Home / Regular Issue / JSSH Vol. 32 (1) Jan. 2024 / JST-4181-2023

 

Understanding the Degradation of Carbofuran in Agricultural Area: A Review of Fate, Metabolites, and Toxicity

Nurul Syuhada Baharudin, Harlina Ahmad and Md Sohrab Hossain

Pertanika Journal of Social Science and Humanities, Volume 32, Issue 1, January 2024

DOI: https://doi.org/10.47836/pjst.32.1.17

Keywords: Carbofuran, degradation, fate, metabolic pathways, metabolites, toxicity, usage

Published on: 15 January 2024

Pesticides are commonly applied in agriculture to manage pests, parasites, weeds, and other crop diseases to maximise product output value and minimise or reduce yield losses. Pesticides are widely and indiscriminately used in crop production in most countries. Carbofuran is a highly toxic insecticide commonly used to protect crops in agricultural areas. Exposure to carbofuran can cause harmful effects on both the ecological environment and human health, particularly on non-target species such as birds and aquatic organisms. Carbofuran continues to be used, although it has been banned in some countries. This review paper highlights carbofuran usage, its residue, toxicity, and mechanisms of degradation pathways in water, soil, and food, especially in agriculture. It has been shown that hydrolysis, photolysis, and microbial degradation are the main pathways for carbofuran degradation. Carbofuran phenol is significantly less toxic than all photo-metabolites, while 3-ketocarbofuran and 3-hydroxycarbofuran are practically as harmful as the parent compound. Hence, more study is needed on degradation pathways that may thoroughly minimise the toxicity of this deadly pesticide.

  • Abdullah, A. R., Bajet, C. M., Matin, M. A., Nhan, D. D., & Sulaiman, A. H. (1997). Ecotoxicology of pesticides in the tropical paddy field ecosystem. Environmental Toxicology and Chemistry, 16(1), 59-70. https://doi.org/https://doi.org/10.1002/etc.5620160106

  • Acharid, A., Quentel, F., Elléouet, C., Olier, R., & Privat, M. (2006). Coadsorption of carbofuran and lead at the air/water interface. Possible occurrence of non-volatile pollutant cotransfer to the atmosphere. Chemosphere, 62(6), 989-997.

  • Achik, J., & Schiavon, M. (1989). Carbofuran transfer and persistence in drained agricultural soils related to their structure and adsorption properties. Ecotoxicology and Environmental Safety, 18(1), 83-92. https://doi.org/https://doi.org/10.1016/0147-6513(89)90094-8

  • Al-Ahmadi, M. S. (2019). Pesticides, anthropogenic activities, and the health of our environment safety. In M. Larramendy & S. Soloneski (Eds.), Pesticides - Use and Misuse and their Impact in the Environment (pp. 73-95). IntechOpen. https://doi.org/10.5772/intechopen.84161

  • Fan, A. M., & Alexeeff, G. V. (2000). Public Health Goals for Chemicals in Drinking Water. California Environmental Protection Agency. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=58eef5d5e0102c8e7ea84da41ddf095d545ff50a

  • Anandan, S., Ponnusamy, V. K., & Ashokkumar, M. (2020). A review on hybrid techniques for the degradation of organic pollutants in aqueous environment. Ultrasonics Sonochemistry, 67, Article 105130.

  • Ariffin, F., & Rahman, S. A. (2020). Biodegradation of carbofuran: A review. Journal of Environmental Microbiology and Toxicology, 8(1), 50-57.

  • Ayilara, M. S., Adeleke, B. S., Akinola, S. A., Fayose, C. A., Adeyemi, U. T., Gbadegesin, L. A., Omole, R. K., Johnson, R. M., Uthman, Q. O., & Babalola, O. O. (2023). Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Frontiers in Microbiology, 14, 1-16. https://doi.org/10.3389/fmicb.2023.1040901

  • Azam, S. M. R., Ma, H., Xu, B., Devi, S., Siddique, M. A. B., Stanley, S. L., Bhandari, B., & Zhu, J. (2020). Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends in Food Science & Technology, 97, 417-432. https://doi.org/10.1016/j.tifs.2020.01.028

  • Bachman, J., & Patterson, H. H. (1999). Photodecomposition of the carbamate pesticide carbofuran: Kinetics and the influence of dissolved organic matter. Environmental Science & Technology, 33(6), 874-881. https://doi.org/10.1021/es9802652

  • Bailey, H. C., Digiorgio, C., Kroll, K., Hinton, D. E., Miller, J. L., & Starrett, G. (1996). Development of procedures for identifying pesticide toxicity in ambient waters: Carbofuran, diazinon, chlorpyrifos. Environmental Toxicology and Chemistry: An International Journal, 15(6), 837-845. https://doi.org/10.1002/etc.5620150604

  • Baumart, J., Dalosto, M., & Santos, S. (2011). Effects of carbofuran and metsulfuron-methyl on the benthic macroinvertebrate community in flooded ricefields. Acta Limnologica Brasiliensia, 23(2), 138-144. https://doi.org/10.1590/S2179-975X2011000200004

  • Bedair, H., Rady, H. A., Hussien, A. M., Pandey, M., Apollon, W., AlKafaas, S. S., & Ghosh, S. (2022). Pesticide detection in vegetable crops using enzyme inhibition methods: A comprehensive review. Food Analytical Methods, 15(7), 1979-2000. https://doi.org/10.1007/s12161-022-02254-x

  • Benitez, F. J., Acero, J. L., & Real, F. J. (2002). Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes. Journal of Hazardous Materials, 89(1), 51-65. https://doi.org/https://doi.org/10.1016/S0304-3894(01)00300-4

  • Bhat, A. P., & Gogate, P. R. (2021). Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: A review on aliphatic and aromatic amines, dyes, and pesticides. Journal of Hazardous Materials, 403, Article 123657. https://doi.org/10.1016/j.jhazmat.2020.123657

  • Boh, C. U., & Yeang, L. K. (2002). Pesticide residues and microbial contamination of water resources in the MUDA rice agroecosystem. Malaysian Institute for Nuclear Technology Research MINT. http://inis.iaea.org/search/search.aspx?orig_q=RN:37065380

  • Bolan, N. S., Adriano, D. C., Kunhikrishnan, A., James, T., McDowell, R., & Senesi, N. (2011). Dissolved organic matter: Biogeochemistry, dynamics, and environmental significance in soils. Advances in Agronomy, 110, 1-75. https://doi.org/10.1016/B978-0-12-385531-2.00001-3

