PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Amin, S.A., Parker, M. S., & Armbrust, E. V. (2012). Interactions between diatoms and bacteria. Microbiology and Molecular Biology Reviews, 76(3), 667-684. https://doi.org/10.1128/MMBR.00007-12

  • Barros, A.I., Gonçalves, A.L., Simões, M., & Pires, J. C. M. (2015). Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews, 41, 1489-1500. https://doi.org/10.1016/j.rser.2014.09.037

  • Behl, S., Donval, A., & Stiborb, H. (2011). The relative importance of species diversity and functional group diversity on carbon uptake in phytoplankton communities. Limnology and Oceanography, 56(2), 683-694. https://doi.org/10.4319/lo.2011.56.2.0683

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099

  • Bold, H. C. (1949). The morphology of Chlamydomonas chlamydogama, sp. Nov. Bulletin of the Torrey Botanical Club, 76(2), 101-108. https://doi.org/10.2307/2482218

  • Chalid, S. Y., Amini, S., & Lestari, S. D. (2010). Kultivasi Chlorella sp. pada media tumbuh yang diperkaya dengan pupuk anorganik dan soil extract [Cultivation of Chlorella sp. on growing media enriched with inorganic fertilizers and soil extract]. Jurnal Kimia Valensi, 1(6), 398-404. https://doi.org/10.15408/jkv.v1i6.242

  • Congestri, R., & Albertano, P. (2011). Benthic diatoms in biofilm culture. In. J. Seckbach & P. Kociolek (Eds.), The diatom world: Cellular origin, life in extreme habitats and astrobiology (Vol. 19, pp. 227-243). Springer. https://doi.org/10.1007/978-94-007-1327-7_10

  • Cruz, D., Vasconcelos, V., Pierre, G., Michaud, P., & Delattre, C. (2020). Exopolysaccharides from Cyanobacteria: Strategies for bioprocess development. Applied Sciences, 10(11), 3763. https://doi.org/10.3390/app10113763

  • Domozych, D. S., Ciancia, M., Fangel, J. U., Mikkelsen, M. D., Ulvskov, P., & Willats, W. G. T. (2012). The cell walls of green algae: A journey through evolution and diversity. Frontiers in Plant Science, 3, 82. https://doi.org/10.3389/fpls.2012.00082

  • DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017

  • Fachrullah, M. R. (2011). Laju pertumbuhan mikroalga penghasil biofuel jenis Chlorella sp. dan Nanochloropsis sp. yang dikultivasi menggunakan air limbah hasil penambangan timah di Pulau Bangka [The growth rate of microalgae producing biofuels Chlorella sp. and Nanochloropsis sp., which is cultivated using wastewater from tin mining on Bangka Island] [Master’s thesis, IPB University]. IPB University Scientific Repository. https://repository.ipb.ac.id/handle/123456789/52202

  • Fuentes, J. L., Garbayo, I., Cuaresma, M., Montero, Z., González-del-Valle, M., & Vilchez, C. (2016). Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs, 14(5), 100. https://doi.org/10.3390/md14050100

  • Gangl, D., Zelder, J. A., Rajakumar, P. D., Martinez, E. M. R., Riseley, A., Wlodarczyk, A., Purton,S., Sukaragi, Y., Howe, C. J., Jensen, P. E., & Robinson, C. (2015). Biotechnological exploitation of microalgae. Journal of Experimental Botany, 66(22), 6975- 6990. https://doi.org/10.1093/jxb/erv426

  • Gómez-Ramírez, A. L., Enriquez-Ocaña, L. F., Miranda-Baeza, A., Esquivel, B.C., López-Elías, J. A., & Martínez-Córdova, L. R. (2019). Biofilm-forming capacity of two benthic microalgae, Navicula incerta and Navicula sp., on three substrates (Naviculales: Naviculaceae). Revista de Biologia Tropical, 67(3), 599-607. https://doi.org/10.15517/rbt.v67i3.35117

  • Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith & M. H. Chanley (Eds.), Culture of marine invertebrate animals (pp. 29-60). Springer. https://doi.org/10.1007/978-1-4615-8714-9_3

  • Gupta, S. K., Kumar, N. M., Guldhe, A., Ansari, F. A., Rawat, I., Nasr, M., & Bux, F. (2018). Wastewater to biofuel: Comprehensive evaluation of various flocculants on biochemical composition and yield of microalgae. Ecological Engineering, 117, 62-68. https://doi.org/10.1016/j.ecoleng.2018.04.005

