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ABSTRACT 

Duckweed is a future food and a source of affordable protein that has the potential to 
replace animal protein. This study aims to formulate a bio-fertilizer consisting of mangrove-
associated bacteria to boost the growth and protein of duckweeds as a sustainable approach 
to increase plant-based protein yields. The culture-depending technique was performed 
by using Aleksandrow agar, Pikovskaya’s agar, and Jensen agar to screen potassium-
solubilizing bacteria, phosphate-solubilizing bacteria and nitrogen-fixing bacteria, 
respectively, from mangrove soil sediments. Mangrove-associated bacteria that are close 
to Acinetobacter radioresistens, Brachybacterium paraconglomeratum, and Enterobacter 
cloacae, which are known as nitrogen-fixing bacteria, Klebsiella quasipneumoniae, 
Bacillus tropicus, and Paenibacillus pasadenensis known as potassium-solubilizing 
bacteria, and Bacillus cereus and Bacillus thuringiensis known as phosphate-solubilizing 
bacteria were identified through 16S rRNA gene sequencing. After that, three sets of bio-

fertilizers were randomly formulated. Each 
set consisted of nitrogen-fixing bacteria, 
potassium- and phosphate-solubilizing 
bacteria, as well as commercial compost as 
a carrier. These formulated bio-fertilizers 
were evaluated for plant growth promotion 
and protein production on duckweed plants 
under temperatures between 26 and 30°C. 
The results showed that each set of our 
formulated bio-fertilizer can increase the 
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nitrogen (N), phosphorus (P), and potassium 
(K), duckweed growth, and protein content 
when compared to the control group. It 
indicates that bio-fertilizers formulated 
with mangrove-associated bacteria and high 
NPK contents could enhance the growth 
of duckweed as well as its protein content, 
which could supply our future plant-based 
protein sustainably.

Keywords: Bio-fertilizer, duckweed, Lukut river 

Malaysia, mangrove-associated bacteria, nitrogen-

fixing bacteria, phosphate-solubilizing bacteria, 

potassium-solubilizing bacteria

	
INTRODUCTION

Duckweed, the world’s tiniest flowering 
plant, is gaining attention for its rich 
nutrient content and versatile applications 
in various industries, including animal 
feed, aquaculture, health supplements, 
bio-fertilizers, biofuels, and emerging 
human food products (de Beukelaar et al., 
2019; Naseem et al., 2020). Its protein 
content, ranging from 20 to 30%, surpasses 
that of cereals, making it a sustainable 
and cost-effective source of protein 
(Appenroth et al., 2018; Yahaya et al., 2022). 
Duckweed’s primary protein, ribulose-1, 
5-bisphosphate carboxylase (RuBisCO), 
is an excellent source of essential amino 
acids and possesses favorable properties 
as a functional food (Chakrabarti et al., 
2018). This aquatic green plant thrives in 
specific conditions, including an optimal 
temperature range of 17.5 to 30°C and ample 
sunlight, while also requiring supplemental 
nutrients like nitrogen (N), phosphorus (P), 

and potassium (K) for growth (Hasan & 
Chakrabarti, 2009). Additionally, duckweed 
is a phytoremediation plant capable of 
extracting pollutants, including metals 
and radionuclides, from wastewater and 
accumulating them in its tissues (Kamyab 
et al., 2017; Radulovic et al., 2018). 

Therefore, to ensure the safety of 
duckweed as a food source for humans, 
it must be cultivated in a controlled 
environment, such as axenic culture, which 
can produce a substantial quantity of 
duckweed with minimal bacterial presence 
and fewer contaminants. However, setting 
up a laboratory for large-scale duckweed 
production is expensive. Hence, an open-
air system that harnesses direct sunlight 
and minimizes nutrient usage becomes 
necessary to make duckweed a commercially 
viable future food option for low-income 
communities. In our previous study (Yahaya 
et al., 2022), we found that adding N:P:K 
fertilizer to the water containing duckweed 
served as the most effective growth medium, 
resulting in a substantial yield of duckweed. 
However, in the long-term condition, the 
commercial compost medium exhibited 
an even greater proliferation of duckweed. 
Furthermore, combining the commercial 
compost with the N:P:K fertilizer in water 
showed the potential to enhance the growth 
of duckweed and its protein content (Yahaya 
et al., 2022). However, excessive and long-
term chemical application could cause 
negative effects on the environment and 
human health. 

Bio-fertilizers are fertilizer preparations 
containing living cells or dormant cells of 
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effective strains of microorganisms that 
aid crop plant nutrient uptake through 
rhizosphere interactions (M. Kumar et 
al., 2022; Sarbani & Yahaya, 2022). The 
development of bio-fertilizers has become 
an important part of agriculture, which 
can help improve soil fertility and produce 
disease-resistant, stress-resistant plants 
with better nutrient uptake (Liu et al., 2023; 
Sahoo et al., 2018). Bio-fertilizers help 
maintain a nutrient-rich soil environment 
by facilitating processes such as N fixation, 
P and K solubilization, mineralization, 
synthesis of plant growth regulators, 
antibiotic production, and organic matter 
degradation in the soil (Mali & Attar, 
2021; Shahwar et al., 2023). Bio-fertilizers 
containing Azobacter sp. and Azospirillum 
sp. bacteria exhibit growth-enhancing and 
essential oil production-increasing effects on 
basil (Ocimum basilicum L.) plants (Tahami 
et al., 2017), while bio-fertilizers containing 
Rahnella aquati l is  and Variovorax 
paradoxus prove to be effective in promoting 
the growth of Crocus sativus (Saffron) plants 
and enhancing the production of secondary 
metabolites (Chamkhi et al., 2023) by 
facilitating plant-beneficial activities such 
as P solubilization, siderophore production, 
and auxin production.

