e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 30 (1) Jan. 2022 / JST-2614-2021


A Review on Synthesis and Characterization of Activated Carbon from Natural Fibers for Supercapacitor Application

Thilageshwaran Subramaniam, Mohamed Ansari Mohamed Nainar and Noor Afeefah Nordin

Pertanika Journal of Tropical Agricultural Science, Volume 30, Issue 1, January 2022


Keywords: Activated carbon (AC), electric double-layer capacitor (EDLC), natural fibers, pseudocapacitor, supercapacitor electrode

Published on: 10 January 2022

Supercapacitors have gained much attention in recent years due to their promising characteristics, such as high specific capacitance, high power density, long cycle life, and environment-friendly nature. Usage of natural sources for activated carbon synthesis is a major focus by many researchers worldwide for discovering a replacement of existing supercapacitors. This review summarizes the methods used to synthesize activated carbon (AC) from various natural fiber, their physical and electrochemical characteristics, and the improvement of supercapacitor electrode performance. Previous research studies indicate the practicability of activated carbon derived from various natural fibers with superior electrochemical properties. The effect of activating reagents and temperature on the electrochemical performance for supercapacitor applications are also highlighted in this paper. Since the nature of activated carbon from fibers and its synthesizing methods would result in different properties, the Cyclic Voltammetry (CV) study is also thoroughly discussed on the specific capacitance together with charge/discharge test to observe the capacitance retention after several cycles. Finally, a detailed approach of converting biowaste materials to activated carbon for energy storage applications with environmental concerns is explored.

  • Afif, A., Rahman, S. M. H., Azad, A. T., Zaini, J., Islan, M. A., & Azad, A. K. (2019). Advanced materials and technologies for hybrid supercapacitors for energy storage - A review. Journal of Energy Storage, 25, Article 100852.

  • Ahmed, M. B., Johir, M. A. H., Zhou, J. L., Ngo, H. H., Nghiem, L. D., Richardson, C., Moni, M. A., & Bryant, M. R. (2019). Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption. Journal of Cleaner Production, 225, 405-413.

  • Arunachalam, S., Kirubasankar, B., Pan, D., Liu, H., Yan, C., Guo, Z., & Angaiah, S. (2020). Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy and Environment, 5(3), 259-273.

  • Bogeat, A. B. (2021). Understanding and tuning the electrical conductivity of activated carbon: A state-of-the-art review. Critical Reviews in Solid State and Materials Sciences, 46(1), 1-37.

  • Bhat, V. S., Krishnan, S. G., Jayeoye, T. J., Rujiralai, T., Sirimahachai, U., Viswanatha, R., Khalid, M., & Hegde, G. (2021). Self-activated ‘green’ carbon nanoparticles for symmetric solid-state supercapacitors. Journal of Materials Science, 56(23), 13271-13290.

  • Chang, J., Gao, Z., Wang, X., Wu, D., Xu, F., Wang, X., Guo, Y., & Jiang, K. (2015). Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochimica Acta, 157, 290-298.

  • Chen, H., Wei, H., Fu, N., Qian, W., Liu, Y., Lin, H., & Han, S. (2018). Nitrogen-doped porous carbon using ZnCl2 as activating agent for high-performance supercapacitor electrode materials. Journal of Materials Science, 53(4), 2669-2684.

  • Chen, S., Qiu, L., & Cheng, H. M. (2020). Carbon-based fibers for advanced electrochemical energy storage devices. Chemical Reviews, 120(5), 2811-2878.

  • Chen, W., Luo, M., Yang, K., & Zhou, X. (2020). Microwave-assisted KOH activation from lignin into hierarchically porous carbon with super high specific surface area by utilizing the dual roles of inorganic salts: Microwave absorber and porogen. Microporous and Mesoporous Materials, 300, Article 110178.

  • Cheng, Y., Wu, L., Fang, C., Li, T., & Chen, J. (2020). Synthesis of porous carbon materials derived from Laminaria japonica via simple carbonization and activation for supercapacitors. Journal of Materials Research and Technology, 9(3), 3261-3271.

  • Chime, U. K., Nkele, A. C., Ezugwu, S., Nwanya, A. C., Shinde, N. M., Kebede, M., Ejikeme, P. M., Maaza, M., & Ezema, F. I. (2020). Recent progress in nickel oxide-based electrodes for high-performance supercapacitors. Current Opinion in Electrochemistry, 21, 175-181.

  • Chiu, Y. H., & Lin, L. Y. (2019). Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 101, 177-185.

  • Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., & Taberna, P. L. (2006). Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 313(5794), 1760-1763.

  • Chowdhury, T. S., & Grebel, H. (2019). Supercapacitors with electrical gates. Electrochimica Acta, 307, 459-464.

  • Devillers, N., Jemei, S., Péra, M. C., Bienaimé, D., & Gustin, F. (2014). Review of characterization methods for supercapacitor modelling. Journal of Power Sources, 246, 596-608.

  • Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics Reports, 409(2), 47-99.

  • Elaiyappillai, E., Srinivasan, R., & Johnbosco, Y. (2019). Applied surface science low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application. Applied Surface Science, 486(April), 527-538.

  • Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., & Moreno-Castilla, C. (2012). Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource Technology, 111, 185-190.

  • Enock, T. K., King’ondu, C. K., Pogrebnoi, A., & Jande, Y. A. C. (2017). Status of biomass derived carbon materials for supercapacitor application. International Journal of Electrochemistry, 2017, 1-14.

  • Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N. H., Manjunatha, J. G., Ishak, M. M., Dollah, B. N. M., & Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technology, 132, 254-261.

  • Ghosh, S., Santhosh, R., Jeniffer, S., Raghavan, V., Jacob, G., Nanaji, K., Kollu, P., Jeong, S. K., & Grace, A. N. (2019). Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Scientific Reports, 9, Article 16315.

  • Gu, W., & Yushin, G. (2014). Review of nanostructured carbon materials for electrochemical capacitor applications: Advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment, 3(5), 424-473.

  • Gupta, G. K., Sagar, P., Pandey, S. K., Srivastava, M., Singh, A. K., Singh, J., Srivastava, A., Srivastava, S. K., & Srivastava, A. (2021). In Situ fabrication of activated carbon from a bio-waste Desmostachya bipinnata for the improved supercapacitor performance. Nanoscale Research Letters, 16(1), 1-12.

  • Hu, L., Zhu, Q., Wu, Q., Li, D., An, Z., & Xu, B. (2018). Natural biomass-derived hierarchical porous carbon synthesized by an in Situ hard template coupled with NaOH activation for ultrahigh rate supercapacitors. ACS Sustainable Chemistry & Engineering, 6(11), 13949-13959.

  • Im, U. S., Kim, J., Lee, S. H., Lee, S. M., Lee, B. R., Peck, D. H., & Jung, D. H. (2019). Preparation of activated carbon from needle coke via two-stage steam activation process. Materials Letters, 237, 22-25.

  • Ioannidou, O., & Zabaniotou, A. Ã. (2007). Agricultural residues as precursors for activated carbon production - A review. Renewable and Sustainable Energy Reviews, 11, 1966-2005.

  • Jiang, L., Yan, J., Hao, L., Xue, R., Sun, G., & Yi, B. (2013). High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon, 56, 146-154.

  • Kim, H., Cho, J., Jang, S. Y., & Song, Y. W. (2011). Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers. Applied Physics Letters, 98(2), Article 21104.

  • Lei, E., Li, W., Ma, C., Xu, Z., & Liu, S. (2018). CO2-activated porous self-templated N-doped carbon aerogel derived from banana for high-performance supercapacitors. Applied Surface Science, 457, 477-486.

  • Li, Z., Xu, Z., Tan, X., Wang, H., Holt, C. M. B., Stephenson, T., Olsen, B. C., & Mitlin, D. (2013). Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy & Environmental Science, 6(3), 871-878.

  • Liu, P., Yan, J., Guang, Z., Huang, Y., Li, X., & Huang, W. (2019). Recent advancements of polyaniline-based nanocomposites for supercapacitors. Journal of Power Sources, 424, 108-130.

  • Lu, W., Cao, X., Hao, L., Zhou, Y., & Wang, Y. (2020). Activated carbon derived from pitaya peel for supercapacitor applications with high capacitance performance. Materials Letters, 264, Article 127339.

  • Luo, X., Chen, Y., & Mo, Y. (2021). A review of charge storage in porous carbon-based supercapacitors. New Carbon Materials, 36(1), 49-68.

  • Lyu, L., Seong, K., Ko, D., Choi, J., Lee, C., Hwang, T., Cho, Y., Jin, X., Zhang, W., Pang, H., & Piao, Y. (2019). Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Materials Chemistry Frontiers, 3(12), 2543-2570.

