PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / JSSH Vol. 32 (1) Jan. 2024 / JST-4304-2023

 

Preparation of Activated Carbon from Sugarcane Bagasse Using Microwave-assisted ZnCl2 Chemical Activation: Optimization and Characterization Study

Atiqa Rahmawati, Fadzkurisma Robbika and Yuafni

Pertanika Journal of Social Science and Humanities, Volume 32, Issue 1, January 2024

DOI: https://doi.org/10.47836/pjst.32.1.22

Keywords: Activated carbon, box-behnken, microwave-assisted activation, optimization, sugarcane bagasse, ZnCl2

Published on: 15 January 2024

Microwave-assisted activation is a green technology technique that can synthesize activated carbon from bagasse. In this study, microwave-assisted ZnCl2 chemical activation was applied to convert bagasse to activated carbon (BAC). Activating activated carbon was optimized using surface response methodology (RSM). The Box-Behnken (BBD) design was used to assist in the optimum synthesis condition, with the loading of ZnCl2 concentration (A: 10–50% w/v), heating time (B: 2–12 min), and microwave power (C: 150–800 W). The BAC was characterized using Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR), and moisture content. The findings of the BAC optimization were at a ZnCl2 concentration of 24.281 (% w/v), 12 min of heating time, and 800 W of microwave power. The characterization result shows that BACop has mesoporous carbon and a desirable surface area of 446.874 m2/g, average pore size of 4.071 nm, pore volume of 0.054 cc/g, and total pore volume of 0.2531 cc/g. SEM analysis revealed that microwave-generated pore structures lead to the ZnCl2 activation process. The pore structures of the raw material and activated carbon were different. The FT-IR analysis shows the existence of functional groups as well as changes in functional groups from raw material to activated carbon. The moisture content study findings are 5.51 to 9.21% in accordance with the Indonesian National Standard (SNI) 06-3730-1995. The isothermal adsorption-desorption process is classified as type IV adsorption with hysteresis loop H4, suggesting that the pore distribution in activated carbon is mesoporous with a tiny pore width and slit-shape pore materials.

  • Abdulhameed, A. S., Firdaus Hum, N. N. M., Rangabhashiyam, S., Jawad, A. H., Wilson, L. D., Yaseen, Z. M., Al-Kahtani, A. A., & Alothman, Z. A. (2021). Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. Journal of Environmental Chemical Engineering, 9(4), Article 105530. https://doi.org/10.1016/j.jece.2021.105530

  • Ao, W., Fu, J., Mao, X., Kang, Q., Ran, C., Liu, Y., Zhang, H., Gao, Z., Li, J., Liu, G., & Dai, J. (2018). Microwave assisted preparation of activated carbon from biomass: A review. Renewable and Sustainable Energy Reviews, 92, 958-979. https://doi.org/10.1016/j.rser.2018.04.051

  • Arnelli, A., Putri, U. H. H., Cholis, F. N., & Astuti, Y. (2019). Use of microwave radiation for activating carbon from rice husk using ZnCl2 activator. Jurnal Kimia Sains dan Aplikasi, 22(6), 283-291. https://doi.org/10.14710/jksa.22.6.283-291

  • Ayu, G. E. (2017). Pembuatan karbon aktif dari tempurung kelapa (coconut shell) dengan proses pengaktifan kimia ZnCl2 menggunakan microwave [Preparation of activated carbon from coconut shell using Microwave-assisted ZnCl2 Chemical activation]. [Doctoral dissertation]. Universitas Sumatera Utara, Indonesia. http://repositori.usu.ac.id/handle/123456789/20774

  • Baytar, O., Şahin, Ö., & Saka, C. (2018). Sequential application of microwave and conventional heating methods for preparation of activated carbon from biomass and its methylene blue adsorption. Applied Thermal Engineering, 138, 542-551. https://doi.org/10.1016/j.applthermaleng.2018.04.039