Mangroves, found in the transitional 
zone between land and sea, are valuable 
sources of biotechnological resources 
like microbial cellulase, endophytes, and 
salinity-tolerant glucanase enzymes (Behera 
et al., 2017; Castro et al., 2018; dos Santos 
Goncalves et al., 2020). These ecosystems 
host 27 true mangrove species across 

10 selected systems (Sreelekshmi et al., 
2020), recognized for their carbon-rich 
nature (Adame et al., 2022; Gu et al., 2022; 
Morrissette et al., 2023). They harbor 
diverse microbial life, including rhizosphere 
bacteria with the potential to stimulate 
plant growth by producing phytohormones 
(Pham et al., 2022; Smaill et al., 2010; 
Talaat, 2019), mitigating environmental 
stressors (Chandra et al., 2021; David 
& Rostkowski, 2020; Muñoz-García et 
al., 2022; Ramakrishna et al., 2020), and 
preventing pathogen-induced diseases 
(Cheng et al., 2021; Gomez-Aparicio et al., 
2022; Zhou et al., 2023). 

There are limited studies regarding the 
effect of beneficial microbes on the growth 
and performance of duckweed cultivated 
in an open-air system. Hence, in this study, 
the integration of mangrove-associated 
microbes into our formulated bio-fertilizer 
was demonstrated, significantly boosting 
both duckweed growth and protein yield, 
underscoring the potential of duckweed 
as a viable future food option. In the past 
decades, many researchers have formulated 
various bio-fertilizers with extensive and 
advanced effects on crop growth to preserve 
the environment and ecosystem (Sarbani & 
Yahaya, 2022). Therefore, the bio-fertilizer 
formulation in this study aims to benefit 
plant and crop productivity.

MATERIALS AND METHODS

Sample Collection

Soil samples with a depth of 5 cm were 
collected at the freshwater riverine mangrove 
located at Lukut River, Negeri Sembilan, 
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Malaysia (coordinate 2o 35’ 25.2342” N, 
101o 48’ 9.831” E) on 20th February 2020, 
during the low tide at three sampling points, 
with temperature ranging from 26.1 to 30°C. 
Soils 1 and 2 were collected in the 5 m x 5 
m area populated by Rhizophora mucronata 
and Avicennia officinalis trees. Meanwhile, 
Soil 3 was collected from the riverbank near 
the Nypa fruticans tree and 50 m distance 
from Soil 1 and Soil 2. The samples were 
placed in a 50 ml tube and stored at -80°C 
until ready for analysis.

Screening of Nitrogen-fixing Bacteria, 
Phosphate-solubilizing Bacteria, and 
Potassium-solubilizing Bacteria

Soil samples were individually suspended 
in 0.85% of sodium chloride (NaCl, Merck, 
USA) (Yahaghi et al., 2018) for inoculation 
into Jensen agar (HiMedia Laboratories, 
India), Pikovskaya`s agar (HiMedia 
Laboratories, India), and Aleksandrow agar 
(HiMedia Laboratories, India). Jensen agar, 
Pikovskaya’s agar, and Aleksandrow agar 
were used to screen and culture nitrogen-
fixing bacteria, phosphate-solubilising 
bacteria, and potassium-solubilising 
bacteria, respectively. The Jensen medium 
was aerobically incubated at 27°C for 48 
hr, while Aleksandrow agar and Pikovskaya 
agar were incubated at 35°C for 7 days after 
spreading the soil suspension. 

DNA Extraction and 16S rRNA Gene 
Sequence Analysis

Bacterial cultures were prepared by 
proliferating a single colony from Jensen 
agar, Pikovskaya’s agar, and Aleksandrov 

agar in a nutrient broth at 28°C with 200 
rpm shaking and incubated for 48 hr to 
obtain the optical density at 600 nm. 
DNA from the bacterial cultures was 
extracted using the PROMEGA Wizard® 
Genomic DNA Purification Kit (USA). The 
purity, integrity, and quantity of extracted 
DNA were determined using agarose gel 
electrophoresis and a nanodrop (BioDrop, 
Thailand).

The PCR amplification of the 16S rRNA 
gene was performed by using a universal 
primer set of 27F (5’-AGA GTT TGA TCC 
TGG CTC AG-3’) and 1492R (GGT TAC 
CTT GTT ACG ACT T-3’) (Zhou et al, 
2009). The components for the PCR reaction 
were 12.5 µl of Go Taq® Green Master Mix 
2X (Promega, USA), 0.5 µl of each forward 
and reverse primer (final concentration 
of each primer is 0.5 μM), 5 µl of DNA 
template (approximately 250 ng), and 6.5 
µl of nuclease-free water. Amplification was 
performed on a Mastercycler nexus PCR 
cycler (Bio-Rad T100TM Thermal Cycler, 
USA), a program to perform an initial 
denaturation at 94°C for 5 min; 30 cycles 
of denaturation for 1 min at 94°C, annealing 
for 1 min at 60°C, and extension for 1 min 
at 72°C; and the final extension at 72°C for 
10 min, followed by cooling to 4oC until the 
sample is recovered (Fatima et al., 2011). 
Amplicons were then visualized with a UV 
transilluminator after resolving 5 μl of the 
products in the 1% agarose gel and staining 
with GelRed (Biotium, USA) Lastly, 
purified PCR products were subjected to 
DNA sequencing at Next Gene Scientific 
Sdn. Bhd. (Malaysia).
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The raw sequences of the 16S rRNA 
gene were analyzed and compared with 
sequences available in the National Centre 
for Biotechnology Information (NCBI) 
sequence database (MT367790, MN833494, 
MT214134, MT124566, KY908508, 
KY908503, MZ317924, ON222566, 
ON000559, KM100367, NR113987, 
OM510015, MW363212, KX216390, and 
OM351571). Then, MEGA 11 software 
performed the CLUSTALW alignment on 
the sequence. The maximum likelihood 
technique based on the Tamura-Nei model 
was applied to infer evolutionary history.