  • Ma, M., Ying, H., Cao, F., Wang, Q., & Ai, N. (2020). Adsorption of congo red on mesoporous activated carbon prepared by CO2 physical activation. Chinese Journal of Chemical Engineering, 28(4), 1069-1076.

  • Mhamane, D., Ramadan, W., Fawzy, M., Rana, A., Dubey, M., Rode, C., Lefez, B., Hannoyer, B., & Ogale, S. (2011). From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation. Green Chemistry, 13(8), 1990-1996.

  • Misnon, I. I., Zain, N. K. M., Aziz, R. A., Vidyadharan, B., & Jose, R. (2015). Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochimica Acta, 174(1), 78-86.

  • Moralı, U., Demiral, H., & Şensöz, S. (2018). Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance. Journal of Cleaner Production, 189, 602-611.

  • Musa, M. S., Sanagi, M. M., Nur, H., & Ibrahim, W. A. W. (2015). Understanding pore formation and structural deformation in carbon spheres during KOH activation. Sains Malaysiana, 44, 613-618.

  • Namisnyk, A., & Zhu, J. (2003). A survey of electrochemical super-capacitor technology. In Australian Universities Power Engineering Conference (pp. 1-6). University of Canterbury.

  • Nor, N. M., Lau, L. C., Lee, K. T., & Mohamed, A. R. (2013). Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - A review. Journal of Environmental Chemical Engineering, 1(4), 658-666.

  • Pang, P., Yan, F., Chen, M., Li, H., Zhang, Y., Wang, H., Wu, Z., & Yang, W. (2016). Promising biomass-derived activated carbon and gold nanoparticle nanocomposites as a novel electrode material for electrochemical detection of rutin. RSC Advances, 6(93), 90446-90454.

  • Peng, C., Yan, X. B., Wang, R. T., Lang, J. W., Ou, Y. J., & Xue, Q. J. (2013). Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochimica Acta, 87, 401-408.

  • Purkait, T., Singh, G., Singh, M., Kumar, D., & Dey, R. S. (2017). Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Scientific Reports, 7, Article 15239.

  • Qin, L. (2019). Porous carbon derived from pine nut shell prepared by steam activation for supercapacitor electrode material. International Journal of Electrochemical Science, 14, 8907-8918.

  • Raju, K., & Ozoemena, K. I. (2015). Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors. Scientific Reports, 5, Article 17629.

  • Rawal, S., Joshi, B., & Kumar, Y. (2018). Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors. Journal of Energy Storage, 20(October), 418-426.

  • Rombaldo, C. F. S., & Lisboa, A. C. L. (2014). Brazilian natural fiber (jute) as raw material for activated carbon production. Anais da Academia Brasileira de Ciências, 86, 2137-2144.

  • Saini, S., Chand, P., & Joshi, A. (2021). Biomass derived carbon for supercapacitor applications: Review. Journal of Energy Storage, 39, Article 102646.

  • Samantray, R., & Mishra, S. C. (2019). Saccharum spontaneum, a precursor of sustainable activated carbon: Synthesis, characterization and optimization of process parameters and its suitability for supercapacitor applications. Diamond and Related Materials, 101, Article 107598.

  • Sayyed, S. G., Mahadik, M. A., Shaikh, A. V., Jang, J. S., & Pathan, H. M. (2019). Nano-metal oxide based supercapacitor via electrochemical deposition . ES Energy & Environment, 3, 25-44.

  • Shimodaira, N., & Masui, A. (2002). Raman spectroscopic investigations of activated carbon materials. Journal of Applied Physics, 92(2), 902-909.

  • Shinde, P. A., & Jun, S. C. (2020). Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage. ChemSusChem, 13(1), 11-38.

  • Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7(11), 845-854.

  • Subramanian, V., Luo, C., Stephan, A. M., Nahm, K. S., Thomas, S., & Wei, B. (2007). Supercapacitors from activated carbon derived from banana fibers. Journal of Physical Chemistry C, 111(20), 7527-7531.

  • Sun, Q. (2019). Porous carbon material based on biomass prepared by MgO template method and ZnCl2 activation method as electrode for high performance supercapacitor. International Journal of Electrochemical Science, 14, 1-14.

  • Tan, Y. B., & Lee, J. M. (2013). Graphene for supercapacitor applications. Journal of Materials Chemistry A, 1(47), 14814-14843.

  • Teo, E. Y. L., Muniandy, L., Ng, E. P., Adam, F., Mohamed, A. R., Jose, R., & Chong, K. F. (2016). High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta, 192, 110-119.