  • Bose, S., Kumar, P. S., Vo, D. V. N., Rajamohan, N., & Saravanan, R. (2021). Microbial degradation of recalcitrant pesticides: A review. Environmental Chemistry Letters, 19, 3209-3228. https://doi.org/10.1007/s10311-021-01236-5

  • Brasel, J. M., Collier, A. C., & Pritsos, C. A. (2007). Differential toxic effects of carbofuran and diazinon on time of flight in pigeons (Columba livia): Potential for pesticide effects on migration. Toxicology and Applied Pharmacology, 219(2-3), 241-246. https://doi.org/10.1016/j.taap.2006.11.028

  • Cáceres, T., Maestroni, B., Islam, M., & Cannavan, A. (2019). Sorption of 14C-carbofuran in Austrian soils: Evaluation of fate and transport of carbofuran in temperate regions. Environmental Science and Pollution Research, 26(1), 986-990. https://doi.org/10.1007/s11356-018-3730-3

  • Campbell, S., David, M. D., Woodward, L. A., & Li, Q. X. (2004). Persistence of carbofuran in marine sand and water. Chemosphere, 54(8), 1155-1161. https://doi.org/10.1016/j.chemosphere.2003.09.018

  • Marine, N. R. G. (1999). Canadian Water Quality Guidelines for the Protection of Aquatic Life. Canadian Council of Ministers of the Environment. https://mde.maryland.gov/programs/Marylander/Documents/canadian_WQ_Chloride_(en)[1].pdf

  • Chaudhary, D. K., & Kim, J. (2019). New insights into bioremediation strategies for oil-contaminated soil in cold environments. International Biodeterioration & Biodegradation, 142, 58-72. https://doi.org/10.1016/j.ibiod.2019.05.001

  • Choez, A., & Evaristo, R. R. (2018). Acute intoxication by carbofuran in cattle. Journal of Veterinary Medicine, 2(1), Article 20. https://doi.org/10.4172/2574-2868.100020

  • Chowdhury, A. Z., Jahan, S. A., Islam, M. N., Moniruzzaman, M., Alam, M. K., Zaman, M. A., Karim, N., & Gan, S. H. (2012). Occurrence of organophosphorus and carbamate pesticide residues in surface water samples from the Rangpur District of Bangladesh. Bulletin of Environmental Contamination and Toxicology, 89(1), 202-207. https://doi.org/10.1007/s00128-012-0641-8

  • Cid, A., Mejuto, J. C., Moldes, Ó. A., & Morales, J. (2011). Basic degradation of 3-keto-carbofuran in the presence of non-ionic self-assembly colloids. Fresenius Environmental Bulletin, 20(2), 354-357

  • Clasen, B., Leitemperger, J., Murussi, C., Pretto, A., Menezes, C., Dalabona, F., Marchezan, E., Adaime, M. B., Zanella, R., & Loro, V. L. (2014). Carbofuran promotes biochemical changes in carp exposed to rice field and laboratory conditions. Ecotoxicology and Environmental Safety, 101, 77-82. https://doi.org/https://doi.org/10.1016/j.ecoenv.2013.12.012

  • Conway, G. R., & Pretty, J. N. (2013). Unwelcome Harvest: Agriculture and Pollution. Routledge.

  • Cossi, P. F., Herbert, L. T., Yusseppone, M. S., Pérez, A. F., & Kristoff, G. (2020). Toxicity evaluation of the active ingredient acetamiprid and a commercial formulation (Assail® 70) on the non-target gastropod Biomphalaria straminea (Mollusca: Planorbidae). Ecotoxicology and Environmental Safety, 192, Article 110248. https://doi.org/10.1016/j.ecoenv.2020.110248

  • Ćwieląg-Piasecka, I., Debicka, M., & Medyńska-Juraszek, A. (2021). Effectiveness of carbaryl, carbofuran and metolachlor retention in soils under the influence of different colloid. Minerals, 11(9), Article 924. https://doi.org/10.3390/min11090924

  • Cycoń, M., Mrozik, A., & Piotrowska-Seget, Z. (2017). Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere, 172, 52-71. https://doi.org/10.1016/j.chemosphere.2016.12.129

  • Daam, M. A., Crum, S. J. H., Van den Brink, P. J., & Nogueira, A. J. A. (2008). Fate and effects of the insecticide chlorpyrifos in outdoor plankton-dominated microcosms in Thailand. Environmental Toxicology and Chemistry, 27(12), 2530-2538. https://doi.org/10.1897/07-628.1

  • Daam, M. A., & Van den Brink, P. J. (2010). Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides. Ecotoxicology, 19(1), 24-37. https://doi.org/10.1007/s10646-009-0402-6

  • Daliya, P., Ljungqvist, O., Brindle, M. E., & Lobo, D. N. (2020). Guidelines for guidelines. In O. Ljungqvist, N. K. Francis & R. D. Urman (Eds.), Enhanced Recovery After Surgery (pp. 23-28). Springer. https://doi.org/10.1007/978-3-030-33443-7_3

  • De Melo Plese, L. P., Paraiba, L. C., Foloni, L. L., & Trevizan, L. R. P. (2005). Kinetics of carbosulfan hydrolysis to carbofuran and the subsequent degradation of this last compound in irrigated rice fields. Chemosphere, 60(2), 149-156. https://doi.org/10.1016/j.chemosphere.2005.02.049

  • Diale, M. O., Abrahams, A., & Serepa-Dlamini, M. H. (2022). Isolation and Characterization of Bacteriocin-Like Substances from Bacillus paranthracis Strain MHSD3, a Potential Probiotic. Research Square. https://doi.org/10.21203/rs.3.rs-1553916/v1

  • Duc, H. D. (2022). Enhancement of carbofuran degradation by immobilized Bacillus sp. strain DT1. Environmental Engineering Research, 27(4), Article 210158. https://doi.org/10.4491/eer.2021.158

  • Daul, J. A., Seng, M. M. K. B., Ikeda, M. M., Ombajo, M. P. S. O., Goji, M. I., Khan, M. M. B., & Magdalena, M. (2012, March 19-23). Rotterdam convention on the prior informed consent procedure for certain hazardous chemicals and pesticides in international trade. In Chemical Review Committee Eighth meeting (pp. 1-39). Geneva, Switzerland

  • Edzwald, J. (2011). Water Quality & Treatment: A Handbook on Drinking Water. McGraw-Hill Education.