  • Baytar, O., Şahin, Ö., Saka, C., & Ağrak, S. (2018). Characterization of microwave and conventional heating on the pyrolysis of pistachio shells for the adsorption of methylene blue and iodine. Analytical Letters, 51(14), 2205-2220. https://doi.org/10.1080/00032719.2017.1415920

  • Bian, Y., Yuan, Q., Zhu, G., Ren, B., Hursthouse, A., & Zhang, P. (2018). Recycling of waste sludge: Preparation and application of sludge-based activated carbon. International Journal of Polymer Science, Article 8320609. https://doi.org/10.1155/2018/8320609

  • Buthiyappan, A., Gopalan, J., & Raman, A. A. A. (2019). Synthesis of iron oxides impregnated green adsorbent from sugarcane bagasse: Characterization and evaluation of adsorption efficiency. Journal of Environmental Management, 249, Article 109323. https://doi.org/10.1016/j.jenvman.2019.109323

  • Daochalermwong, A., Chanka, N., Songsrirote, K., Dittanet, P., Niamnuy, C., & Seubsai, A. (2020). Removal of heavy metal ions using modified celluloses prepared from pineapple leaf fiber. ACS Omega, 5(10), 5285-5296. https://doi.org/10.1021/acsomega.9b04326

  • Deng, H., Yang, L., Tao, G., & Dai, J. (2009). Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-application in methylene blue adsorption from aqueous solution. Journal of Hazardous Materials, 166(2-3), 1514-1521. https://doi.org/10.1016/j.jhazmat.2008.12.080

  • Elsayed, M. A., & Zalat, O. A. (2015). Factor affecting microwave assisted preparation of activated carbon from local raw materials. International Letters of Chemistry, Physics and Astronomy, 47, 15-23. https://doi.org/10.18052/www.scipress.com/ilcpa.47.15

  • el Nemr, A., Aboughaly, R. M., el Sikaily, A., Masoud, M. S., Ramadan, M. S., & Ragab, S. (2022). Microporous-activated carbons of type I adsorption isotherm derived from sugarcane bagasse impregnated with zinc chloride. Carbon Letters, 32(1), 229-249. https://doi.org/10.1007/s42823-021-00270-1

  • Foo, K. Y., Lee, L. K., & Hameed, B. H. (2013). Preparation of activated carbon from sugarcane bagasse by microwave assisted activation for the remediation of semi-aerobic landfill leachate. Bioresource Technology, 134, 166-172. https://doi.org/10.1016/j.biortech.2013.01.139

  • Hidayati, A. S. D. S. N., Kurniawan, S., Restu, N. W., & Ismuyanto, B. (2016). Potensi ampas tebu sebagai alternatif bahan baku pembuatan karbon aktif [Potential sugarcane bagasse as an alternative raw material for activated carbon production]. Natural B, 3(4), 311-317.

  • Horvat, G., Pantić, M., Knez, Ž., & Novak, Z. (2022). A brief evaluation of pore structure determination for bioaerogels. Gels, 8(7), Article 438. https://doi.org/10.3390/gels8070438

  • İzgi, M. S., Saka, C., Baytar, O., Saraçoğlu, G., & Şahin, Ö. (2019). Preparation and characterization of activated carbon from microwave and conventional heated almond shells using phosphoric acid activation. Analytical Letters, 52(5), 772-789. https://doi.org/10.1080/00032719.2018.1495223

  • Jawad, A. H., Abdulhameed, A. S., Hanafiah, M. A. K. M., ALOthman, Z. A., Khan, M. R., & Surip, S. N. (2021). Numerical desirability function for adsorption of methylene blue dye by sulfonated pomegranate peel biochar: Modeling, kinetic, isotherm, thermodynamic, and mechanism study. Korean Journal of Chemical Engineering, 38(7), 1499-1509. https://doi.org/10.1007/s11814-021-0801-9