Development of Bio-fertilizers 

At the beginning of the study, commercial 
compost (Growmate Eazy Mix, MR. DIY, 
Malaysia) was used as a carrier material for 
developing bio-fertilizer. The commercial 
compost was packed in autoclave polythene 
covers and sealed using an electric sealer. It 
was then sterilized at 121°C for 20 min to 
destroy contaminated microbes. 

Nine bacterial isolates were cultured 
in nutrient broth (Oxoid, United Kingdom) 
at 28°C with shaking at 200 rpm for 48 hr 
until the optical density at 600 nm (OD) 
reached the value of 0.3 (107 CFU). The 
bacterial cultures were centrifuged at 11,057 
× g at 4°C for 15 min and resuspended in 
sterilized nutrient broth. The process was 
repeated twice. Then, the pre-sterilized 
commercial compost was inoculated with 
bacteria at a ratio of bacteria pellet to 
pre-sterilized commercial compost 1:50, 
as recommended by Stella et al. (2019). 

Mangrove-associated microbes were 
randomly divided into three sets, each 
consisting of nitrogen-fixing, phosphate-
solubilizing, and potassium-solubilizing 
bacteria. Set A bio-fertilizer consists of 
A. radioresistens, K. quasipneumonia, 
and B. cereus; Set B bio-fertilizer consists 
of B. paraconglomeratum, B. cereus, 
and B. tropicus; and Set C bio-fertilizer 
consists of E. cloacae, P. pasadenensis, 
and B. thuringiensis. The mixture was 
manually shaken by hand until the microbial 
inoculum was uniformly distributed in the 
commercial compost. Microbial inoculum 
and autoclaved commercial compost 
were packed into the polythene bag and 
immediately sealed. The package containing 
pre-sterilized commercial compost without 
bacterial inoculation was used as a control. 
All the packages were then incubated at 
30°C for 7 days. After the 7th-day interval, 
formulated bio-fertilizers were tested for 
bacteria survivability and NPK content.

Bacterial Survivability Experiment 

One gram of each sample was mixed with 9 
ml of sterile distilled water in a ratio of 1:9 
and allowed to mix thoroughly in a shaker 
for 1–2 hr. The suspension was serially 
diluted before being dispensed into the agar 
plate and incubated at 35°C for 24 hr. The 
number of bacterial growths on the plate was 
calculated using Equation 1. 

Population density (CFU/ml) =     
[Equation 1]
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N, P, and K Determination in Mangrove 
Soils and Formulated Bio-fertilizer

After seven days of incubation, the 
formulated bio-fertilizers were analyzed 
for their N, P, and K contents. N content 
was measured using the Kjeldahl method. 
Meanwhile, P and K were analyzed using 
X-ray fluorescence (XRF).  

Three samples of mangrove soil (Soils 
1, 2, and 3) and three samples of formulated 
bio-fertilizers (Sets A, B, and C) and control 
were used for this analysis. The analysis was 
performed in triplicates. For the Kjeldahl 
method, a digestion tube mixed 1 g of soil 
samples or formulated bio-fertilizer with 
10 ml of sulphuric acid (H2SO4, Merck, 
USA). A Kjeldahl tablet was then added as 
a catalyst to the sample solution. Then, the 
sample solution was digested using Gerhardt 
KJEDAHLTEM (Germany) for 60 to 120 
min until the digestion solution turned clear 
green. After that, the digestion tubes were 
allowed to cool and placed in Gerhardt 
VAPODEST 500 (Germany) for titration 
and distillation processes. Finally, the N 
content of the samples was calculated based 
on a volumetric standard solution (Yahaya 
et al., 2022). 

In XRF determination (S8 TIGER, 
Bruker, Germany), three soil samples and 
three sets of formulated bio-fertilizer and the 
control were dried, homogenized and sieved 
to get smaller particle sizes. Plastic cups 
lined with a 3.6 m thick Mylar® polymer 
were used to hold samples and placed inside 
the XRF analyzer. The X-ray tube operated 
at 15 W with a 50 kV generator in operation 
conditions. The spot size of the sample was 

typically 10 mm × 14 mm. The detector has 
a high resolution of 135 eV.

Duckweed (Lemna minor) Growth 
Experiment 

A duckweed L. minor growth experiment 
was conducted to evaluate the efficiency 
of formulated bio-fertilizers. Ten fronds 
of L. minor plants were sterilized using 
70% ethanol (R&M, Switzerland), bleach 
(CLOROX®, USA), and sterilized distilled 
water before being transferred into a 
container with a size of 122 mm x 173 mm 
x 62 mm that contains 200 ml of water and 
25 g of control medium and three sets of 
formulated bio-fertilizer (Sets A, B, and C). 
In this experiment, duckweed plants were 
grown in a greenhouse with a temperature 
range between 26 to 30°C. The number of 
duckweed fronds was recorded every two 
days for 15 days (Figure 1). 