  • EFSA. (2014). Reasoned opinion on the review of the existing MRLs for carbofuran, carbosulfan, benfuracarb and furathiocarb and the setting of an import tolerance for carbofuran in cultivated mushrooms. EFSA Journal, 12(2), Article 3559. https://doi.org/10.2903/j.efsa.2014.3559

  • Eisler, R. (1985). Carbofuran Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Department of the Interior, Fish and Wildlife Service

  • Elbashir, A. A., & Aboul-Enein, H. Y. (2015). Separation and analysis of triazine herbcide residues by capillary electrophoresis. Biomedical Chromatography, 29(6), 835-842. https://doi.org/10.1002/bmc.3381

  • Evert, S. (2002). Environmental Fate of Carbofuran. California Environmental Protection Agency, Department of Pesticide Regulation, Sacramento. https://www.cdpr.ca.gov/docs/emon/pubs/envfate.html

  • Fang, N., Lu, Z., Hou, Z., Zhang, C., & Zhao, X. (2022). Hydrolysis and photolysis of flupyradifurone in aqueous solution and natural water: Degradation kinetics and pathway. Chemosphere, 298, Article 134294. https://doi.org/10.1016/j.chemosphere.2022.134294

  • Farahani, G. H. N., Zakaria, Z., Kuntom, A., Omar, D., & Ismail, B. S. (2007). Adsorption and desorption of carbofuran in Malaysian soils. Advances in Environmental Biology, 1(1), 20-26.

  • Farahani, G. H. N., Zakaria, Z., Kuntom, A., Omar, D., & Ismail, B. S. (2008). Persistence of carbofuran in two Malaysian soils. Plant Protection Quarterly, 23(4), 179-183.

  • Farahani, G. H. N., Zuriati, Z., Aini, K., & Ismail, B. S. (2012). Persistence of carbofuran in Malaysian waters. American-Eurasian Journal of Agricultural & Environmental Sciences, 12(5), 616-623.

  • Fatah, F. A., Yaakub, N., Ridzuan, R. M., & Ahmad, A. R. (2017). The study on the economic fertilizer requirement for paddy production on a Malaysian soil. Journal of Fundamental and Applied Sciences, 9(2S), 777-798. https://doi.org/10.4314/jfas.v9i2s.48

  • Fenner, K., Canonica, S., Wackett, L. P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science, 341(6147), 752-758.

  • Filik, H., & Çekiç, S. D. (2011). Cloud point extraction of pesticide residues. In M. Stoytcheva (Ed.), Pesticides in the Modern World-Trends in Pesticides Analysis (pp. 247-280). IntechOpen.

  • FOA. (2020). The State of World Fisheries and Aquaculture 2020: Sustainability in Action. Food and Agiculture Organization. https://doi.org/10.4060/ca9229en

  • Furmanczyk, E. M., Kaminski, M. A., Lipinski, L., Dziembowski, A., & Sobczak, A. (2018). Pseudomonas laurylsulfatovorans sp. nov., sodium dodecyl sulfate degrading bacteria, isolated from the peaty soil of a wastewater treatment plant. Systematic and Applied Microbiology, 41(4), 348-354. https://doi.org/10.1016/j.syapm.2018.03.009

  • Gammon, D. W., Liu, Z., & Becker, J. M. (2012). Carbofuran occupational dermal toxicity, exposure and risk assessment. Pest Management Science, 68(3), 362-370. https://doi.org/10.1002/ps.2270

  • Garcia-Saavedra, Y., Rivera, A., Hernandez-Aladana, F., Romero-Arenas, O., Sanchez-Morales, P., & Giono-Cerezo, S. (2018). Carbofuran, malathion and 2, 4-D degradation by bacterial activity. Journal of Pure and Applied Microbiology, 12(3), 1331-1335. http://dx.doi.org/10.22207/JPAM.12.3.35

  • Gc, Y. D., Palikhe, B. R., Gu, B., & Beatrice, G. (2021). Status of highly hazardous pesticides and their mitigation measures in Asia. Advances in Entomology, 10(1), 14-33. https://doi.org/10.4236/ae.2022.101002

  • Grandclément, C., Seyssiecq, I., Piram, A., Wong-Wah-Chung, P., Vanot, G., Tiliacos, N., Roche, N., & Doumenq, P. (2017). From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. Water Research, 111, 297-317. https://doi.org/10.1016/j.watres.2017.01.005

  • Gunther, F. A., & Gunther, J. D. (2013). Residue Reviews: Residues Of Pesticides And Other Foreign Chemicals In Foods And Feeds (Vol. 40). Springer Science & Business Media.

  • Gupta, J., Rathour, R., Singh, R., & Thakur, I. S. (2019). Production and characterization of extracellular polymeric substances (EPS) generated by a carbofuran degrading strain Cupriavidus sp. ISTL7. Bioresource Technology, 282, 417-424. https://doi.org/10.1016/j.biortech.2019.03.054

  • Halimah, M., Tan, Y. A., & Ismail, B. S. (2005). The fate of fluroxypyr in the soil in an oil palm agroecosystem. Weed Biology and Management, 5(4), 184-189. https://doi.org/10.1111/j.1445-6664.2005.00179.x

  • Vincent, K. (2014). Reforming wildlife law: Proposals by the Law Commission for England and Wales. International Journal for Crime, Justice and Social Democracy, 3(2), 67-80.

  • Hayasaka, D., Korenaga, T., Suzuki, K., Saito, F., Sánchez-Bayo, F., & Goka, K. (2012). Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms. Ecotoxicology and Environmental Safety, 80, 355-362. https://doi.org/10.1016/j.ecoenv.2012.04.004

  • Health Canada. (2020). Guidelines for Canadian Drinking Water Quality Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario. https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/pdf/pubs/water-eau/sum_guide-res_recom/summary-table-EN-2020-02-11.pdf

  • Howard, P. (2017). Handbook of Environmental Fate and Exposure Data: For Organic Chemicals, Volume III Pesticides. Routledge.

  • Huang, J., & Mabury, S. A. (2000). A new method for measuring carbonate radical reactivity toward pesticides. Environmental Toxicology and Chemistry: An International Journal, 19(6), 1501–1507.

  • Idayu, M., Anis, N., Akmal, S., & Esa, N. (2014). A survey on use , hazards and potential risks of rice farming pesticides in Permatang Keriang, Pulau Pinang (Malaysia). International Journal of Scientific and Research Publications, 4(10), 1-11.

