PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Akin, H. K., & Fedai, Y. (2018). Optimization of machining parameters in face milling using multi-objective Taguchi technique. Tehnički Glasnik, 12(2), 104-108. https://doi.org/10.31803/tg-20180201125123

  • Anantha, M. T., Buddi, T., & Boggarapu, N. R. (2023a). Multi-objective optimization basing modified Taguchi method to arrive the optimal die design for CGP of AZ31 magnesium alloy. International Journal on Interactive Design and Manufacturing, 1-10. https://doi.org/10.1007/s12008-022-01176-6

  • Anantha, M. T., Buddi, T., & Boggarapu, N. R. (2023b). Utilisation of fuzzy logic and genetic algorithm to seek optimal corrugated die design for CGP of AZ31 magnesium alloy. Advances in Materials and Processing Technologies, 1-15. https://doi.org/10.1080/2374068X.2023.2192135

  • Bharathi, P., Priyanka, T. G. L., Rao, G. S., & Rao, B. N. (2016). Optimum WEDM process parameters of SS304 using taguchi method. International Journal of Industrial and Manufacturing Systems Engineering, 1(3), 69-72.

  • Cherukuri, B., & Srinivasan, R. (2006). Properties of AA6061 processed by multi-axial compressions/forging (MAC/F). Materials and Manufacturing Processes, 21(5), 519-525. https://doi.org/10.1080/10426910500471649

  • Dharmendra, B. V., Kodali, S. P., & Rao, B. N. (2019). A simple and reliable Taguchi approach for multi-objective optimization to identify optimal process parameters in nano-powder-mixed electrical discharge machining of INCONEL800 with copper electrode. Heliyon, 5(8), Article e02326. https://doi.org/10.1016/j.heliyon.2019.e02326

  • Dharmendra, B. V., Kodali, S. P., & Boggarapu, N. R. (2020). Multi-objective optimization for optimum abrasive water jet machining process parameters of Inconel718 adopting the Taguchi approach. Multidiscipline Modeling in Materials and Structures, 16(2), 306-321. https://doi.org/10.1108/MMMS-10-2018-0175

  • Gaitonde, V. N., Karnik, S. R., & Davim, J. P. (2009). Multiperformance optimization in turning of free-machining steel using taguchi method and utility concept. Journal of Materials Engineering and Performance, 18(3), 231-236. https://doi.org/10.1007/s11665-008-9269-6

  • Ghorbanhosseini, S., & Fereshteh-saniee, F. (2019). Multi-objective optimization of geometrical parameters for constrained groove pressing of aluminium sheet using a neural network and the genetic algorithm. Journal of Computational Applied Mechanics, 50(2), 275-281. https://doi.org/10.22059/jcamech.2018.267948.335

  • Girish, B. M., Siddesh, H. S., & Satish, B. M. (2019). Taguchi grey relational analysis for parametric optimization of severe plastic deformation process. SN Applied Sciences, 1(8). https://doi.org/10.1007/s42452-019-0982-6

  • Googarchin, H. S., Teimouri, B., & Hashemi, R. (2019). Analysis of constrained groove pressing and constrained groove pressing-cross route process on AA5052 sheet for automotive body structure applications. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(6), 1436-1452. https://doi.org/10.1177/0954407018785734

  • Hayes, J. S. (2000). Effect of grain size on tensile behaviour of a submicron grained Al-3 wt-%Mg alloy produced by severe deformation. Materials Science and Technology, 16(11-12), 1259-1263. https://doi.org/10.1179/026708300101507479

  • Horita, Z., Fujinami, T., & Langdon, T. G. (2001). The potential for scaling ECAP: Effect of sample size on grain refinement and mechanical properties. Materials Science and Engineering A, 318(1-2), 34-41. https://doi.org/10.1016/S0921-5093(01)01339-9

  • Hu, H., Qin, X., Zhang, D., & Ma, X. (2018). A novel severe plastic deformation method for manufacturing AZ31 magnesium alloy tube. International Journal of Advanced Manufacturing Technology, 98(1-4), 897-903. https://doi.org/10.1007/s00170-018-2179-3

  • Husaain, Z., Ahmed, A., M. Irfan, O., & Al-Mufadi, F. (2017). Severe plastic deformation and its application on processing titanium: A review. International Journal of Engineering and Technology, 9(6), 626-431. https://doi.org/10.7763/ijet.2017.v9.1011