 
Quantification of Protein Content in 
Duckweed Fronds

Fresh L. minor was dried in an oven at 
65°C for 24 hr and ground into a fine 
powder. Dried duckweed was then soaked 
in sterilized distilled water at a ratio of 1:10 
(1 g of dried duckweed in 10 ml of distilled 
water) overnight to allow cell expansion 
before applying physical enforcement to 
break the cells. Then, the soaked material 
and water were microwaved at 100 W for 
15 min using a home-based microwave. 
The microwaved duckweed was filtered 
to separate the solids and the green juice. 
Protein content in the green juice was 
quantified using the Bradford reagent 
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(Bio-Rad, USA) and measured using a UV 
spectrophotometer (Varian Cary 50 UV-
Visible Spectrophotometer, Australia). The 
protein concentration was measured by 
using Equation 2. 

y = mx + c 	  	            [Equation 2]

where, y = absorbance at 595 nm; x = protein 
concentration.

Statistical Analysis

All collected data on the elemental analysis, 
duckweed growth, and duckweed protein 
content were analyzed using MINITAB16 
software (Minitab Ltd., Unted Kingdom) 
and analysis of variance (ANOVA) available 
in the software. Mean difference analysis 
was conducted using Tukey’s method, with 
significant differences defined between the 
sample means (P < 0.05).

Figure 1. Experimental design for duckweed growth. 
(a) Greenhouse setup to grow duckweed, (b) top view, 
and (c) from the view of an experimental glass jar 
containing formulated bio-fertilizer

RESULTS

Morphology of the Bacteria Colonies 
Isolated from the Mangrove Soil

As the initial step in identifying the species 
of each bacterial isolate, the morphological 
characteristics of each were observed and 
recorded. The colonies of the selected 
isolates were characterized based on 
their shape, texture, and appearance. The 
nitrogen-fixing ability of isolated strains 
was determined on Jensen agar. Visible 
colony growth on the agar indicated positive 
nitrogen fixation, while bacteria unable to 
fix nitrogen did not grow on this medium. 
Specifically, J1, J2, and J3 were identified 
as nitrogen-fixing bacteria, exhibiting light 
yellow, yellow, and milky white colonies 
on Jensen agar.

On  P ikovskaya ’s  med ium and 
Aleksandrow agar, the abilities of isolated 
strains to solubilize inorganic phosphorus 
and potassium were screened, respectively, 
using A1, A2, and A3 for potassium-
solubilizing bacteria, and P1, P2, and 
P3 for phosphate-solubilizing bacteria. 
The isolates’ potassium- and phosphate-
solubilizing activities were qualitatively 
evaluated by the formation of halos (clear 
zones) around the colonies growing on 
Pikovskaya’s medium. The bacterial 
colonies corresponding to Jensen agar, 
Aleksandrow agar, and Pikovskaya’s agar 
are shown in Figure 2.

Microbial Identification Using 16S 
rRNA Gene Sequencing Analysis

The phylogenetic tree was constructed 
using Mega 11 software with the maximum-
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likelihood (Tamura-Nei model) analysis. 
The bootstrap values are presented as 
percentages of 1,000 replications at branch 
points. Subsequent Basic Local Alignment 
Search Tool (BLAST) analysis unveiled that 
all the sequences originated from bacteria 
commonly found in Earth’s diverse habitats, 
including soils. 

Taxonomic identification was carried 
out by analyzing the 16S rRNA gene 
sequence amplified from nine bacterial 
isolates. This analysis revealed nine distinct 
bacterial phylotypes exhibiting sequencing 
similarities ranging from 98 to 100% (Table 
1). Interestingly, these phylotypes belonged 
to six genera: Bacillus, Acinetobacter, 
Brachybacterium, Enterobacter, Klebsiella, 
and Paenibacillus. 

Of particular interest were three 
bacterial strains isolated from Jensen agar: 
(1) Acinetobacter radioresistens (J1), (2) 
Brachybacterium paraconglomeratum 

(J2), and (3) Enterobacter cloacae (J3). 
Notably, A. radioresistens strain OsEp 
Plm 15B15 (MT367790.1) demonstrated 
a remarkable 99.25% similarity with J1 
isolate. Similarly, B. paraconglomeratum 
strain AS53 (MT214268.1) exhibited a 
high similarity value of 99.65%, closely 
matching J2. Likewise, E. cloacae strain 
SUK83 (KY908479.1) shared a significant 
similarity of 99.63% with J3 (Figure 3).

Meanwhile, the phylogenetic analysis 
of the 16S rRNA genes from three 
different strains isolated from Aleksandrow 
agar revealed their predicted identities 
as Klebsiella quasipneumoniae (A1), 
Bacillus tropicus (A2), and Paenibacillus 
pasadenensis (A3) with a sequence identity 
of 98–99%. The first bacterium isolated from 
Aleksandrow agar, K. quasipneumoniae 
strain cjy02 (MN177200.1), exhibited an 
impressive 99.70% similarity with A1. 
Additionally, B. tropicus strain WSB89 

Jensen agar
(Nitrogen-fixing bacteria)

Aleksandrow agar
(Potassium-solubilizing bacteria)

Pikovskaya’s agar
(Phosphate-solubilizing bacteria)

Media Soil 1 Soil 2 Soil 3

Figure 2. Morphologies of bacteria colonies isolated from soil 1, 2 and 3 on Jensen agar, Aleksandrow agar, 
and Pikovskaya’s agar. Jensen agar, Pikovskaya`s agar, and Aleksandrow agar were used to screen and culture 
nitrogen-fixing bacteria, phosphate-solubilizing bacteria, and potassium-solubilizing bacteria, respectively
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Table 1
A list of bacterial species obtained from soil samples 1, 2, and 3, and is provided through 16S rRNA sequencing