  • Islam, A., Naskar, S., Mazumder, U. K., Gupta, M., & Ghosal, S. (2008). Estrogenic properties of phyllanthin and hypophyllanthin from Phyllanthus amarus against carbofuran induced toxicity in female rats. Pharmacologyonline, 3, 1006-1016.

  • Ismail, B. S., & Kalithasan, K. (2004). Adsorption, desorption, and mobility of permethrin in Malaysian soils. Journal of Environmental Science and Health, Part B, 39(3), 419-429. https://doi.org/10.1081/PFC-120035927

  • Ismail, B. S., Ngan, C. K., Cheah, U. B., & Abdullah, W. Y. W. (2004). Leaching potential of pesticides in a vegetable farm in the Cameron Highlands, Malaysia. Bulletin of Environmental Contamination and Toxicology, 72(4), 836-843. https://doi.org/10.1007/s00128-004-0320-5

  • Ismail, B. S., Prayitno, S., & Tayeb, M. A. (2015). Contamination of rice field water with sulfonylurea and phenoxy herbicides in the Muda Irrigation Scheme, Kedah, Malaysia. Environmental Monitoring and Assessment, 187(7), 1-13. https://doi.org/10.1007/s10661-015-4600-9

  • Jaiswal, D. K., Verma, J. P., & Yadav, J. (2017). Microbe induced degradation of pesticides in agricultural soils. In S. N. Singh (Ed.), Microbe-induced degradation of pesticides (pp. 167-189). Springer.

  • Jemutai-Kimosop, S., Orata, F. O., K’Owino, I. O., & Getenga, Z. M. (2014). The dissipation of carbofuran in two soils with different pesticide application histories within Nzoia River Drainage Basin, Kenya. Bulletin of Environmental Contamination and Toxicology, 92(5), 616-620. https://doi.org/10.1007/s00128-014-1234-5

  • Jiang, W., Gao, Q., Zhang, L., Wang, H., Zhang, M., Liu, X., Zhou, Y., Ke, Z., Wu, C., & Qiu, J. (2020). Identification of the key amino acid sites of the carbofuran hydrolase CehA from a newly isolated carbofuran-degrading strain Sphingbium sp. CFD-1. Ecotoxicology and Environmental Safety, 189, Article 109938. https://doi.org/10.1016/j.ecoenv.2019.109938

  • Jiang, W., Zhang, C., Gao, Q., Zhang, M., Qiu, J., Yan, X., & Hong, Q. (2020). Carbamate CN hydrolase gene ameH responsible for the detoxification step of methomyl degradation in Aminobacter aminovorans strain MDW-2. Applied and Environmental Microbiology, 87(1), Article e02005-20. https://doi.org/10.1128/AEM.02005-20

  • Jørgensen, S. E. (2008). Biodegradation. In S. E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of Ecology (pp. 366–367). Academic Press. https://doi.org/https://doi.org/10.1016/B978-008045405-4.00260-3

  • Kabir, K. H., Abdullah, M., Prodhan, M. D. H., Ahmed, M. S., & Alam, M. N. (2007). Determination of carbofuran residue in the samples of sugarcane (Sacharum officinarum L) and soil of sugarcane field. The Agriculturists, 5(1&2), 61-66.

  • Kaida, N., Habib, S., Yasid, N. A., & Shukor, M. Y. (2018). Biodegradation of Petroleum Hydrocarbons by Bacillus sp.: A Review. Bioremediation Science and Technology Research, 6(2), 14-21.

  • Kanedi, M. (2017). Physiological effects of carbofuran on earthworm Pheretima javanica Gates. Advances in Life Sciences, 7(2), 21-25.

  • Katagi, T. (2016). Pesticide behavior in modified water-sediment systems. Journal of Pesticide Science, 41(4), 121-132. https://doi.org/10.1584/jpestics.D16-060

  • Khairatul, A. M., Ngan, C. K., & Ismail, B. S. (2013). Adsorption and leaching studies of molinate, carbofuran and propiconazole in Muda agricultural soils. Journal of Tropical Agriculture and Food Science, 41(1), 127-136.

  • Khuntong, S., Sirivithayapakorn, S., Pakkong, P., & Soralump, C. (2010). Adsorption kinetics of carbamate pesticide in rice field soil. Environment Asia, 3(2), 20-28.

  • Kim, I. S., Ryu, J. Y., Hur, H. G., Gu, M. B., Kim, S. D., & Shim, J. H. (2004). Sphingomonas sp. strain SB5 degrades carbofuran to a new metabolite by hydrolysis at the furanyl ring. Journal of Agricultural and Food Chemistry, 52(8), 2309-2314. https://doi.org/10.1021/jf035502l

  • Kumar, R., Ali, M., Kumar, A., & Gahlot, V. (2015). Comparative bioremedial effect of withania somnifera and curcuma longa on ovaries of pesticide induced mice. European Journal of Pharmaceutical and Medical Research, 2(7), 249-253.

  • Kumar, S. A., Krishna, A. J., Suvarna, T., Balaji, P. B., & Hyndhavi, K. (2020). An experimental study on suitability on treated sewage water for agriculture. International Research Journal of Engineering and Technology, 7(3), 2010-2013.

  • Kuswandi, B., Futra, D., & Heng, L. Y. (2017). Nanosensors for the detection of food contaminants. In A. E. Oprea & A. M. Grumezescu (Eds.), Nanotechnology Applications in Food (pp. 307-333). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-811942-6.00015-7

  • Lan, J., Wang, M., Ding, S., Fan, Y., Diao, X., Li, Q. X., & Zhao, H. (2019). Simultaneous detection of carbofuran and 3-hydroxy-carbofuran in vegetables and fruits by broad-specific monoclonal antibody-based ELISA. Food and Agricultural Immunology, 30(1), 1085-1096. https://doi.org/10.1080/09540105.2019.1664997

  • Larson, S. J., Capel, P. D., & Majewski, M. S. (2019). Pesticides in Surface Waters: Distribution, Trends, and Governing Factors. CRC Press.

  • Latif, Y., Sherazi, S. T. H., & Bhanger, M. I. (2011). Assessment of pesticide residues in commonly used vegetables in Hyderabad, Pakistan. Ecotoxicology and Environmental Safety, 74(8), 2299-2303.