  • Jawad, A. H., Mohammed, I. A., & Abdulhameed, A. S. (2020). Tuning of fly ash loading into chitosan-ethylene glycol diglycidyl ether composite for enhanced removal of reactive red 120 dye: Optimization using the box–behnken design. Journal of Polymers and the Environment, 28(10), 2720-2733. https://doi.org/10.1007/s10924-020-01804-w

  • Jiang, W., Zhang, L., Guo, X., Yang, M., Lu, Y., Wang, Y., Zheng, Y., & Wei, G. (2021). Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method. Environmental Technology, 42(3), 337-350. https://doi.org/10.1080/09593330.2019.1627425

  • Junior, O. P., Cazetta, A. L., Gomes, R. C., Barizão, É. O., Souza, I. P. A. F., Martins, A. C., Asefa, T., & Almeida, V. C. (2014). Synthesis of ZnCl2-activated carbon from macadamia nut endocarp (Macadamia integrifolia) by microwave-assisted pyrolysis: Optimization using RSM and methylene blue adsorption. Journal of Analytical and Applied Pyrolysis, 105, 166-176. https://doi.org/10.1016/j.jaap.2013.10.015

  • Karri, R. R., Sahu, J. N., & Meikap, B. C. (2020). Improving efficacy of Cr (VI) adsorption process on sustainable adsorbent derived from waste biomass (sugarcane bagasse) with help of ant colony optimization. Industrial Crops and Products, 143, Article 111927. https://doi.org/10.1016/j.indcrop.2019.111927

  • Kaushik, A., Basu, S., Singh, K., Batra, V. S., & Balakrishnan, M. (2017). Activated carbon from sugarcane bagasse ash for melanoidins recovery. Journal of Environmental Management, 200, 29-34. https://doi.org/10.1016/j.jenvman.2017.05.060

  • Labied, R., Benturki, O., Hamitouche, A. Y. E., & Donnot, A. (2018). Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study. Adsorption Science and Technology, 36(3-4), 1066-1099. https://doi.org/10.1177/0263617417750739

  • Lam, S. S., Liew, R. K., Wong, Y. M., Yek, P. N. Y., Ma, N. L., Lee, C. L., & Chase, H. A. (2017). Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. Journal of Cleaner Production, 162, 1376-1387. https://doi.org/10.1016/j.jclepro.2017.06.131

  • Luo, X., Cai, Y., Liu, L., & Zeng, J. (2019). Cr(VI) adsorption performance and mechanism of an effective activated carbon prepared from bagasse with a one-step pyrolysis and ZnCl2 activation method. Cellulose, 26(8), 4921-4934. https://doi.org/10.1007/s10570-019-02418-9

  • Mahmood, T., Ali, R., Naeem, A., Hamayun, M., & Aslam, M. (2017). Potential of used Camellia sinensis leaves as precursor for activated carbon preparation by chemical activation with H3PO4; optimization using response surface methodology. Process Safety and Environmental Protection, 109, 548-563. https://doi.org/10.1016/j.psep.2017.04.024

  • Ozdemir, I., Şahin, M., Orhan, R., & Erdem, M. (2014). Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Processing Technology, 125, 200-206. https://doi.org/10.1016/j.fuproc.2014.04.002

  • Özhan, A., Şahin, Ö., Küçük, M. M., & Saka, C. (2014). Preparation and characterization of activated carbon from pine cone by microwave-induced ZnCl2 activation and its effects on the adsorption of methylene blue. Cellulose, 21(4), 2457-2467. https://doi.org/10.1007/s10570-014-0299-y

  • Pratama, B. S., Aldriana, P., Bambang, Ismuyanto., & Saptati, A. S. D. (2018). Konversi ampas tebu menjadi biochar dan karbon aktif untuk penyisihan Cr (VI) [Conversion of sugarcane bagasse to biochar and activated carbon for Cr(VI) removal]. Jurnal Rekayasa Bahan Alam Dan Energi Berkelanjutan, 2(1), 7-12. http://rbaet.ub.ac.id/index.php/rbaet/article/view/45