Samples Identity Query 
cover

Percent 
identity

Accession 
number

J1 Acinetobacter radioresistens strain OsEp 
Plm 15B15

100% 99.25% MT_367790.1

J2 Brachybacterium paraconglomeratum 
strain AS53

99% 99.65% MT_214268.1

J3 Enterobacter cloacae strain SUK83 99% 99.63% KY_908479.1
A1 Klebsiella quasipneumoniae strain cjy02 100% 99.70% MN_177200.1
A2 Bacillus tropicus strain WSB89 98% 98.67% OP_630954.1
A3 Paenibacillus pasadenensis strain zp09 100% 99.33% KM_100367.1
P1 Bacillus cereus strain R1 99% 99.34% MN_213372.1
P2 Bacillus cereus strain E1 100% 100% OP_597695.1
P3 Bacillus thuringiensis strain PDKV Bt I-3 100 % 99.74% OP_209990.1

Figure 3. A phylogenetic bacterial species tree was isolated from three agar (Aleksandrow agar, Jensen agar, 
and Pikovskaya agar). The DNA of the bacteria was extracted, which then being sequenced with 16S rRNA 
sequencing and the sequences with National Center for Biotechnology Information
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(OP630954.1) displayed a sequence 
similarity of 98.67% with A2, while P. 
pasadenensis strain zp09 (KM100367.1) 
showed a significant 99.33% similarity 
with A3.

Furthermore, the 16S rRNA gene 
sequence analysis identified two strains from 
Pikovskaya agar, similar to B. cereus (P2) 
and B. thuringiensis (P3). Intriguingly, one 
of the strains isolated from Pikovskaya agar 
demonstrated similarity with A2, which was 
earlier predicted to be B. tropicus (Figure 
3). These findings contribute valuable 
insights into the phylogenetic relationships 
and taxonomic diversity of the identified 
bacterial strains, paving the way for further 
investigation into their ecological roles and 
potential applications in various scientific 
fields.

Bacterial Survivability in Formulated 
Bio-fertilizer
Total plate counting can be used to test the 
bio-inoculants in biofertilizers for their 
survivability. The microbial survivability 
results indicate that the bio-fertilizer sets 
A, B, and C had higher counts of viable 
microbes compared to the control group 
(Table 2).

Table 2
Total plate count in control and biofertilizer Sets A, 
B, and C

Samples Mean log10 (cfu/g)
Control 6.20 × 106a
Set A 8.80 × 106b
Set B 8.00 × 106b
Set C 106b

Note. Means that do not share a letter between 
samples are significantly different (P < 0.05) based 
on Tukey's 95% simultaneous confidence intervals

N, P, and K Elements in Mangrove Soils 
and Formulated Bio-fertilizer
Next, the isolated bacteria were grouped into 
three sets of bio-inoculants, each exhibiting 
N fixation, P and K solubilization activities 
in three sets of formulated bio-fertilizers. 
Therefore, this study analyzed N, P, and K 
content in mangrove soils, as well as three 
sets of formulated bio- and compared them 
with the control (Figure 4). The analysis of 
chemical element content in mangrove soils 
revealed that the smallest trace element was 
P, followed by N. K element was the most 
abundant element in mangrove soil and 
showed a slight increase (P = 0.003) in Soil 
2 compared to Soils 1 and 3.  
a.

b.
Elements

Elements

N
PK

 c
on

te
nt

 (%
)

N
PK

 c
on

te
nt

 (%
)

2

1.5

1

0.5

0
    Soil 1             Soil 2             Soil 3  

9
8
7
6
5
4
3
2
1
0

  Control     Set A        Set B         Set C

Figure 4. Nitrogen (N), phosphate (P), and potassium 
elements in (a) mangrove soils and (b) control and 
formulated bio-fertilizer Sets A, B, and C
Note. All data are mean±standard deviations (n = 3). 
Means that do not share a letter between samples are 
significantly different (P < 0.05) based on Tukey's 
95% simultaneous confidence intervals
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Meanwhile, from the analysis of 
chemical element content in our formulated 
bio-fertilizers, it was found that the K 
element was also the most abundant in all 
three sets of formulated bio-fertilizers and 
showed a significant increase (P = 0.000) 
compared to the control, which is similar 
to N and P elements. However, P content 
was slightly increased in formulated bio-
fertilizer Set C compared to Sets A and B. At 
the same time, the percentage of N element 
was similar in Sets A and C. The presence of 
mangrove-associated bacteria in formulated 
bio-fertilizer is known to reflect the amount 
of N, P, and K content. 

Effect of Formulated Bio-fertilizer on 
the Growth of Duckweed Plants
The effectiveness of formulated bio-
fertilizer sets A, B, and C compared to the 

control on the growth of duckweed plants is 
presented in Figure 5. The duckweed growth 
was evaluated in terms of the number of 
duckweed fronds. Relative to the control, 
formulated bio-fertilizer sets A, B, and C 
exhibited a significant increase (P = 0.00) in 
duckweed growth from Day 3 until Day 15. 
The result of this analysis also showed that 
formulated bio-fertilizer Set C is the most 
effective medium to boost duckweed growth 
compared to Sets A and B. Figure 6 shows 
the impact of formulated bio-fertilizers sets 
A, B, and C on duckweed fronds on Day 
15, contrasting the results with Day 0 and 
the control group. The results obtained from 
this experiment indicate that duckweed 
growth is correlated with the chemical 
element content in formulated bio-fertilizer 
Set C (E. cloacae, P. pasadenensis, and B. 
thuringiensis), which showed an increase of 
P content compared to Sets A and B. 