  • Lehel, J., Laczay, P., Déri, J., Darin, E. G., & Budai, P. (2010). Model study on the clinical signs and residue concentrations of sublethal carbofuran poisoning in birds. Journal of Wildlife Diseases, 46(4), 1274-1278.

  • Leistra, M., & Boesten, J. (2008). Movement of Bromide-Ion and Carbofuran in the Humic Sandy Soil of a Potato Field with Ridges and Furrows: Measurements in the Field and Computations with the PEARL Model (No. 1750). Alterra. https://library.wur.nl/WebQuery/wurpubs/371006

  • Liong, P. C. (1988). Toxicity of Some Pesticides Towards Freshwater Fishes. Department of Fisheries.

  • Liu, L., Helbling, D. E., Kohler, H. P. E., & Smets, B. F. (2019). Modelling carbofuran biotransformation by Novosphingobium sp. KN65. 2 in the presence of coincidental carbon and indigenous microbes. Environmental Science: Water Research & Technology, 5(4), 798-807.

  • Liu, T., Xin, Y., Liu, X., Wu, B., & Xiang, M. (2021). Advances in microbial degradation of plastics. Chinese Journal of Biotechnology, 37(8), 2688-2702. https://doi.org/10.13345/j.cjb.200624

  • Lu, L. A., Ma, Y. S., Kumar, M., & Lin, J. G. (2011). Photochemical degradation of carbofuran and elucidation of removal mechanism. Chemical Engineering Journal, 166(1), 150-156.

  • Lu, S., Liu, L., Demissie, H., An, G., & Wang, D. (2021). Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. Environment International, 146, Article 106273. https://doi.org/10.1016/j.envint.2020.106273

  • Ma, Y. S., Kumar, M., & Lin, J. G. (2009). Degradation of carbofuran-contaminated water by the Fenton process. Journal of Environmental Science and Health, Part A, 44(9), 914-920. https://doi.org/10.1080/10934520902958807

  • Ma, Y. S., Sung, C. F., & Lin, J. G. (2010). Degradation of carbofuran in aqueous solution by ultrasound and Fenton processes: Effect of system parameters and kinetic study. Journal of Hazardous Materials, 178(1), 320-325. https://doi.org/https://doi.org/10.1016/j.jhazmat.2010.01.081

  • Mackay, D., Shiu, W. Y., & Lee, S. C. (2006). Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. CRC press.

  • Mahalakshmi, M., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2007). Photocatalytic degradation of carbofuran using semiconductor oxides. Journal of Hazardous Materials, 143(1-2), 240-245.

  • Mahindru, S. N. (2009). Food Contaminants-Origin, Propagation & Analysis. APH Publishing.

  • Maksuk, M. (2021). Analisis residu pestisida karbofuran dalam air sungai di kawasan pertanian padi [Analysis of carbofuran pesticide residues in river water at paddy field area]. Seminar Nasional Hari Air Sedunia, 3(1), 1-5.

  • Malhotra, H., Kaur, S., & Phale, P. S. (2021). Conserved metabolic and evolutionary themes in microbial degradation of carbamate pesticides. Frontiers in Microbiology, 12, Article 648868. https://doi.org/10.3389/fmicb.2021.648868

  • Meftaul, I. M., Venkateswarlu, K., Dharmarajan, R., Annamalai, P., & Megharaj, M. (2020). Pesticides in the urban environment: A potential threat that knocks at the door. Science of The Total Environment, 711, Article 134612. https://doi.org/10.1016/j.scitotenv.2019.134612

  • Mir-Tutusaus, J. A., Masís-Mora, M., Corcellas, C., Eljarrat, E., Barceló, D., Sarrà, M., Caminal, G., Vicent, T., & Rodríguez-Rodríguez, C. E. (2014). Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Science of the Total Environment, 500, 235-242. https://doi.org/10.1016/j.scitotenv.2014.08.116

  • Mishra, S., Pang, S., Zhang, W., Lin, Z., Bhatt, P., & Chen, S. (2021). Insights into the microbial degradation and biochemical mechanisms of carbamates. Chemosphere, 279, Article 130500. https://doi.org/10.1016/j.chemosphere.2021.130500

  • Mishra, S., Zhang, W., Lin, Z., Pang, S., Huang, Y., Bhatt, P., & Chen, S. (2020). Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere, 259, Article 127419. https://doi.org/10.1016/j.chemosphere.2020.127419

  • Mohamed, B., Rachid, M., & Amina, A. (2021). Study on biodegradation and dissipation of 14 C-carbofuran in clay soil from Loukkos Perimeter, Northwestern Morocco. New Ideas Concerning Science and Technology, 7, 92-103.

  • Mohanta, M. K., Saha, A. K., Zamman, M. T., Ekram, A. E., Khan, A. E., Mannan, S. B., & Fakruddin, M. (2012). Isolation and characterization of carbofuran degrading bacteria from cultivated soil. Biochemical and Cellular Archives, 12(2), 313-320.

  • Morales, J., Manso, J. A., & Mejuto, J. C. (2012). Basic hydrolysis of carbofuran in the presence of cyclodextrins. Supramolecular Chemistry, 24(6), 399-405. https://doi.org/10.1080/10610278.2012.688121

  • Moreira, R. A., da Silva Mansano, A., & Rocha, O. (2015). The toxicity of carbofuran to the freshwater rotifer, Philodina roseola. Ecotoxicology, 24(3), 604-615. https://doi.org/10.1007/s10646-014-1408-2

  • Morrica, P., Barbato, F., Iacovo, R. Dello, Seccia, S., & Ungaro, F. (2001). Kinetics and mechanism of imazosulfuron hydrolysis. Journal of Agricultural and Food Chemistry, 49(8), 3816-3820. https://doi.org/10.1021/jf010088f

  • Mukaj, M., Mai, S., Cara, M., & Ruci, T. (2017). Influence of pH in concentration of persistent organic pesticides residues in agricultural soils. Albanian Journal of Agricultural Sciences, 2017, 173-178.

  • Mustapha, M. U., Halimoon, N., Johar, W. L. W., & Abd Shukor, M. Y. (2019). An overview on biodegradation of carbamate pesticides by soil bacteria. Pertanika Journal of Science & Technology, 27(2), 547-563.

  • Nafeesa, M., Ramaraju, K., Kuttalam, S., & Doraisamy, P. (2017). Studies on growth and carbofuran degredation potential of bacterial isolates. Madras Agricultural Journal, 104(1-3), 58-63.