  • Puchana-Rosero, M. J., Adebayo, M. A., Lima, E. C., Machado, F. M., Thue, P. S., Vaghetti, J. C. P., Umpierres, C. S., & Gutterres, M. (2016). Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 105-115. https://doi.org/10.1016/j.colsurfa.2016.05.059

  • Reghioua, A., Barkat, D., Jawad, A. H., Abdulhameed, A. S., Al-Kahtani, A. A., & Alothman, Z. A. (2021). Parametric optimization by Box-Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4 nanocomposite and textile dye removal. Journal of Environmental Chemical Engineering, 9(3), Article 105166. https://doi.org/10.1016/j.jece.2021.105166

  • Salihi, I. U., Kutty, S. R. M., & Isa, M. H. (2017). Adsorption of lead ions onto activated carbon derived from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering, 201(1), Article 012034. https://doi.org/10.1088/1757-899X/201/1/012034

  • Sinyoung, S., Chaiwat, W., & Kunchariyakun, K. (2021). Preparation of activated carbon from bagasse by microwave-assisted phosphoric acid activation. Walailak Journal of Science and Technology, 18(16), Article 22796. https://doi.org/10.48048/wjst.2021.22796

  • Siragi D. B. M., Desmecht, D., Hima, H. I., Mamane, O. S., & Natatou, I. (2021). Optimization of activated carbons prepared from Parinari macrophylla shells. Materials Sciences and Applications, 12(05), 207-222. https://doi.org/10.4236/msa.2021.125014

  • Suhdi, & Wang, S. C. (2021). Fine activated carbon from rubber fruit shell prepared by using ZnCl2 and KOH activation. Applied Sciences, 11(9), Article 3994. https://doi.org/10.3390/app11093994

  • Tasanif, R., Isa, I., & Kunusa, W. R. (2020). Potensi ampas tebu sebagai adsorben logam berat Cd, Cu dan Cr [Potential of sugarcane bagasse as an adsorbent for heavy metals Cd, Cu and Cr]. Journal of Chemistry, 2(1), 34-44.

  • Teğin, Ş. Ö., Şahin, Ö., Baytar, O., & İzgi, M. S. (2020). Preparation and characterization of activated carbon from almond shell by microwave-assisted using ZnCl2 activator. International Journal of Chemistry and Technology, 4(2), 130-137. https://doi.org/10.32571/ijct.747943

  • Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. https://doi.org/10.1515/pac-2014-1117

  • Tran, T. V., Pham, V. T., Quynh, N. T. P., Cong, H. T., Tam, D. T. T., Thuan, V. N., & Bach, L. G. (2016). Production of activated carbon from sugarcane bagasse by chemical activation with ZnCl2: Preparation and characterization study. Research Journal of Chemical Sciences, 6(5), 42-47.

  • Ummartyotin, S., & Pechyen, C. (2016). Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. Renewable and Sustainable Energy Reviews, 62, 654-664. https://doi.org/10.1016/j.rser.2016.04.066

  • Vo, A. T., Nguyen, V. P., Ouakouak, A., Nieva, A., Doma, B. T., Tran, H. N., & Chao, H. P. (2019). Efficient removal of Cr(VI) from water by biochar and activated carbon prepared through hydrothermal carbonization and pyrolysis: Adsorption-coupled reduction mechanism. Water, 11(6), Article 1164. https://doi.org/10.3390/w11061164

  • Yuan, Z., Xu, Z., Zhang, D., Chen, W., Zhang, T., Huang, Y., Gu, L., Deng, H., & Tian, D. (2018). Box-Behnken design approach towards optimization of activated carbon synthesized by co-pyrolysis of waste polyester textiles and MgCl2. Applied Surface Science, 427, 340-348. https://doi.org/10.1016/j.apsusc.2017.08.241