Figure 5. The growth of duckweed in control and formulated bio-fertilizer Sets A, B and C in 15 days
Note. All data are mean±standard deviations (n = 3). Means that those that share a letter between samples 
are significantly different (P < 0.05) based on Tukey's 95% simultaneous confidence intervals
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Effect of Formulated Bio-fertilizer on 
the Duckweed Protein Content 

The effectiveness of formulated bio-fertilizer 
sets A, B, and C compared to the control on 
the duckweed protein amount is presented in 
Figure 7. Overall, formulated bio-fertilizer 
sets A, B, and C displayed an increasing 
trend (P = 0.00) in the amount of protein in 

duckweed plants compared to the control. 
It indicates that the presence of mangrove-
associated microbes in the formulated 
bio-fertilizer used as a duckweed growth 
medium is known to influence the amount 
of protein in this plant. 

Figure 6. The growth of duckweed on 0 and 15 days in control and formulated bio-fertilizer Sets A, B, and 
C, respectively

Control                            Set A                          Set B                          Set C

Day 0

Day 15

Figure 7. Amount of protein harvested from duckweed after 15 days grown in control and formulated bio-
fertilizer Sets A, B, and C in 15 days
Note. All data are mean±standard deviations (n = 3). Means that those that share a letter between samples are 
significantly different (P <0.05) based on Tukey's 95% simultaneous confidence intervals
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DISCUSSION

N, P, and K Content Analysis

Bio-fertilizer has been recommended as a 
more environmentally friendly substitute 
for conventional chemical fertilizers 
and pesticides. It has been established 
that rhizosphere soil has a rich source of 
plant growth promoting bacteria (PGPB) 
(Iniesta-Pallarés et al., 2023; Pii et al., 
2015). In this study, bacteria were isolated 
from the mangrove soil. Nine bacterial 
strains were identified according to the 16S 
rRNA gene sequencing and grouped into 
three bio-fertilizer sets (Set A containing 
A. radioresistens, K. quasipneumonia, 
and  B.  cereus ;  Se t  B  conta ins  B.  
paraconglomeratum, B. cereus, and B. 
tropicus; and Set C containing E. cloacae, 
P. pasadenensis, and B. thuringiensis) with 
each having the ability to fix nitrogen, 
solubilize potassium and phosphorus, grown 
on the duckweed. 

The results of bacterial screening on 
Jensen agar and microbial identification by 
using 16S rRNA analysis demonstrated that A. 
radioresistens (J1), B. paraconglomeratum 
(J2), and E. cloacae (J3) exhibit nitrogen-
fixing capabilities. Some types of bacteria 
and cyanobacteria are essential to the 
nitrogen cycle as they can reduce or fix 
atmospheric nitrogen gas (N2), rendering 
the element accessible to other organisms, 
including plants and animals (Saha et al., 
2017). Soil microbes, influenced by soil 
nitrogen availability, impact the terrestrial 
carbon cycle through decomposition and 
the formation of soil organic matter (SOM) 
(Cotrufo et al., 2013). High-N substrates 

lead to rapid breakdown by bacteria, 
resulting in substantial microbial product 
accumulation and stable SOM creation. 
Cycles of extracellular enzyme production, 
primarily controlled by community 
composition, serve as markers for microbial 
nutrient demand, soil nutrient cycling, and 
soil respiration (Zechmeister-Boltenstern et 
al., 2015). Meanwhile, B. cereus (P2) and 
B. thuringiensis (P3) exhibit phosphate-
solubilizing capabilities. Among the 
essential macronutrients, P plays a crucial 
role in plants’ biological development and 
growth (Soetan et al., 2009). P solubilizers 
are crucial in solubilizing soil phosphorus by 
producing secondary metabolites, including 
enzymes such as acid phosphatases and 
phytases. Additionally, they generate 
phytohormones like indole-3-acetic acid 
(IAA) and siderophores, which further 
contribute to increased plant yield (A. 
Kumar et al., 2014; Kour et al., 2020). 

Furthermore, K. quasipneumoniae (A1), 
B. tropicus (A2), and P. pasadenensis (A3) 
exhibit potassium-solubilizing capabilities. 
K is vital for plant development and growth 
as it involves numerous metabolic processes. 
It plays a crucial role in the plant’s ability to 
withstand drought and diseases (Billore et al., 
2009). Additionally, it contributes to starch 
production, controls root growth, regulates 
stomata movement within plant cells, 
activates enzymes, maintains cell turgor, 
and transports sugars as well as starches 
(Meena et al., 2014), ultimately influencing 
plant quality. Rhizospheric bacteria, known 
as potassium-solubilizing bacteria, have the 
ability to convert insoluble potassium into 
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soluble forms through acidolysis, chelation, 
exchange reactions, and complexation 
(Meena et al., 2015). Simultaneously, they 
decompose organic matter and crop residues 
to promote plant growth and increase 
yield (Etesami et al., 2017). Among soil 
microorganisms, potassium-solubilizing 
bacteria play the most significant role in 
plant potassium cycling (Sun et al., 2020). 
In the soil, K is found at a concentration of 
1–2% as a soluble compound, with the other 
90%+ present as insoluble rocks and silicate 
minerals (e.g., mica, muscovite, feldspar, 
microline, and orthoklas). In this way, the 
latter type is mostly inaccessible to plants 
(Parmar & Sindhu, 2013). Bacteria play 
a vital role in maintaining soil fertility by 
secreting organic acid during the degradation 
of silicate minerals, which release K, silicon, 
and aluminum.

