8:

		
2

1
1

( ) ( )
min

max min
M k k

i K
j k k

f i f j
d N

f f=
=

 −
=  − 

∑ 			          [8]

Here, M is the number objective, fk max and fk min are the maximum and minimum 
function values of the kth objective function in the reference set, respectively, and N 
is the size of the reference set. 
Step 3: 	 Find the convergence metric value ( ( ))C P t by finding the normalised 

distance average for all points in ( )F t  as Equation 9.

		
( )

1( ( ))
( )

F t
ii

d
C P t

F t
== ∑ 						             [9]

Diversity metric can be calculated using Equation 10:

		  ( )

1

1

1

N

f l i
i

f l

d d d d
DIV

d d N d

−

=

+ + −
=

+ + −

∑
					            [10]

Here d  is the average of all distances id ( )1,...,i N= , assuming N solutions are in 
the obtained non-dominated set. id  is the Euclidean distance between the consecutive 
solutions in the obtained non-dominated set of solutions. ( )1N −

 is total id  
produced. df  and ld represent the Euclidean Distance between the boundary solutions 
and extreme value.

Comparison Results with Benchmark MOO Algorithm

The results were compared with three well-known multi-objective algorithms (MOEA/D, 
PESA-II and MOALO) to investigate the efficiency of the proposed MOiJaya_aKNN. 
The parameter settings were adopted for all the algorithms: population size P = 100 
and Number of iterations =500. Table 5 shows the performance metric’s comparison of 
MOEA/D, PESA-II, MOALO, MOMSA, MOJaya, MOiJaya, and the MOiJaya_aKNN. As Ta
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can be seen, the developed MOiJaya algorithm was superior in most standard bi-objectives 
compared to others.

Regarding the convergence metric, while MOiJaya_aKNN with the lowest mean 
convergence metric outperformed other algorithms in optimising were 0.009 for ZDT 1, 
0.0071 for ZDT3, and 0.022 for ZDT6 benchmark functions, the MOEA and MOALA 
algorithms demonstrate same results of 0.0033 for ZDT2. Moreover, MOJaya algorithms 

Table 5	
Performance metric comparison for convergence and diversity metric evaluation metrics on ZDT bi-objective 
between MOiJaya_aKNN and other algorithms

Case Algorithm
Convergence Diversity
(mean±sd) (mean±sd)

ZDT1

MOMSA 0.028±0.014 0.581±0.696
MOEA 0.159±0.102 1.044±0.133
MOALA 0.044±0.026 1.345±0.081
PESA-II 0.079±0.026 0.763±0.052
MOJAYA 0.233±0.055 0.020±0.042
MOiJAYA_aKNN 0.009±0.001 0.015±0.00065

ZDT2

MOMSA 0.029±0.024 1.011±0.153
MOEA 0.033±0.043 1.045±0.048
MOALA 0.033±0.015 1.126±0.091
PESA-II 0.095±0.015 0.721±0.065
MOJAYA 0.265±0.225 0.044±0.027
MOiJAYA_aKNN 0.033±0.055 0.023±0.015

ZDT3

MOMSA 0.017±0.005 0.910±0.033
MOEA 0.220±0.150 1.330±0.044
MOALA 0.028±0.022 1.552±0.082
PESA-II 0.0875±0.056 0.958±0.082
MOJAYA 0.046±0.005 0.066±0.122
MOiJAYA_aKNN 0.0071±0.007 0.026±0.004

ZDT4

MOMSA 0.391±0.294 1.102±0.160
MOEA 7.901±1.504 1.161±0.031
MOALA 21.070±16.94 1.008±0.008
PESA-II 17.466±10.931 0.973±0.029
MOJAYA 0.217±0.0516 0.255±0.0644
MOiJAYA_aKNN 0.29512±0.03720 0.01017±0.00180

ZDT6

MOMSA 0.063±0.024 1.476±0.195
MOEA 0.1311±0.207 1.137±0.052
MOALA 0.325±0.198 1.425±0.053
PESA-II 0.325±0.464` 1.211±0.190
MOJAYA 0.560±0.470 0.076±0.084
MOiJAYA_aKNN 0.022±0.010 0.01329±0.00197
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obtained better results were 0.217 for ZDT4. Therefore, it can be said that the MOiJaya_
aKNN could find the non-dominant solutions with minimum distance from the Pareto front 
and had a better distribution than the five other algorithms. 