  • Nashriyah, M., & Azimahtol, H. L. P. (2002). Residue Levels of Molinate in Rice Field Soil: Their effects on Populations of Aquatic Flora and Fauna under Recycling and Non-Recycling Practices in the MUDA Area. International Atomic Energy Agency. https://inis.iaea.org/search/search.aspx?orig_q=RN:37065383

  • Nguyen, T. P. O., De Mot, R., & Springael, D. (2015). Draft genome sequence of the carbofuran-mineralizing Novosphingobium sp. strain KN65. 2. Genome Announcements, 3(4), Article e00764-15. https://doi.org/10.1128/genomea.00764-15

  • Nguyen, T. P. O., Helbling, D. E., Bers, K., Fida, T. T., Wattiez, R., Kohler, H.-P. E., Springael, D., & De Mot, R. (2014). Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65. 2. Applied Microbiology and Biotechnology, 98, 8235-8252. https://doi.org/10.1007/s00253-014-5858-5

  • Numan, A., Khan, M., Uddin, R., Rahman, M., Bhuiyan, M., & Akter, N. (2018). Risk assessment of commonly used major pesticides for tomato (Solanum lycopersicum L.) cultivation in Bangladesh. Advances in Nutrition and Food Science, 1(2), 1-24.

  • Okoli, U. A., Nubila, N. I., & Okafor, M. T. (2017). Organophosphorous pesticide: An environmental pollutant perspective. Journal of Chemical and Pharmaceutical Research, 9(9), 126-130.

  • Oliveira, R., Almeida, M. F., Santos, L., & Madeira, L. M. (2006). Experimental design of 2, 4-dichlorophenol oxidation by Fenton’s reaction. Industrial & Engineering Chemistry Research, 45(4), 1266-1276. https://doi.org/10.1021/ie0509544

  • Onunga, D. O., Kowino, I. O., Ngigi, A. N., Osogo, A., Orata, F., Getenga, Z. M., & Were, H. (2015). Biodegradation of carbofuran in soils within Nzoia River Basin, Kenya. Journal of Environmental Science and Health, Part B, 50(6), 387-397.

  • Organization, W. H. (2020). The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019. World Health Organization. https://www.who.int/publications/i/item/9789240005662

  • Ostergaard, G., & Knudsen, I. (1998). The applicability of the ADI (Acceptable Daily Intake) for food additives to infants and children. Food Additives and Contaminants, 15, 63-74. https://doi.org/10.1080/02652039809374617

  • Otieno, P. O., Lalah, J. O., Virani, M., Jondiko, I. O., & Schramm, K. W. (2010a). Carbofuran and its toxic metabolites provide forensic evidence for Furadan exposure in vultures (Gyps africanus) in Kenya. Bulletin of Environmental Contamination and Toxicology, 84(5), 536-544.

  • Otieno, P. O., Lalah, J. O., Virani, M., Jondiko, I. O., & Schramm, K. W. (2010b). Soil and water contamination with carbofuran residues in agricultural farmlands in Kenya following the application of the technical formulation Furadan. Journal of Environmental Science and Health, Part B, 45(2), 137-144. https://doi.org/10.1080/03601230903472058

  • Otieno, P. O., Lalah, J. O., Virani, M., Jondiko, I. O., & Schramm, K. W. (2011). Carbofuran use and abuse in Kenya: Residues in soils, plants, water courses and the African white-backed vultures (Gyps africanus) found dead. Environmentalist, 31(4), 382-393. https://doi.org/10.1007/s10669-011-9350-9

  • Otieno, P. O., Schramm, K.-W., Pfister, G., Lalah, J. O., Ojwach, S. O., & Virani, M. (2012). Spatial Distribution and temporal trend in concentration of carbofuran, diazinon and chlorpyrifos ethyl residues in sediment and water in Lake Naivasha, Kenya. Bulletin of Environmental Contamination and Toxicology, 88(4), 526-532. https://doi.org/10.1007/s00128-012-0529-7

  • Papadakis, E. N., Tsaboula, A., Kotopoulou, A., Kintzikoglou, K., Vryzas, Z., & Papadopoulou-Mourkidou, E. (2015). Pesticides in the surface waters of Lake Vistonis Basin, Greece: Occurrence and environmental risk assessment. Science of the Total Environment, 536, 793-802. https://doi.org/10.1016/j.scitotenv.2015.07.099

  • Park, M. R., Lee, S. W., Han, T. H., Oh, B. T., Shim, J. H., & Kim, I. S. (2006). A new intermediate in the degradation of carbofuran by Sphingomonas sp. strain SB5. Journal of Microbiology and Biotechnology, 16(8), 1306-1310.

  • Park, Y., Kim, Y., Kim, J., Yoon, K. S., Clark, J., Lee, J., & Park, Y. (2013). Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes. Journal of Agricultural and Food Chemistry, 61(1), 255-259. https://doi.org/10.1021/jf3039814

  • Peng, X., Zhang, J. S., Li, Y. Y., Li, W., Xu, G. M., & Yan, Y. C. (2008). Biodegradation of insecticide carbofuran by Paracoccus sp. YM3. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 43(7), 588-594. https://doi.org/10.1080/03601230802234492

  • Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. https://doi.org/10.1080/10643380500326564

  • Pinakini, K. S., & Kumar, T. S. M. (2006). Serial cholinesterase estimation in carbamate poisoning. Journal of Clinical Forensic Medicine, 13(5), 274-276. https://doi.org/10.1016/j.jcfm.2005.11.005

  • Plangklang, P., & Reungsang, A. (2012). Isolation and characterisation of a carbofuran degrading Burkholderia sp. PCL3 from carbofuran-phytoremediated rhizosphere soil. Chemistry and Ecology, 28(3), 253-266. https://doi.org/10.1080/02757540.2011.645032

  • Plaza, P. I., Martínez-López, E., & Lambertucci, S. A. (2019). The perfect threat: Pesticides and vultures. Science of the Total Environment, 687, 1207-1218. https://doi.org/10.1016/j.scitotenv.2019.06.16

  • Prosen, H. (2012). Fate and determination of triazine herbicides in soil. In M. N. Hasaneen (Ed.), Herbicides-Properties, Synthesis and Control of Weeds (pp. 43-58). IntechOpen.

