Home / Regular Issue / JTAS Vol. 32 (3) Apr. 2024 / JST(S)-0605-2023

 

C-Slot Circular Polarized Antenna for Hybrid Energy Harvesting and Wireless Sensing

Irfan Mujahidin, Sidiq Syamsul Hidayat, Muhamad Cahyo Ardi Prabowo and Akio Kitagawa

Pertanika Journal of Tropical Agricultural Science, Volume 32, Issue 3, April 2024

DOI: https://doi.org/10.47836/pjst.32.3.24

Keywords: CP antenna, hybrid energy harvesting, wireless sensing

Published on: 24 April 2024

This paper presents a new hybrid energy harvesting on electromagnetic solar for wireless energy harvesting of ambient from sensors of low-power devices. The axial ratio (AR) requirements produce Left-Hand Circular Polarization (LHCP) and Right-Hand Circular Polarization (RHCP) and simultaneously produce a 90-degree phase difference during energy harvesting, adopting a new design in designing a dual-feed broadband circular polarized (CP) antenna. To get the frequency band 2.3–2.4 GHz, we propose a C-Slot antenna with a circular patch dual feed. To estimate the diversity of the phase and magnitude output of the feed configuration under AR value, we used a 50 Ohm feed network output of the characteristic analysis for a dual feed CP antenna. An Axial ratio frequency range of less than 3 dB is achieved using polarization analysis with different branch channel couplers. To produce a DC output voltage, a high-frequency rectifier circuit embedded with a thin-film solar cell on the antenna is then connected to two T-junction power divider rectifiers, resulting in a high-efficiency design. A complete system-level analysis will include multiple signal classification methods of powered ambient RF energy using a wireless energy harvesting array that proposes a compact structure and demonstrates optimal configuration. Reliable operation in typical indoor environments indicates a self-contained sensor Node. Therefore, it has significant implications for powering small electronics and wireless sensor applications independently of the IoT Network or real implementation telecommunications industry.

  • Bahhar, C., Baccouche, C., & Sakli, H. (2020a). A novel 5G rectenna for IoT applications. In 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (pp. 287–290). IEEE. https://doi.org/10.1109/STA50679.2020.9329349

  • Bahhar, C., Baccouche, C., & Sakli, H. (2020b). Optical RECTENNA for energy harvesting and RF transmission in connected vehicles. In 2020 17th International Multi-Conference on Systems, Signals and Devices (SSD) (pp. 262–266). IEEE. https://doi.org/10.1109/SSD49366.2020.9364243

  • Bai, B., Zhang, Z., Li, X., Sun, C., & Liu, Y. (2020). Integration of microstrip slot array antenna with dye-sensitized solar cells. Sensors 2020, 20(21), 6257. https://doi.org/10.3390/S20216257

  • Bhattacharjee, A., Saha, S., Elangovan, D., & Arunkumar, G. (2018). Naturally clamped, isolated, high-gain DC–DC converter with voltage doubler for battery charging of EVs and PHEVs. In A. Garg, A. K. Bhoi, P. Sanjeevikumar & K. K. Kamani (Eds.) Advances in Power Systems and Energy Management. Lecture Notes in Electrical Engineering (pp. 439-450). Springer. https://doi.org/10.1007/978-981-10-4394-9_44

  • Bougas, I. D., Papadopoulou, M. S., Boursianis, A. D., Kokkinidis, K., & Goudos, S. K. (2021). State-of-the-Art Techniques in RF Energy Harvesting Circuits. Telecom, 2(4), 369-389. MDPI. https://doi.org/10.3390/TELECOM2040022

  • Bulu, I., Caglayan, H., & Ozbay, E. (2006). Designing materials with desired electromagnetic properties. Microwave and Optical Technology Letters, 48(12), 2611–2615. https://doi.org/10.1002/mop.21988

  • Chen, Q., Li, Z., Wang, W., Huang, Z., Liang, X., & Wu, X. (2022). A broadband dual-polarized solar cell phased array antenna. IEEE Transactions on Antennas and Propagation, 70(1), 353–364. https://doi.org/10.1109/TAP.2021.3098520

  • Hernowo, R., Suharjono, A., Supriyo, B., Mukhlisin, M., Hidayat, S. S., Wardihani, E. D., & K.K, S. B. (2022). Power consumption optimization for flood monitoring system using NB-IoT. In 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), (pp. 58-63). IEEE. https://doi.org/10.1109/ISRITI56927.2022.10052891

  • Hidayat, S. S., Kim, B. K., & Ohba, K. (2008). Learning affordance for semantic robots using ontology approach. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 2630–2636). IEEE. https://doi.org/10.1109/IROS.2008.4651193

  • Jones, T. R., Grey, J. P., & Daneshmand, M. (2018). Solar panel integrated circular polarized aperture-coupled patch antenna for cubesat applications. IEEE Antennas and Wireless Propagation Letters, 17(10), 1895–1899. https://doi.org/10.1109/LAWP.2018.2869321

  • Kim, S., Tentzeris, M. M., & Georgiadis, A. (2019). Hybrid printed energy harvesting technology for self-sustainable autonomous sensor application. Sensors, 19(3), 728. https://doi.org/10.3390/s19030728

  • Liu, S., Hou, Y., Xie, W., Schlücker, S., Yan, F., & Lei, D. Y. (2018). Quantitative determination of contribution by enhanced local electric field, antenna-amplified light scattering, and surface energy transfer to the performance of plasmonic organic solar cells. Small, 14(30), 1800870. https://doi.org/10.1002/SMLL.201800870