In terms of the diversity metric, the MOiJaya_aKNN with the lowest diversity metric 
outperformed all the ZDT bi-objective benchmark functions. For example, the average value 
of the diversity metric for the ZDT1 benchmark function obtained by the MOiJaya_aKNN 
algorithm was 0.015, while the corresponding values for MOMSA, MOEA/D, MOALA, 
PESA-II, MOJaya and MOiJaya algorithms were 0.581, 1.044, 1.345,0.763, 0.020 and 
0.016, respectively, indicating the higher performance of the MOiJaya_aKNN compared 
to the other algorithms. The results for other diversity metrics (dm) demonstrated that the 
MOiJaya was 0.02354 for ZDT2, 0.02687 for ZDT3, 0.01017 for ZDT4, and 0.01329 
for ZDT6. As seen in Table 6, the proposed MOiJaya_aKNN was the only model with 
impressive diversity results. It could produce a better distribution and spread for the non-
dominated solutions on the Pareto front compared to the original MOJaya. Meanwhile, 
integration with aKNN provides a possible solution for obtaining the best solution value 
for optimisation. 

These results indicate that the probability of premature convergence and the 
unbalancing of exploration and exploitation of MOJaya has been improved by introducing 
chaotic random inertia weight and archiving K-nearest neighbour, which improves both 
convergence and diversity.

Optimisation of Cooling Slope Casting Process using Hybrid MOJaya

The proposed MOiJaya_aKNN hybrid algorithm developed in this study was utilised to 
improve the basic MOJaya algorithm. Subsequently, the enhanced algorithm was employed 
to optimise the CS parameters for predicting optimal feedstock performance in terms of 
mechanical properties (tensile and impact strengths) via the MOO approach. 

The first step in developing the MOiJaya_aKNN algorithm was parameter initialisation, 
which was required before optimisation. During the initialisation step, a population-sized 
solution space was generated randomly between the high and low values of the variables 

Table 6
MOiJaya_aKNN initialisation

Parameters Command
Population size 100
Maximum iteration (MI) 500
Number of variables (NVAR) 3
Lower Boundary (LB) [680, 30, 300]
Upper Boundary (UB) [720, 60, 500]

(Pt, Sa, and Pd) range limits. Table 6 lists 
the details of the parameters executed in 
MATLAB software employed in this study. 
Steps 1–11 describe the MOiJaya_aKNN 
algorithm development.

The following steps describe the 
MOiJaya_aKNN algorithm to solve the 
multi-objective optimisation in the CS 
process:
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Step 1:	 Define the input process parameters (Pt, Pd, and Sa) and objective functions 
(tensile and impact strengths).

Step 2:	 Identify the population size, number of variables, and stopping criteria.
Step 3:	 Generate the Initial population size (P) randomly.
Step 4:	 Evaluate the objective function, which is the mathematical model for 

Tensile strength and Impact strength expressed in Equations 5 and 
6, respectively, as a function for the MOJaya algorithm. The process 
parameters bounds are expressed by Equations 11 to 15. Maximise:

		

[11]

Tensile Strength = 6790.30937 - 19.12184* Pt - 1.63463* Sa
- 0.21772* Pd +0.013738* Pt * Pt

+0.022938* Sa* Sa +0.000508* Pd * Pd

Maximise
Impact strength Im

[12]

pact Strength = 147.34224 - 0.412945* Pt - 0.003288* Sa - 0.003761* Pd
- 0.00050* Sa* Pd +0.000297* Pt * Pt

0.000372* Sa* Sa+0.00012* Pd * Pd+

Parameter

		
680 720 [13]
300 500 [14]
30 60 [15]

A
B
C

≤ ≤
≤ ≤
≤ ≤		

680 720 [13]
300 500 [14]
30 60 [15]

A
B
C

≤ ≤
≤ ≤
≤ ≤

Step 5:	 Identify the best and worst candidates among the population in terms of 
identified objective functions generated from the equation and parameter 
boundaries from Equations 5 to 9.

Step 6:	 Based on the best and worst solutions from Step 5, substitute the value to 
modify all candidate solutions using expressed as Equation 4.            

Step 7:	 Combine the modified solution with the initial solutions. Calculate the 
crowding distance and ranking using non-dominated sorting, considering 
both functions. Then, select the first P for the next iteration.

Step 8:	 Sort P’ (rejection solution) by ascending ranking and descending crowding 
distance. Trim P’ into its original size of P

Step 9:	 Update using KNN, P=P’ + K size archive
Step 10:	 If the termination criterion is satisfied, exit and proceed with Step 11; if 

not, go back to Step 5.
Step 11:	 The stopping criteria are applied in the algorithm; if the solutions satisfy 

the condition, the algorithm will stop and, otherwise, return to Step 4.

[11]

[13]
[14]
[15]

[12]
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RESULTS AND DISCUSSION

The current study employed a mathematical regression model to validate the impact strength 
in Equation 11 and tensile strength in Equation 12 (feedstock performance) as objective 
functions in MOJaya algorithms. Their significance needs to be validated before the models 
are used in the optimisation process. The significance and coefficient determination values 
for the models are summarised in Tables 7 and 8. The models were then utilised to optimise 
the CS process parameters. 