  • Khandani, S. T., Faraji, G., & Torabi, H. (2020). Development of a new integrated severe plastic deformation method. Materials Science and Technology, 36(4), 468-476. https://doi.org/10.1080/02670836.2019.1710926

  • Khodabakhshi, F., Kazeminezhad, M., & Kokabi, A. H. (2010). Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties. Materials Science and Engineering A, 527(16-17), 4043-4049. https://doi.org/10.1016/j.msea.2010.03.005

  • Khodabakhshi, F., Kazeminezhad, M., & Kokabi, A. H. (2011). Mechanical properties and microstructure of resistance spot welded severely deformed low carbon steel. Materials Science and Engineering A, 529(1), 237-245. https://doi.org/10.1016/j.msea.2011.09.023

  • Kulagin, R., Beygelzimer, Y., Bachmaier, A., Pippan, R., & Estrin, Y. (2019). Benefits of pattern formation by severe plastic deformation. Applied Materials Today, 15, 236-241. https://doi.org/10.1016/j.apmt.2019.02.007

  • Kumar, D. R. (2017). Optimum drilling parameters of coir fiber-reinforced polyester composites. American Journal of Mechanical and Industrial Engineering, 2(2), 92-97. https://doi.org/10.11648/j.ajmie.20170202.15

  • Kumar, S., & Vedrtnam, A. (2021). Experimental and numerical study on effect of constrained groove pressing on mechanical behaviour and morphology of aluminium and copper. Journal of Manufacturing Processes, 67, 478-486. https://doi.org/10.1016/j.jmapro.2021.05.008

  • Kurzydłowski, K. J., Garbacz, H., & Richert, M. (2004). Effect of severe plastic deformation on the microstructure and mechanical properties of Al and Cu. Reviews on Advanced Materials Science, 8(2), 129-133.

  • Lonavath, S. N., & Boda, H. (2023). Consequences of the rotational speed and profile of tool pin in microstructure and mechanical properties of AA8011/ZrO2 composite produced by FSW. International Journal on Interactive Design and Manufacturing, 1-13. https://doi.org/10.1007/s12008-023-01295-8

  • Lowe, T. C., & Valiev, R. Z. (2004). The use of severe plastic deformation techniques in grain refinement. JOM, 56(10), 64-68. https://doi.org/10.1007/s11837-004-0295-z

  • Mohamed, M. A., Manurung, Y. H. P., & Berhan, M. N. (2015). Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology. Journal of Mechanical Science and Technology, 29(6), 2323-2331. https://doi.org/10.1007/s12206-015-0527-x

  • Mueller, K., & Mueller, S. (2007). Severe plastic deformation of the magnesium alloy AZ31. Journal of Materials Processing Technology, 187-188, 775-779. https://doi.org/10.1016/j.jmatprotec.2006.11.153

  • Nazari, F., & Honarpisheh, M. (2018). Analytical model to estimate force of constrained groove pressing process. Journal of Manufacturing Processes, 32, 11-19. https://doi.org/10.1016/j.jmapro.2018.01.015

  • Nazari, F., & Honarpisheh, M. (2019). Analytical and experimental investigation of deformation in constrained groove pressing process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(11), 3751-3759. https://doi.org/10.1177/0954406218809738

  • Omotoyinbo, J. A., & Oladele, I. O. (2010). The effect of plastic deformation and magnesium content on the mechanical properties of 6063 aluminium alloys. Journal of Minerals and Materials Characterization and Engineering, 09(06), 539-546. https://doi.org/10.4236/jmmce.2010.96038

  • Parameshwaranpillai, T., Lakshminarayanan, P. R., & Rao, B. N. (2011). Taguchi’s approach to examine the effect of drilling induced damage on the notched tensile strength of woven GFR-epoxy composites. Advanced Composite Materials, 20(3), 261-275. https://doi.org/10.1163/092430410X547083

  • Pillai, J. U., Sanghrajka, I., Shunmugavel, M., Muthuramalingam, T., Goldberg, M., & Littlefair, G. (2018). Optimisation of multiple response characteristics on end milling of aluminium alloy using Taguchi-Grey relational approach. Measurement: Journal of the International Measurement Confederation, 124, 291-298. https://doi.org/10.1016/j.measurement.2018.04.052

  • Rao, B. S., Rudramoorthy, R., Srinivas, S., & Rao, B. N. (2008). Effect of drilling induced damage on notched tensile and pin bearing strengths of woven GFR-epoxy composites. Materials Science and Engineering A, 472(1-2), 347-352. https://doi.org/10.1016/j.msea.2007.03.023

  • Ross, P. J. (1989). Taguchi techniques for quality engineering. McGraw-Hill.