  • Pyne, E. L. (2015). Occurrence and Distribution of Pesticide Residues in Soil as a Result of Long-Term Application (Master thesis). Utrecht University, Netherlands. https://studenttheses.uu.nl/handle/20.500.12932/20943

  • Racke, K. D., Skidmore, M. W., Hamilton, D. J., Unsworth, J. B., Miyamoto, J., & Cohen, S. Z. (1997). Pesticides Report 38. Pesticide fate in tropical soils (Technical Report). Pure and Applied Chemistry, 69(6), 1349-1372. https://doi.org/doi:10.1351/pac199769061349

  • Raha, P., & Das, A. K. (1990). Photodegradation of carbofuran. Chemosphere, 21(1-2), 99-106.

  • Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Megharaj, M. (2019). Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance? Science of the Total Environment, 654, 177-189. https://doi.org/10.1016/j.scitotenv.2018.11.041

  • Ramasubramanian, T., & Paramasivam, M. (2018). Persistence and metabolism of carbofuran in the soil and sugarcane plant. Environmental Monitoring and Assessment, 190(9), 1-9.

  • Ramesh, M., Narmadha, S., & Poopal, R. K. (2015). Toxicity of furadan (carbofuran 3% g) in Cyprinus carpio: Haematological, biochemical and enzymological alterations and recovery response. Beni-Suef University Journal of Basic and Applied Sciences, 4(4), 314-326.

  • Remucal, C. K. (2014). The role of indirect photochemical degradation in the environmental fate of pesticides: A review. Environmental Science: Processes & Impacts, 16(4), 628-653.

  • Ripley, B. D., & Chau, A. S. Y. (2020). Carbamate pesticides. In Analysis of Pesticides in Water (pp. 1-182). CRC Press.

  • Roger, P. A., & Bhuiyan, S. I. (2012). Behavior of pesticides in rice-based agroecosystems. In P. L. Pingali & P. A. Roger (Eds.), Impact of Pesticides on Farmer Health and the Rice Environment (pp. 111-148). Springer.

  • Ruíz-Hidalgo, K., Masís-Mora, M., Barbieri, E., Carazo-Rojas, E., & Rodríguez-Rodríguez, C. E. (2016). Ecotoxicological analysis during the removal of carbofuran in fungal bioaugmented matrices. Chemosphere, 144, 864-871. https://doi.org/10.1016/j.chemosphere.2015.09.056

  • Satar, M. D. S., Satar, S., Sebe, A., & Yesilagac, H. (2005). Carbofuran poisoning among farm workers. The Mount Sinai Journal of Medicine, 72(6), 389-392.

  • Sandín-España, P., & Sevilla-Morán, B. (2012). Pesticide degradation in water. In Pesticides: Avaluation of Environmental Pollution (pp. 79-130). CRC Press.

  • Sapari, P., & Ismail, B. S. (2012). Pollution levels of thiobencarb, propanil, and pretilachlor in rice fields of the muda irrigation scheme, Kedah, Malaysia. Environmental Monitoring and Assessment, 184(10), 6347-6356.

  • Seiber, J. N., Catahan, M. P., & Barril, C. R. (1978). Loss of carbofuran from rice paddy water: Chemical and physical factors. Journal of Environmental Science and Health, Part B, 13(2), 131-148. https://doi.org/10.1080/03601237809372083

  • Seo, J. S., Moon, J. K., & Kim, J. H. (2012). Photodegradation of pyribenzoxim in water. Journal of the Korean Society for Applied Biological Chemistry, 55(3), 391-396. https://doi.org/10.1007/s13765-012-2042-4

  • Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., & Parihar, R. D. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1(11), 1-16.

  • Siddaramappa, R., & Seiber, J. N. (1979). Persistence of carbofuran in flooded rice soils and water. Progress in Water Technology, 11, 103-111.

  • Sidhu, G. K., Singh, S., Kumar, V., Dhanjal, D. S., Datta, S., & Singh, J. (2019). Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Critical Reviews in Environmental Science and Technology, 49(13), 1135-1187.

  • Sim, S. F., Chung, L. Y., Jonip, J., & Chai, L. K. (2019). Uptake and dissipation of carbofuran and its metabolite in Chinese kale and brinjal cultivated under humid tropic climate. Advances in Agriculture, 2019, Article 7937086. https://doi.org/10.1155/2019/7937086

  • Singh, R. P., Varshney, G., & Srivastava, G. (2012). Effect of carbofuran on enzymatic activities and growth of tomato plants in natural, fertilized and vermicompost-amended soils. Archives of Agronomy and Soil Science, 58(12), 1349-1364.

  • Singh, S. P., Guha, S., Bose, P., & Kunnikuruvan, S. (2017). Mechanism of the hydrolysis of endosulfan isomers. The Journal of Physical Chemistry A, 121(27), 5156-5163.

  • Smith, G. J. (1992). Toxicology and Pesticide use in Relation to Wildlife, Organophosphorus, and Carbamate Compounds. CRC Press.

  • Soloneski, S., Reigosa, M. A., Molinari, G., González, N. V, & Larramendy, M. L. (2008). Genotoxic and cytotoxic effects of carbofuran and furadan® on Chinese hamster ovary (CHOK1) cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 656(1-2), 68-73. https://doi.org/10.1016/j.mrgentox.2008.07.007

  • Sparling, D. W. (2016). Ecotoxicology Essentials: Environmental Contaminants and Their Biological Effects on Animals and Plants. Academic Press.

  • Strachan, W. M. J., Glooschenko, W. A., & Maguire, R. J. (2018). Environmental impact and significance of pesticides. In Analysis of Pesticides in Water (pp. 1-23). CRC Press.

  • Sun, M., Xu, W., Zhang, W., Guang, C., & Mu, W. (2022). Microbial elimination of carbamate pesticides: Specific strains and promising enzymes. Applied Microbiology and Biotechnology, 106(18), 5973-5986. https://doi.org/10.1007/s00253-022-12141-4

  • Syed, J. H., Alamdar, A., Mohammad, A., Ahad, K., Shabir, Z., Ahmed, H., Ali, S. M., Sani, S. G. A. S., Bokhari, H., & Gallagher, K. D. (2014). Pesticide residues in fruits and vegetables from Pakistan: A review of the occurrence and associated human health risks. Environmental Science and Pollution Research, 21, 13367-13393. https://doi.org/10.1007/s11356-014-3117-z

  • Tejada, A. W. (1995). Pesticide residues in foods and the environment as a consequence of crop protection. Philippine Agriculturist, 78, 63-79.