Based on the results obtained from this 
study, Set C appears to be much better than 
Sets A and B as a bio-fertilizer option, as 
Set C showed an increase in the content 
of N, P, and K when compared to Sets A, 
B, and Control. Set C contains E. cloacae, 
P. pasadenensis, and B. thuringiensis 
in a formulated bio-fertilizer. The main 
advantage of Set C is its ability to enhance 
the P content in the soil. Several studies (Ali 
& Pati, 2023; Ansari et al., 2023; A. Kumar et 
al., 2014) have reported that E. cloacae, one 
of the bacteria in Set C, is a potent inorganic 
P solubilizer and can significantly increase P 
acquisition in plants. Moreover, E. cloacae 
exhibit a variety of growth-promoting 
actions, including P and K solubilization, as 
well as N fixation (Chin et al., 2017; Deepa 

et al., 2010; Ramesh et al., 2014). These 
actions improve plant health and soil fertility 
(Ghiglione et al., 2021). Paenibacillus 
pasadenensis, another component of Set 
C, has also been shown to be involved 
in the solubilization of soil phosphorus, 
the production of phytohormones and 
antimicrobial metabolites (Govindasamy et 
al., 2011), and is also known to be involved 
in the fixation of atmospheric nitrogen 
and the uptake of micronutrients, further 
benefiting plant growth (Grady et al., 2016). 
Bacillus sp. was also considered an effective 
nitrogen-fixing bacteria (Awasthi et al., 
2011; Zhang et al., 2023). Multiple PGPB 
favorable characteristics were found in the 
genus Bacillus, including P solubilization 
and participation in the N cycle (Stegelmeier 
et al., 2022). 

This study also shows that Set A bio-
fertilizer, which contains A. radioresistens, 
K. quasipneumonia, and B. cereus, as 
wel l  as  Set  B,  which  conta ins  B.  
paraconglomeratum, B. cereus, and B. 
tropicus, exhibit increased levels of N, 
P, and K compared to control. Previous 
research demonstrated that Acinetobacter 
increased the amount of N that duckweed 
could extract  from the pond water 
(Stegelmeier et al., 2022). Acinetobacter sp. 
is claimed to be a plant growth-promoting 
bacterium, as it has been found to enhance 
wheat growth (Egamberdieva et al., 2008). 
Furthermore, this study revealed that 
Set A is the second highest in increasing 
the P content in the soil, similar to Set 
B. This finding is supported by research 
conducted by Yamakawa et al. (2018), 



Sustainable Bio-fertilizer Boosts Duckweed: Mangrove Bacteria Impact

Pertanika J. Trop. Agri. Sci. 47 (3): 819 - 841 (2024) 833

in which Acinetobacter calcoaceticus 
P23 exhibited apparent P solubilizing 
activity. They claim that Acinetobacter can 
increase the amount of  P in the cultivation 
of duckweed (Yamakawa et al., 2018). 
Klebsiella quasipneumoniae, a sister-like 
of Klebsiella pneumonia, is considered 
a human bacterial pathogen. However, 
it has been reported that a Klebsiella 
strain was present in the rhizosphere and 
exhibited PGPB traits (Tangapo et al., 
2018). Klebsiella pneumoniae possesses 
various PGPB traits, namely the production 
of IAA, P solubilization, N–fixing ability, 
and several other traits (Ashfaq et al., 
2022). Similar results have shown that K 
solubilizing bacteria have been successfully 
isolated from tobacco rhizosphere, such as 
Klebsiella variicola (Sun et al., 2020). There 
is extensive evidence that inoculation with 
Klebsiella sp. can increase the available K 
in the soil (Wang et al., 2020).  

S e t  B  i s  c o m p o s e d  o f  B . 
paraconglomeratum, B. tropicus, and B. 
cereus. Results from this study show that 
Set B has the lowest increase in N, K, 
and P content compared to Sets A and C. 
Brachybacterium paraconglomeratum, 
which has demonstrated the ability to 
promote plant growth. This bacteria species 
can also produce the plant hormone IAA and 
siderophores. Furthermore,  it can utilize 
1-aminocyclopropane-1-carboxylic acid 
(ACC) as a sole source of N and exhibits 
ACC deaminase activity in plant growth 
promotion (Gontia et al., 2011). 

The Effect of Bio-fertilizer in Improving 
Duckweed Growth and Its Protein 
Content

Microbes naturally found in plants are 
crucial in promoting plant growth, even in 
challenging conditions. Extensive research 
on bio-fertilizers has demonstrated their 
potential to supply vital nutrients to crops, 
enriching crop yields without harming 
the environment (Kour et al., 2020). 
However, not all microbes can interact 
with plants, making it essential to analyze 
the interactions of PGPB with their natural 
plant hosts (Zamioudis & Pieterse, 2012). 
Duckweed, a fast-growing aquatic plant, 
undergoes clonal duplication during its 
vegetative growth cycle, with a high number 
of fronds indicating healthy growth and 
reproduction (Tang et al., 2015). N fixation, 
P solubilization, and K solubilization 
have been identified as the mechanisms 
responsible for the symbiotic connections 
between bio-fertilizers and duckweed. 