Tables 7 and 8 indicate that the SR model for tensile strength and impact strength with 
a 95% confidence interval is statistically significant with a p-value less than 0.0001. A 
p-value equal to or less than 0.5 is considered significant, while a p-value higher than 0.5 
is considered insignificant. The result of each CS casting process parameter for both SR 
models shows that all parameters are significant to the model with p a p-value less than 0.05.

Both models proposed in the present study were significant since their p-values were 
under 0.05. The models also recorded R2 values over 80%, as tabulated in Table 9, indicating 

Table 7	
ANOVA of tensile strength 

Source Sum of Squares df Mean Square F-value p-value
Model 6281.41 1046.90 10.00 < 0.0001
A-Pouring Temperature 384.20 1 384.20 3.67 0.00673
B-Slanting Angle 1941.01 1 1941.01 18.55 0.0002
C-Pouring distance 1961.32 1 1961.32 18.74 0.0002
AC 415.53 1 415.53 3.97 0.0578
A² 808.82 1 808.82 7.73 0.0104
B² 455.15 1 455.15 4.35 0.0478
Residual 2511.31 24 104.64
Total 8792.72 30

Table 8 	
ANOVA of impact strength 

Source Sum of Squares df Mean Square F-value p-value
Model 3.21 0.4583 14.11 < 0.0001
A-Pouring Temperature 0.0578 1 0.0578 1.78 0.01952
B-Slanting Angle 0.4128 1 0.4128 12.71 0.0016
C-Pouring distance 2.29 1 2.29 70.68 < 0.0001
BC 0.0684 1 0.0684 2.11 0.01602
A² 0.0991 1 0.0991 3.05 0.00940
B² 0.0493 1 0.0493 1.52 0.02303
C² 0.1010 1 0.1010 3.11 0.0910
Residual 0.7468 23 0.0325
Total 3.95 30
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a perfect fit and the models explained over 80% of the performance feedstock variance, 
which arose from the CS process parameters. Furthermore, the accuracy of both models 
was validated with actual data and mathematical models. 

The pred-R2 value in the current study defines the ability of a model to predict feedstock 
performance for new observations, where a higher value indicates a significant prediction 
ability. Both models obtained in this study were documented under a 0.2 difference between 
the adj-R2 and pred-R2 values. Then, the models were acceptable. The results demonstrated 
that the regression model equations for mechanical properties (tensile and impact strengths 
could be utilised to predict feedstock performance effectively.

Next, the optimal CS parameters values generated from MOiJaya_aKNN; Pouring 
Temperature= 701.5456oC, Slanting angle =44.0902o and Pouring distance = 411.82938cm. 
Next, the algorithm performances were determined by comparing the generated output 
from MOiJaya_aKNN and the initial experiment. Table 10 shows that the difference 
between experiment results and MOiJaya_aKNN results is only 2.17% per cent different 
for Tensile strength, and Impact strength is 5.52% per cent different. MOiJAya_aKNN 
results are considered accepted since there is a slight percentage improvement. Hence, 
MOiJaya_aKNN can help the caster solve real problems in the CS casting process for 
predicted optimum feedstock performance without using repeated experiments that are 
costly and time-consuming. 

Table 10	
Optimisation result of the CS casting process

Feedstock Performance Method Value Percentage improvement (%)

Tensile strength
MOiJAYA_aKNN 146.8586

2.17%
Initial Experiment 143.732

Impact strength
MOiJAYA_aKNN 4.8751

5.52%
Initial Experiment 4.606

CONCLUSION

Based on the AZ91D magnesium alloy CS casting optimisation with MOiJaya_aKNN 
algorithm performed in the current study, the following conclusions were derived: 

1.	 The results indicate that the probability of premature convergence occurring and 
the unbalance of exploration and exploitation have been improved by introducing 

Table 9	  
Model summary statistics for tensile strength and impact strength 

Model R2 Adj-R2 Pred-R2

Tensile Strength 0.8959 0.8698 0.8849
Impact strength 0.8112 0.7537 0.6315
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chaotic, random inertia weight and archiving K-nearest neighbour while improving 
both convergence and diversity of the original MOJaya algorithm.

2.	 The regression analysis successfully developed a prediction model for feedstock 
performance (tensile and impact strengths). Furthermore, the predicted values were 
in good agreement with measured output responses, where the R2 adjusted values 
were high (> 70%), indicating the models’ superior ability to predict.

3.	 The optimum CS casting parameters were 701.5456oC of Pt, 44.0902o of Sa, and 
411.82938cm of Pd.

4.	 Compared to initial experimental data, the values tensile and impact strengths 
from MOiJaya_aKNN are close to the initial experiment values as the difference 
is 2.17% and 5.52%, respectively.
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