  • Thomas, N., Dionysiou, D. D., & Pillai, S. C. (2021). Heterogeneous Fenton catalysts: A review of recent advances. Journal of Hazardous Materials, 404, Article 124082. https://doi.org/10.1016/j.jhazmat.2020.124082

  • Tien, C., Huang, H., & Chen, C. S. (2017). Accessing the carbofuran degradation ability of cultures from natural river biofilms in different environments. CLEAN–Soil, Air, Water, 45(5), Article 1600380. https://doi.org/10.1002/clen.201600380

  • Tiryaki, O. (2017). Pesticide residues and organic production. Journal of Biological and Environmental Sciences, 11(31), 11-23.

  • Tiryaki, O., & Temur, C. (2010). The fate of pesticide in the environment. Journal of Biological and Environmental Sciences, 4(10), 29-38.

  • Tondon, S. A., Deore, R., & Parab, A. (2018). Isolation, identification and the use of carbofuran degrading microorganisms for the removal of carbofuran pesticide from contaminated waters. Global Journal of Bio-Science and Biotechnology, 6, 89-95.

  • Torres, J. B., & Bueno, A. de F. (2018). Conservation biological control using selective insecticides - A valuable tool for IPM. Biological Control, 126, 53-64.

  • Trevisan, M. J., Baptista, G. C. De, Trevizan, L. R. P., & Papa, G. (2004). Residues of carbosulfan and its carbofuran metabolites and 3-hydroxy-carbofuran in oranges. Revista Brasileira de Fruticultura, 26(2), 230-233. https://doi.org/10.1590/S0100-29452004000200012

  • Ukalska-Jaruga, A., Smreczak, B., & Siebielec, G. (2020). Assessment of pesticide residue content in polish agricultural soils. Molecules, 25 (3), Article 587. https://doi.org/10.3390/molecules25030587

  • USEPA. (2006). Interim Reregistration Eligibility Decision (IRED) Document for Carbofuran. US Environmental Protection Agency. https://archive.epa.gov/pesticides/reregistration/web/pdf/carbofuran_red.pdf

  • Valente-Campos, S., Spry, D. J., Palhares, J. C. P., Rudez, L. M. J., & de Aragão Umbuzeiro, G. (2019). Critical issues and alternatives for the establishment of chemical water quality criteria for livestock. Regulatory Toxicology and Pharmacology, 104, 108-114. https://doi.org/10.1016/j.yrtph.2019.03.003

  • Ibitoye, O. O., Nawi, N. M., Kamarulzaman, N. H., & Man, N. (2014). Consumers’ awareness towards organic rice in Malaysia. International Food Research Journal, 21(5), 1711-1718.

  • Venkateswarlu, K., & Sethunathan, N. (1978). Degradation of carbofuran in rice soils as influenced by repeated applications and exposure to aerobic conditions following anaerobiosis. Journal of Agricultural and Food Chemistry, 26(5), 1148-1151. https://doi.org/10.1021/jf60219a019

  • Villaverde, J. J., Sevilla-Morán, B., López-Goti, C., Calvo, L., Alonso-Prados, J. L., & Sandín-España, P. (2018). Photolysis of clethodim herbicide and a formulation in aquatic environments: Fate and ecotoxicity assessment of photoproducts by QSAR models. Science of the Total Environment, 615, 643-651. https://doi.org/10.1016/j.scitotenv.2017.09.300

  • Wang, L., Cai, W.-F., & Li, Q. X. (1998). Photolysis of phloxine B in water and aqueous solutions. Archives of Environmental Contamination and Toxicology, 35(3), 397-403. https://doi.org/10.1007/s002449900394

  • Wijesinghe, M. R., Jayatillake, B., & Ratnassoriya, W. D. (2011). Solar radiation alters toxicity of carbofuran: Evidence from empirical trials with Duttaphyrnus melanostictus. Journal of Tropical Forestry and Environment, 1(1), 48-55.

  • Wols, B. A., & Hofman-Caris, C. H. M. (2012). Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Research, 46(9), 2815-2827. https://doi.org/10.1016/j.watres.2012.03.036

  • World Health Organization. (2020). The WHO recommended classification of pesticides by hazard and guidelines to classification 2019. World Health Organization. https://www.who.int/publications-detail-redirect/9789240005662

  • Xu, G. F., Shen, Z. X., & Guo, R. X. (2014). The kinetics studies for the adsorption of furadan from aqueous solution by orange peel. Advanced Materials Research, 842, 187-191. https://doi.org/10.4028/www.scientific.net/AMR.842.187

  • Yan, Q. X., Hong, Q., Han, P., Dong, X. J., Shen, Y. J., & Li, S. P. (2007). Isolation and characterization of a carbofuran-degrading strain Novosphingobium sp. FND-3. FEMS Microbiology Letters, 271(2), 207-213. https://doi.org/10.1111/j.1574-6968.2007.00718.x

  • Yan, X., Jin, W., Wu, G., Jiang, W., Yang, Z., Ji, J., Qiu, J., He, J., Jiang, J., & Hong, Q. (2018). Hydrolase CehA and monooxygenase CfdC are responsible for carbofuran degradation in Sphingomonas sp. strain CDS-1. Applied and Environmental Microbiology, 84(16), Article e00805-18. https://doi.org/10.1128/AEM.00805-18

  • Zhang, C. P., He, H. M., Yu, J. Z., Hu, X. Q., Zhu, Y. H., & Wang, Q. (2016). Residues of carbosulfan and its metabolites carbofuran and 3-hydroxy carbofuran in rice field ecosystem in China. Journal of Environmental Science and Health, Part B, 51(6), 351-357. https://doi.org/10.1080/03601234.2015.1120606

  • Zhang, M., Dong, H., Zhao, L., Wang, D., & Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 670, 110-121.

  • Zhang, Y., Zhang, W., Li, J., Pang, S., Mishra, S., Bhatt, P., Zeng, D., & Chen, S. (2021). Emerging technologies for degradation of dichlorvos: A review. International Journal of Environmental Research and Public Health, 18(11), Article 5789. https://doi.org/10.3390/ijerph18115789

  • Zheng, W., Cui, T., & Li, H. (2022). Combined technologies for the remediation of soils contaminated by organic pollutants. A review. Environmental Chemistry Letters, 20(3), 2043-2062. https://doi.org/10.1007/s10311-022-01407-y

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JST-4181-2023

Download Full Article PDF

Share this article

Related Articles