  • Guschina, I. A., & Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160-186. https://doi.org/10.1016/j.plipres.2006.01.001

  • Ho, S.-H., Huang, S.-W., Chen, C.-Y., Hasunuma, T., Kondo, A., & Chang, J.-S. (2012). Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresource Technology, 135, 157-165. https://doi.org/10.1016/j.biortech.2012.10.100

  • Jiménez, C., Cossı́o, B. R., Labella, D., & Niell, F. F. (2003). The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture, 217(1-4), 179-190. https://doi.org/10.1016/s0044-8486(02)00118-7

  • Klock, J.-H., Wieland, A., Seifert, R., & Michaelis, W. (2007). Extracellular polymeric substances (EPS) from cyanobacterial mats: Characterisation and isolation method optimisation. Marine Biology, 152, 1077-1085. https://doi.org/10.1007/s00227-007-0754-5

  • Lawijaya, E. (2022). Pemanenan Konsorsium Glagah menggunakan Anabaena sp. dan Navicula sp. sebagai bioflokulan [Harvesting the Glagah Consortium using Anabaena sp. and Navicula sp. as the bioflocculant] [Unpublished Undergraduate thesis]. Universitas Gadjah Mada.

  • Li, Y., Xu, Y., Song, R., Tian, C., Liu, L. Zheng, T., & Wang, H. (2018). Flocculation characteristics of a bioflocculant produced by the actinomycete Streptomycetes sp. Hsn06 on microalgae biomass. BMC Biotechnology, 18, 58. https://doi.org/10.1186/s12896-018-0471-9

  • Li, Z., Liu, Y., Zhou, T., Cao, L., Cai, Y., Wang, Y., Cui, X., Yan, H., Ruan, R., & Zhang, Q. (2022). Effect of culture conditions on the performance or Arthrospora platensis and its production of exopolysaccharides. Foods, 11(14), 2020. https://doi.org/10.3390/foods11142020

  • Lutfi, M., Nugroho, W. A., Fridayetsu, W. P., Susilo, B., Pulmar, C., & Sandra, S. (2019). Bioflocculation of two species of microalgae by exopolysaccharide of Bacillus subtilis. Nature Environment and Pollution Technology, 18(1), 167-173.

  • Matter, I. A., Bui, V. K. H., Jung, M., Seo, J. Y., Kim, Y.-E., Lee, Y.-C., & Oh, Y.-K. (2019). Flocculation harvesting techniques for microalgae: A review. Applied Sciences, 9(15), 3069. https://doi.org/10.3390/app9153069

  • Moreira, J. B., Kutzler, S. G., Bezerra, P. Q. M., Cassuriaga, A. P. A., Zaparoli, M. M., da Silva, J. L. V., Costa, J. A. V., & de Morais, M. G. (2022). Recent advances of microalgae exopolysaccharides for application as bioflocculants. Polysaccarides, 3(1), 264-276. https://doi.org/10.3390/polysaccharides3010015

  • Novaryatiin, S. (2011). Isolasi dan karakterisasi potensi biodiesel mikroalga air tawar yang dikoleksi dari beberapa perairan umum sekitar Tangerang dan Bogor [Isolation and characterization of potential freshwater microalgae biodiesel collected from several public waters around Tangerang and Bogor] [Doctoral thesis, Universitas Al Azhar Indonesia]. Repository Digital Universitas Al Azhar Indonesia. http://eprints.uai.ac.id/id/eprint/305

  • Nugroho, C. (2006). Efek Pb terhadap laju pertumbuhan dan biomassa Spirulina platensis [Effect of Pb on growth rate and biomass of Spirulina platensis]. [Unpublished Master’s thesis]. Universitas Gadjah Mada.

  • Pandit, P. R., Fulekar, M. H., & Karuna, M. S. L. (2017). Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environmental Science and Pollution Research, 24, 13437-13451. https://doi.org/10.1007/s11356-017-8875-y

  • Rahman, K. M. (2020). Food and high value products from microalgae: Market opportunities and challenges. In M. D. Alam, J. L. Xu, & Z. Wang (Eds.), Microalgae biotechnology for food, health and high value products (pp. 3-27). Springer. https://doi.org/10.1007/978-981-15-0169-2_1

  • Rahmawati, B., Ilmi, M., Budiman, A., & Suyono, E. A. (2020). Screening of IAA production on the interaction of microalgae and bacteria in the Glagah Consortium. Biosciences Biotechnology Research Asia, 17(1), 45-52. https://doi.org/10.13005/bbra/2808

  • Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 444-467. https://doi.org/10.1016/j.apenergy.2012.10.004

  • Refaay, D. A., Abdel-Hamid, M. I., Alyamani, A. A., Mougib, M. A., Ahmed, D. M., Negm, A., Mowafy, A. M., Ibrahim, A. A., & Mahmoud, R. M. (2022). Growth optimization and secondary metabolites evaluation of Anabaena variabilis for acetylcholinesterase inhibition activity. Plants, 11(6), 735. https://doi.org/10.3390/plants11060735

  • Sadaatkhah, A., Sobhanian, H., Zoufan, P., Amini, F., & Soltani, N. (2020). Interaction of nitrogen and silicate fluctuations with salt stress on growth, and lipid production in Navicula sp. Iranian Journal of Fisheries Sciences, 19(6), 3310-3326. https://doi.org/10.22092/ijfs.2020.350889.0

  • Salim, S., Bosma, R., Vermuë, M. H., & Wijffels, R. H. (2011). Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology, 23, 849-855. https://doi.org/10.1007/s10811-010-9591-x

  • Salim, S., Vermuë, M. H., & Wijffels, R. H. (2012). Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresource Technology, 118, 49-55. https://doi.org/10.1016/j.biortech.2012.05.007

  • Sayanova O., Mimouni, V., Ulmann, L., Morant-Manceau, A., Pasquet, V., Schofs, B., & Napier, J. A. (2017). Modulation of lipid biosynthesis by stress in diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160407. https://doi.org/10.1098/rstb.2016.0407

  • Seckbach, J., & Kociolek, J. P. (Eds.). (2011). The diatom world. Springer. https://doi.org/10.1007/978-94-007-1327-7

  • Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology, 102(1), 26-34. https://doi.org/10.1016/j.biortech.2010.06.057

  • Singh, G., & Patidar, S. K. (2018). Microalgae harvesting techniques: A review. Journal of Environmental Management, 217, 499-508. https://doi.org/10.1016/j.jenvman.2018.04.010

  • Suantika., Pingkan, G., & Yusuf. (2009). Pengaruh kepadatan awal inokulum terhadap kualitas kulturv Chaetoceros gracilis (Schuut) pada sistem batch [Effect of initial inoculum density on culture quality of Chaetoceros gracilis (Schuut) in batch system] [Unpublished Master’s thesis]. Institut Teknologi Bandung.

  • Sudibyo, H., Pradana, Y. S., Samudra, T. T., Budiman, A., Indarto, I., & Suyono, E. A. (2017). Study of cultivation under different colors of light and growth kinetic study of Chlorella zofingiensis Dönz for biofuel production. Energy Procedia, 105, 270-276. https://doi.org/10.1016/j.egypro.2017.03.313

  • Suyono, E. A., Fahrunnida., Nopitasari, S., & Utama, I. V. (2016). Identification of microalgae species and lipid profiling of Glagah consortium for biodiesel development from local marine resource. ARPN Journal of Engineering and Applied Sciences, 11(16), 9970-9973.

  • Suyono, E. A., Haryadi, W., Zusron, M., Nuhamunada, M., Rahayu, S., & Nugroho, A. P. (2015). The effect of salinity on growth, dry weight and lipid content of the mixed microalgae culture isolated from Glagah as biodiesel substrate. Journal of Life Sciences, 9, 229-233. https://doi.org/10.17265/1934-7391/2015.05.006

  • Suyono, E. A., Retnaningrum, E., & Ajijah, N. (2018). Bacterial symbionts isolated from mixed microalgae culture of Glagah strains. International Journal of Agriculture and Biology, 20(1), 33-36.

  • Tiwari, M. O., Khangngembam, R., Shamjetshabam, M., Sharma, A. S., Oinam, G., & Brand, J. J. (2015). Characterization and optimization of bioflocculant exopolysaccharide production by cyanobacteria isolate Glagah BTA97 and Anabaena sp. BTA990 in culture conditions. Applied Biochemistry Biotechnology, 176, 1950-1963. https://doi.org/10.1007/s12010-015-1691-2

  • Yen, H.-W., Hu, I.-C., Chen, C.-Y., Ho, S.-H., Lee, D.-J., & Chang, J.-S. (2013). Microalgae-based biorefinery - From biofuels to natural products Hong-Wei. Bioresource Technology, 135, 166-174. https://doi.org/10.1016/j.biortech.2012.10.099

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

J

Download Full Article PDF

Share this article

Recent Articles