Studies have shown that bio-fertilizers 
from different sets can significantly 
enhance duckweed growth (Yoneda et 
al., 2021). Unlike in soil, plant-associated 
microorganisms in water must adhere to 
and colonize plant bodies to avoid being 
washed away by water currents. Aquatic 
PGPB is hypothesized to possess useful 
properties such as rapid adhesion and stable 
colonization. Based on the results obtained 
from this study, bio-fertilizers from Sets 
A, B, and C can enhance the growth of the 
duckweed, with Set C displayed as the best 
bio-fertilizer, corresponding to the highest 
number of duckweed fronts after 15 days. 
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The bio-fertilizer increased the number 
of duckweed fronds, which is consistent 
with the findings of Yoneda et al. (2021). 
Specifically, PGPB strains from the phyla 
Betaproteobacteria, Gammaproteobacteria, 
and Alphaproteobacteria have been observed 
to increase the number of duckweed fronds 
by more than twofold (Makino et al., 2022). 
Additionally, certain PGPB strains, such 
as Pseudomonas sp. Ps6 and Ensifer sp. 
strain SP4 have demonstrated the ability 
to accelerate duckweed growth (Toyama et 
al., 2017).

The potential for using this PGPB 
as a bioinoculant was demonstrated 
by exposing duckweed to all bacterial 
strains obtained in this study. The PGPB 
effects of all tested bacterial strains on 
duckweeds were comparable to those of 
the well-studied representative PGPB, 
Acinetobacter calcoaceticus strain (Makino 
et al., 2022; Toyama et al., 2017). The 
ability of A. calcoaceticus P23 to grow in 
both artificial media and environmental 
conditions makes it a potential bioinoculant 
for enhancing duckweed growth (Suzuki et 
al., 2014; Toyama et al., 2017; Yamaga et 
al., 2010). Several studies have shown that 
co-cultivation of duckweed with specific 
PGPB strains can lead to significant growth 
benefits. For instance, the rhizobacterium 
MH3 has been found to boost duckweed 
development, resulting in a 30% increase 
in frond number and a 50% increase in dry 
weight (Tang et al., 2015). Moreover, certain 
Bacillus strains present in different bio-
fertilizer sets have successfully functioned 
as PGPB to stimulate rapid duckweed 

growth (Idris et al., 2007). The hypothesis 
of synergistic effects arising from the co-
inoculation of these strains further supports 
establishing and maintaining a mutually 
beneficial plant-microbe relationship. 
Thus, the bio-fertilizer set can establish and 
maintain a mutually beneficial plant-microbe 
relationship. It is worth noting that the bio-
fertilizer bacterial strain can potentially 
promote growth and rescue plants from 
growth inhibition synergistically.

In this investigation, bio-fertilizers 
denoted as Sets A, B, and C exhibited 
a notable augmentation in duckweed 
protein content in tandem with escalating 
concentrations of N, P, and K. These 
findings align with those reported by Li 
et al. (2016), observed a similar increase 
in protein content in Spirodela polyhiza 
duckweed as N and P concentrations were 
elevated (Li et al., 2016). The correlation 
between these studies suggests that higher 
nutrient levels are conducive to enhancing 
duckweed protein production. Notably, 
Set A displayed a higher protein content 
compared to Sets B and C, highlighting 
the influence of different bacterial species 
within the bio-fertilizer sets on protein 
content. Shuvro et al. (2023) also observed 
increased protein content in L. minor when 
cultured with Azotobacter vinelandii for 10 
days, relative to the control. However, under 
stressful conditions, the protein production 
levels decreased (Shuvro et al., 2023). 
Furthermore, the growth factor and protein 
content of duckweed are impacted by light 
intensities (Petersen et al., 2022). 
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Our study highlights the potential of 
mangrove-associated bacteria identified as 
A. radioresistens, B. paraconglomeratum, 
and E. cloacae, which are known as nitrogen-
fixing bacteria, K. quasipneumoniae, B. 
tropicus, and P. pasadenensis known as 
potassium-solubilizing bacteria, and B. 
cereus and B. thuringiensis known as 
phosphate-solubilizing bacteria when 
integrated into bio-fertilizers. These 
environmentally friendly alternatives to 
traditional chemical fertilizers and pesticides 
represent a novel approach. The microbial 
composition in each set of our formulated 
bio-fertilizer includes specific nitrogen-
fixing species, potassium-solubilizing, 
and phosphate-solubilizing bacteria. This 
specificity distinguished our study distinct 
from previous research. The synergistic 
combination of these three types of bacteria 
in our bio-fertilizer formulation represents 
a promising strategy for developing bio-
fertilizers to enhance plant growth. This 
study also contributes to the ongoing efforts 
in bio-fertilizer development by identifying 
specific microbial compositions that enhance 
plant growth. This knowledge is crucial for 
formulating effective bio-fertilizers that can 
be applied in various agricultural settings. 
In addition, highlighting the importance 
of mangrove-associated microbes in bio-
fertilizers underscores the potential role 
of mangrove ecosystems in supporting 
agricultural practices. This information 
can contribute to conserving mangrove 
biodiversity for ecological and agricultural 
benefits.

CONCLUSION

Our study successfully achieved its aim 
by showcasing the impactful integration 
of mangrove-associated microbes into our 
formulated bio-fertilizer. The discernible 
outcome was a substantial enhancement 
in duckweed’s growth and the subsequent 
protein yield. These findings contribute 
valuable insights into optimizing bio-
fertilizer formulations and emphasize the 
significant potential of duckweed as a viable 
and promising future food option. As the 
challenges of sustainable food production 
are navigated, the demonstrated success of 
this integration underscores the importance 
of exploring innovative and environmentally 
friendly approaches to enhance agricultural 
productivity and advance the feasibility of 
alternative protein sources.
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