  • Thulasi, K. M., Manikkoth, S. T., Paravannoor, A., Palantavida, S., Bhagiyalakshmi, M., & Vijayan, B. K. (2019). Ceria deposited titania nanotubes for high performance supercapacitors. Journal of Physics and Chemistry of Solids, 135, Article 109111.

  • Tobi, A. R., Dennis, J. O., Zaid, H. M., Adekoya, A. A., Yar, A., & Fahad, U. (2019). Comparative analysis of physiochemical properties of physically activated carbon from palm bio-waste. Journal of Materials Research and Technology, 8(5), 3688-3695.

  • Tounsadi, H., Khalidi, A., Farnane, M., Abdennouri, M., & Barka, N. (2016). Experimental design for the optimization of preparation conditions of highly efficient activated carbon from Glebionis coronaria L. and heavy metals removal ability. Process Safety and Environmental Protection, 102, 710-723.

  • Tsang, C. H. A., Huang, H., Xuan, J., Wang, H., & Leung, D. Y. C. (2020). Graphene materials in green energy applications: Recent development and future perspective. Renewable and Sustainable Energy Reviews, 120, Article 109656.

  • Wei, H., Wang, H., Li, A., Li, H., Cui, D., Dong, M., Lin, J., Fan, J., Zhang, J., Hou, H., Shi, Y., Zhou, D., & Guo, Z. (2019). Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors. Journal of Alloys and Compounds, 820, Article 153111.

  • Wu, F., Gao, J., Zhai, X., Xie, M., Sun, Y., Kang, H., Tian, Q., & Qiu, H. (2019). Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors. Carbon, 147, 242-251.

  • Wu, M. B., Li, R. C., He, X. J., Zhang, H. B., Sui, W. B., & Tan, M. H. (2015). Microwave-assisted preparation of peanut shell-based activated carbons and their use in electrochemical capacitors. Xinxing Tan Cailiao/New Carbon Materials, 30(1), 86-91.

  • Xiong, G., Meng, C., Reifenberger, R. G., Irazoqui, P. P., & Fisher, T. S. (2014). A review of graphene-based electrochemical microsupercapacitors. Electroanalysis, 26(1), 30-51.

  • Xu, J., Gao, Q., Zhang, Y., Tan, Y., Tian, W., Zhu, L., & Jiang, L. (2014). Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor. Scientific Reports, 4, Article 5545.

  • Yakout, S. M., & Sharaf El-Deen, G. (2016). Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian Journal of Chemistry, 9, S1155-S1162.

  • Yao, F., Pham, D. T., & Lee, Y. H. (2015). Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices. ChemSusChem, 8(14), 2284-2311.

  • Yar, A., Dennis, J. O., Saheed, M. S. M., Mohamed, N. M., Irshad, M. I., Mumtaz, A., & Jose, R. (2020). Physical reduction of graphene oxide for supercapacitive charge storage. Journal of Alloys and Compounds, 822, Article 153636.

  • Yu, L. J., Rengasamy, K., Lim, K. Y., Tan, L. S., Tarawneh, M., Zulkoffli, Z. B., & Yong, E. N. S. (2019). Comparison of activated carbon and zeolites’ filtering efficiency in freshwater. Journal of Environmental Chemical Engineering, 7(4), Article 103223.

  • Zequine, C., Ranaweera, C. K., Wang, Z., Dvornic, P. R., Kahol, P. K., Singh, S., Tripathi, P., Srivastava, O. N., Singh, S., Gupta, B. K., Gupta, G., & Gupta, R. K. (2017). High-performance flexible supercapacitors obtained via recycled jute: Bio-waste to energy storage approach. Scientific Reports, 7(1), 1-12.

  • Zhang, Y., Song, X., Xu, Y., Shen, H., Kong, X., & Xu, H. (2019). Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. Journal of Cleaner Production, 210, 366-375.

  • Zhang, Z. P., Rong, M. Z., Zhang, M. Q., & Yuan, C. (2013). Alkoxyamine with reduced homolysis temperature and its application in repeated autonomous self-healing of stiff polymers. Polymer Chemistry, 4(17), 4648-4654.

  • Zhu, Z., Liu, Y., Ju, Z., Luo, J., Sheng, O., Nai, J., Liu, T., Zhou, Y., Wang, Y., & Tao, X. (2019). Synthesis of diverse green carbon nanomaterials through fully utilizing biomass carbon source assisted by KOH. ACS Applied Materials & Interfaces, 11(27), 24205-24211.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Recent Articles