PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Afif, A., Rahman, S. M. H., Azad, A. T., Zaini, J., Islan, M. A., & Azad, A. K. (2019). Advanced materials and technologies for hybrid supercapacitors for energy storage - A review. Journal of Energy Storage, 25, Article 100852. https://doi.org/https://doi.org/10.1016/j.est.2019.100852

  • Ahmed, M. B., Johir, M. A. H., Zhou, J. L., Ngo, H. H., Nghiem, L. D., Richardson, C., Moni, M. A., & Bryant, M. R. (2019). Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption. Journal of Cleaner Production, 225, 405-413. https://doi.org/10.1016/j.jclepro.2019.03.342

  • Arunachalam, S., Kirubasankar, B., Pan, D., Liu, H., Yan, C., Guo, Z., & Angaiah, S. (2020). Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy and Environment, 5(3), 259-273. https://doi.org/10.1016/j.gee.2020.07.021

  • Bogeat, A. B. (2021). Understanding and tuning the electrical conductivity of activated carbon: A state-of-the-art review. Critical Reviews in Solid State and Materials Sciences, 46(1), 1-37. https://doi.org/10.1080/10408436.2019.1671800

  • Bhat, V. S., Krishnan, S. G., Jayeoye, T. J., Rujiralai, T., Sirimahachai, U., Viswanatha, R., Khalid, M., & Hegde, G. (2021). Self-activated ‘green’ carbon nanoparticles for symmetric solid-state supercapacitors. Journal of Materials Science, 56(23), 13271-13290. https://doi.org/10.1007/s10853-021-06154-z

  • Chang, J., Gao, Z., Wang, X., Wu, D., Xu, F., Wang, X., Guo, Y., & Jiang, K. (2015). Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochimica Acta, 157, 290-298. https://doi.org/10.1016/j.electacta.2014.12.169

  • Chen, H., Wei, H., Fu, N., Qian, W., Liu, Y., Lin, H., & Han, S. (2018). Nitrogen-doped porous carbon using ZnCl2 as activating agent for high-performance supercapacitor electrode materials. Journal of Materials Science, 53(4), 2669-2684. https://doi.org/10.1007/s10853-017-1453-3

  • Chen, S., Qiu, L., & Cheng, H. M. (2020). Carbon-based fibers for advanced electrochemical energy storage devices. Chemical Reviews, 120(5), 2811-2878. https://doi.org/10.1021/acs.chemrev.9b00466

  • Chen, W., Luo, M., Yang, K., & Zhou, X. (2020). Microwave-assisted KOH activation from lignin into hierarchically porous carbon with super high specific surface area by utilizing the dual roles of inorganic salts: Microwave absorber and porogen. Microporous and Mesoporous Materials, 300, Article 110178. https://doi.org/https://doi.org/10.1016/j.micromeso.2020.110178

  • Cheng, Y., Wu, L., Fang, C., Li, T., & Chen, J. (2020). Synthesis of porous carbon materials derived from Laminaria japonica via simple carbonization and activation for supercapacitors. Journal of Materials Research and Technology, 9(3), 3261-3271. https://doi.org/10.1016/j.jmrt.2020.01.022

  • Chime, U. K., Nkele, A. C., Ezugwu, S., Nwanya, A. C., Shinde, N. M., Kebede, M., Ejikeme, P. M., Maaza, M., & Ezema, F. I. (2020). Recent progress in nickel oxide-based electrodes for high-performance supercapacitors. Current Opinion in Electrochemistry, 21, 175-181. https://doi.org/https://doi.org/10.1016/j.coelec.2020.02.004

  • Chiu, Y. H., & