e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Abidin, F. Z., Hui, C. K., Luan, N. S., Ramli, E. S. M., Hun, L. T., & Ghafar, N. A. (2011). Effects of edible bird’s nest (EBN) on cultured rabbit corneal keratocytes. BMC Complementary and Alternative Medicine, 11(1), 1-10. doi: https://doi.org/10.1186/1472-6882-11-94
Ali, A. A. M., Noor, H. S. M., Chong, P., Babji, A. S., & Lim, S. (2019). Comparison of amino acids profile and antioxidant activities between edible bird nest and chicken egg. Malaysian Applied Biology, 48(2), 63-66.
Aluko, R. (2018). Food protein-derived peptides: Production, isolation, and purification. In Proteins in Food Processing (2nd Ed., pp. 389-412). Amsterdam, Netherlands: Woodhead Publishing. doi: https://doi.org/10.1016/B978-0-08-100722-8.00016-4
Beauclercq, S., Lefèvre, A., Montigny, F., Collin, A., Tesseraud, S., Leterrier, C., … & Guilloteau, L. A. (2019). A multiplatform metabolomic approach to characterize fecal signatures of negative postnatal events in chicks: A pilot study. Journal of Animal Science and Biotechnology, 10(1), 1-12. doi: https://doi.org/10.1186/s40104-019-0335-8
Blasco, Błaszczyński, J., Billaut, J. C., Nadal-Desbarats, L., Pradat, P. F., Devos, D., … & Corcia, P. (2015). Comparative analysis of targeted metabolomics: Dominance-based rough set approach versus orthogonal partial least square-discriminant analysis. Journal of Biomedical Informatics, 53, 291-299. doi: https://doi.org/10.1016/j.jbi.2014.12.001
Cavanna, D., Zanardi, S., Dall’Asta, C., & Suman, M. (2019). Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggs freshness. Food Chemistry, 271, 691-696. doi: https://doi.org/10.1016/j.foodchem.2018.07.204
Chua, Y. G., Chan, S. H., Bloodworth, B. C., Li, S. F. Y., & Leong, L. P. (2015). Identification of edible bird’s nest with amino acid and monosaccharide analysis. Journal of Agricultural and Food Chemistry, 63(1), 279-289. doi: https://doi.org/10.1021/jf503157n
Chua, K. H., Lee, T. H., Nagandran, K., Yahaya, N. H. M., Lee, C. T., Tjih, E. T. T., & Aziz, R. A. (2013). Edible bird’s nest extract as a chondro-protective agent for human chondrocytes isolated from osteoarthritic knee: In vitro study. BMC Complementary and Alternative Medicine, 13(1), 1-9. doi: https://doi.org/10.1186/1472-6882-13-19
Chua, L. S., & Zukefli, S. N. (2016). A comprehensive review of edible bird nests and swiftlet farming. Journal of Integrative Medicine, 14(6), 415-428. doi: https://doi.org/10.1016/S2095-4964(16)60282-0
Del, C. C. P., Garde-Cerdán, T., Sánchez, A. M., Maggi, L., Carmona, M., & Alonso, G. L. (2009). Determination of free amino acids and ammonium ion in saffron (Crocus sativus L.) from different geographical origins. Food Chemistry, 114(4), 1542-1548. doi: https://doi.org/10.1016/j.foodchem.2008.11.034
Erik, V. D., Hoogeveen, A., & Abeln, S. (2015). The hydrophobic temperature dependence of amino acids directly calculated from protein structures. PLoS Computational Biology, 11(5), 1-17. doi: https://doi.org/10.1371/journal.pcbi.1004277
Halimi, N. M., Kasim, Z. M., & Babji, A. S. (2014). Nutritional composition and solubility of edible bird nest (Aerodramus fuchiphagus). In AIP Conference Proceedings (Vol. 1614, No. 1, pp. 476-481). New York, USA: AIP Publishing LLC.
Hun, L. T., Lee, C. H., Azmi, N. A., Kavita, S., Wong, S., Znati, M., & Jannet, H. B. (2020). Characterization of polar and non‐polar compounds of house edible bird’s nest (EBN) from Johor, Malaysia. Chemistry and Biodiversity, 17(1), 1-10. doi: https://doi.org/10.1002/cbdv.201900419
Hun, L. T., Wani, W. A., Tjih, E. T. T., Adnan, N. A., Ling, Y. L., & Aziz, R. A. (2015). Investigations into the physicochemical, biochemical and antibacterial properties of edible bird’s nest. Journal of Chemical and Pharmaceutical Research, 7(7), 228-247.
Khaleduzzaman, A., Khandaker, Z., Khan, M., Banu, L., & Khan, M. (2008). Evaluation of a high performance liquid chromolography (Hplc) mehtod for amino acid analysis in feed with precolumn derivatization and fluorescence detection. Bangladesh Journal of Animal Science, 37(2), 66-73. doi: https://doi.org/10.3329/bjas.v37i2.9883
Li, Y., & Wu, Y. L. (2010). A golden phoenix arising from the herbal nest-A review and reflection on the study of antimalarial drug Qinghaosu. Frontiers of Chemistry in China, 5(4), 357-422. doi: https://doi.org/10.1007/s11458-010-0214-5
Lim, C. (2007). Make millions from swiftlet farming: A definitive guide. Kuala Lumpur, Malaysia: True Wealth.
Lukman, W., & Wibawan, I. W. T. (2018). Protein profile of edible bird’s nest origin Kalimantan and Java Islands Indonesia. Journal of Agriculture and Veterinary Sciences, 11(5), 69-73. doi: 10.9790/2380-1105026973
Marcone, M. F. (2005). Characterization of the edible bird’s nest the “Caviar of the East”. Food Research International, 38(10), 1125-1134. doi: https://doi.org/10.1016/j.foodres.2005.02.008
Mauer, L. (2003). Heat treatment for food proteins. In Protein (pp. 4868-4872). Amsterdam, Netherland: Woodhead Publishing.
Norhayati, M. K., Azman, O., & Nazaimoon, W. M. (2010). Preliminary study of the nutritional content of Malaysian edible bird’s nest. Malaysian Journal of Nutrition, 16(3), 389-396.
Oda, M., Ohta, S., Suga, T., & Aoki, T. (1998). Study on food components: The structure of N-linked asialo carbohydrate from the edible bird’s nest built by Collocalia fuciphaga. Journal of Agricultural and Food Chemistry, 46(8), 3047-3053. doi: https://doi.org/10.1021/jf980094k
Phua, L. C., Chue, X. P., Koh, P. K., Cheah, P. Y., Ho, H. K., & Chan, E. C. Y. (2014). Non-invasive fecal metabonomic detection of colorectal cancer. Cancer Biology and Therapy, 15(4), 389-397. doi: https://doi.org/10.4161/cbt.27625
Quek, M. C., Chin, N. L., Yusof, Y. A., Law, C. L., & Tan, S. W. (2018). Pattern recognition analysis on nutritional profile and chemical composition of edible bird’s nest for its origin and authentication. International Journal of Food Properties, 21(1), 1680-1696. doi: https://doi.org/10.1080/10942912.2018.1503303
Reverter, M., Lundh, T., & Lindberg, J. E. (1997). Determination of free amino acids in pig plasma by precolumn derivatization with 6-N-aminoquinolyl-N-hydroxysuccinimidyl carbamate and high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 696(1), 1-8. doi: https://doi.org/10.1016/S0378-4347(97)00217-X
Saengkrajang, W., Matan, N., & Matan, N. (2013). Nutritional composition of the farmed edible bird’s nest (Collocalia fuciphaga) in Thailand. Journal of Food Composition and Analysis, 31(1), 41-45. doi: https://doi.org/10.1016/j.jfca.2013.05.001
Senizza, B., Rocchetti, G., Ghisoni, S., Busconi, M., De Los Mozos Pascual, M., Fernandez, J. A., … & Trevisan, M. (2019). Identification of phenolic markers for saffron authenticity and origin: An untargeted metabolomics approach. Food Research International, 126(2019), 1-7. doi: https://doi.org/10.1016/j.foodres.2019.108584
Seow, E. K., Ibrahim, B., Muhammad, S. A., Lee, L. H., & Cheng, L. H. (2016a). Differentiation between house and cave edible bird’s nests by chemometric analysis of amino acid composition data. Lebensmittel-Wissenschaft and Technologie - Food Science and Technology, 65, 428-435. doi: https://doi.org/10.1016/j.lwt.2015.08.047
Seow, E. K., Ibrahim, B., Muhammad, S. A., Lee, L. H., Lalung, J., & Cheng, L. H. (2016b). Discrimination between cave and house-farmed edible bird’s nest based on major mineral profiles. Pertanika Journal of Tropical Agricultural Science, 39(2), 181-195.
Shim, E. K., Chandra, G. F., Pedireddy, S., & Lee, S. Y. (2016). Characterization of swiftlet edible bird’s nest, a mucin glycoprotein, and its adulterants by Raman Microspectroscopy. Journal of Food Science and Technology, 53(9), 3602-3608. doi: https://doi.org/10.1007/s13197-016-2344-3
Song, H. H., Kim, D. Y., Woo, S., Lee, H. K., & Oh, S. R. (2013). An approach for simultaneous determination for geographical origins of Korean Panax ginseng by UPLC-QTOF/MS coupled with OPLS-DA models. Journal of Ginseng Research, 37(3), 341-348. doi: 10.5142/jgr.2013.37.341
Su, S. C., Yu, P. C., Liu, C. H., Shiau, H. W., Lee, S. C., & Chou, S. S. (1998). Application of capillary electrophoresis for identification of the authenticity of bird’s nests. Journal of Food and Drug Analysis, 6(1), 455-464.
Tripathy, D. B., Mishra, A., Clark, J., & Farmer, T. (2018). Synthesis, chemistry, physicochemical properties and industrial applications of amino acid surfactants: A review. Comptes Rendus Chimie, 21(2), 112-130. doi: https://doi.org/10.1016/j.crci.2017.11.005
Tulbek, M., Lam, R., Asavajaru, P., & Lam, A. (2017). Pea: A sustainable vegetable protein crop. In Sustainable Protein Sources (pp. 145-164). Amsterdam, Netherland: Woodhead Publishing. doi: https://doi.org/10.1016/B978-0-12-802778-3.00009-3
Wong, R. S. (2013). Edible bird’s nest: Food or medicine. Chinese Journal of Integrative Medicine, 19(9), 643-649. doi: https://doi.org/10.1007/s11655-013-1563-y
Yida, Z., Imam, M. U., Ismail, M., Ooi, D. J., Sarega, N., Azmi, N. H., … & Yusuf, N. B. (2015). Edible bird’s nest prevents high fat diet-induced insulin resistance in rats. Journal of Diabetes Research, 2015, 1-11. doi: https://doi.org/10.1155/2015/760535
ISSN 1511-3701
e-ISSN 2231-8542