  • Sabirov, I., Murashkin, M. Y., & Valiev, R. Z. (2013). Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Materials Science and Engineering A, 560, 1-24. https://doi.org/10.1016/j.msea.2012.09.020

  • Sahiti, M., Reddy, M. R., Joshi, B., & Rao, B. N. (2017). Application of taguchi method for optimum weld process parameters of pure aluminum. American Journal of Mechanical and Industrial Engineering, 1(3), 123-128. https://doi.org/10.11648/j.ajmie.20160103.25

  • Saritha, P., Raju, P. R., Reddy, R. V., & Snehalatha, S. (2018). Mechanical behavior of hybrid composites. International Journal of Mechanical Engineering and Technology, 9(9), 71-76.

  • Saritha, P., Satyadevi, A., & Raju, P. R. (2020). Tribological behavior of metal matrix composites. Journal of Advanced Research in Dynamical and Control Systems, 12(2), 2335-2341. https://doi.org/10.5373/JARDCS/V12I2/S20201280

  • Satyanarayana, G., Narayana, K. L., & Rao, B. N. (2021). Incorporation of Taguchi approach with CFD simulations on laser welding of spacer grid fuel rod assembly. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 269, Article 115182. https://doi.org/10.1016/j.mseb.2021.115182

  • Sauvage, X., Wilde, G., Divinski, S. V., Horita, Z., & Valiev, R. Z. (2012). Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Materials Science and Engineering A, 540, 1-12. https://doi.org/10.1016/j.msea.2012.01.080

  • Segal, V. M. (1995). Materials processing by simple shear. Materials Science and Engineering A, 197(2), 157-164. https://doi.org/10.1016/0921-5093(95)09705-8

  • Shin, D. H., Park, J. J., Kim, Y. S., & Park, K. T. (2002). Constrained groove pressing and its application to grain refinement of aluminum. Materials Science and Engineering A, 328(1), 98-103. https://doi.org/10.1016/S0921-5093(01)01665-3

  • Siddesha, H. S., & Shantharaja, M. (2014). Optimization of cyclic constrained groove pressing parameters for tensile properties of Al6061/sic metal matrix composites. Procedia Materials Science, 5, 1929-1936. https://doi.org/10.1016/j.mspro.2014.07.515

  • Singaravelu, J., Jeyakumar, D., & Rao, B. N. (2009). Taguchi’s approach for reliability and safety assessments in the stage separation process of a multistage launch vehicle. Reliability Engineering and System Safety, 94(10), 1526-1541. https://doi.org/10.1016/j.ress.2009.02.017

  • Tanuja, A. M., Kumar, A., & Rao, B. N. (2022). Review on the application of CGP to improve AZ31 Mg alloy properties. In Applications of Computational Methods in Manufacturing and Product Design: Select Proceedings of IPDIMS 2020 (pp. 237-246). Springer Nature. https://doi.org/10.1007/978-981-19-0296-3_21

  • Tong, L. I., Su, C. T., & Wang, C. H. (1997). The optimization of multi-response problems in the Taguchi method. International Journal of Quality and Reliability Management, 14(4), 367-380. https://doi.org/10.1108/02656719710170639

  • Tsuji, N., Saito, Y., Lee, S. H., & Minamino, Y. (2003). ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Advanced Engineering Materials, 5(5), 338-344. https://doi.org/10.1002/adem.200310077

  • Zavdoveev, A., Baudin, T., Pashinska, E., Kim, H. S., Brisset, F., Heaton, M., Poznyakov, V., Rogante, M., Tkachenko, V., Klochkov, I., & Skoryk, M. (2021). Continuous severe plastic deformation of low-carbon steel: Physical-mechanical properties and multiscale structure analysis. Steel Research International, 92(3), Article 2000482. https://doi.org/10.1002/srin.202000482

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

J

Download Full Article PDF

Share this article

Recent Articles