  • Martinez, V. S., Jimenez, F. M., Baladron, I. P., Bautista, I. M., Ingelmo, J. V., Idoiagabeitia, I. G., Besada, J. L., Iraguen, B. G., Gonzalez, J. M. F., & Mascarello, M. (2020). Steerable high-gain dual-reflector antenna at X-band for solar orbiter. IEEE Transactions on Antennas and Propagation, 68(8), 5784–5795. https://doi.org/10.1109/TAP.2020.2980333

  • Mitani, T., Kawashima, S., & Nishimura, T. (2017). Analysis of voltage doubler behavior of 2.45-GHz voltage doubler-type rectenna. IEEE Transactions on Microwave Theory and Techniques, 65(4), 1051–1057. https://doi.org/10.1109/TMTT.2017.2668413

  • Mujahidin, I., & Kitagawa, A. (2021a). CP antenna with 2 × 4 hybrid coupler for wireless sensing and hybrid RF solar energy harvesting. Sensors, 21(22), 7721. https://doi.org/10.3390/S21227721

  • Mujahidin, I., & Kitagawa, A. (2021b). The novel CPW 2.4 GHz antenna with parallel hybrid electromagnetic solar for IoT energy harvesting and wireless sensors. International Journal of Advanced Computer Science and Applications, 12(8), 393–400. https://doi.org/10.14569/IJACSA.2021.0120845

  • Mujahidin, I., & Kitagawa, A. (2023). Ring slot CP antenna for the hybrid electromagnetic solar energy harvesting and IoT application. TELKOMNIKA (Telecommunication Computing Electronics and Control), 21(2), 290–301. https://doi.org/10.12928/TELKOMNIKA.V21I2.24739

  • Mujahidin, I., Prasetya, D. A., Nachrowie, Sena, S. A., & Arinda, P. S. (2020). Performance tuning of spade card antenna using mean average loss of backpropagation neural network. International Journal of Advanced Computer Science and Applications, 11(2), 639–642. https://doi.org/10.14569/ijacsa.2020.0110280

  • Mustafizur Rahman, M., Krishno Sarkar, A., & Chandra Paul, L. (2020). A voltage dependent meander line dipole antenna with improve read range as a passive RFID tag. In H. S. Saini, R. K. Singh, M. Tariq Beg & J. S. Shambi (Eds.) Innovations in Electronics and Communication Engineering. Lecture Notes in Networks and Systems (Vol. 107, pp. 123–138). Springer. https://doi.org/10.1007/978-981-15-3172-9_14

  • O’Conchubhair, O., McEvoy, P., & Ammann, M. J. (2017). Dye-sensitized solar cell antenna. IEEE Antennas and Wireless Propagation Letters, 16, 352–355. https://doi.org/10.1109/LAWP.2016.2576687

  • Pal, P., Krishnamoorthy, P. A., Rukmani, D. K., Joseph Antony, S., Ocheme, S., Subramanian, U., Elavarasan, R. M., Das, N., & Hasanien, H. M. (2021). Optimal dispatch strategy of virtual power plant for day-ahead market framework. Applied Sciences, 11(9), 3814. https://doi.org/10.3390/APP11093814

  • Prasetya, D. A., & Mujahidin, I. (2020). 2.4 GHz double loop antenna with hybrid branch-line 90-degree coupler for widespread wireless sensor. In 10th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (pp. 298–302). IEEE. https://doi.org/10.1109/EECCIS49483.2020.9263477

  • Reynaud, C., Duché, D., Palanchoke, U., Dang, F. X., Patrone, L., Le Rouzo, J., Gourgon, C., Charaï, A., Alfonso, C., Lebouin, C., Escoubas, L., & Simon, J. J. (2017). Harvesting light energy with optical rectennas. Advanced Materials - TechConnect Briefs 2017, 2(2017), 45–48.

  • Sonalitha, E., Zubair, A., Molyo, P. D., Asriningtias, S. R., Nurdewanto, B., Prambanan, B. R., & Mujahidin, I. (2020). Combined text mining: Fuzzy clustering for opinion mining on the traditional culture arts work. International Journal of Advanced Computer Science and Applications, 11(8), 294–299. https://doi.org/10.14569/IJACSA.2020.0110838

  • Wagih, M., Weddell, A. S., & Beeby, S. (2021). Powering e-textiles using a single thread radio frequency energy harvesting rectenna. Proceedings, 68(1), 16. https://doi.org/10.3390/PROCEEDINGS2021068016

  • Yan, N., Ji, C., Luo, Y., & Ma, K. (2021). A high gain solar cell aperture-coupled patch antenna based on substrate-integrated suspended line platform for 5G application. Microwave and Optical Technology Letters, 63(11), 2876–2881. https://doi.org/10.1002/MOP.33006

  • Yuwono, R., & Mujahidin, I. (2019). Rectifier using UWB microstrip antenna as electromagnetic energy harvester for GSM, CCTV and Wi-Fi transmitter. Journal of Communications, 14(11), 1098–1103. https://doi.org/10.12720/JCM.14.11.1098-1103

  • Yuwono, R., Mujahidin, I., Mustofa, A., & Aisah. (2015). Rectifier using UFO microstrip antenna as electromagnetic energy harvester. Advanced Science Letters, 21(11), 3439–3443. https://doi.org/10.1166/asl.2015.6574

  • Zhang, W., Liu, T., Yang, G., Jiang, C., Hu, Y., Zhu, X., Lan, T., & Zhao, Z. (2022). The application of beamforming technology in ionospheric oblique incidence sounding with Wuhan Multi-Channel Ionospheric Sounding System (WMISS). IEEE Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2021.3095910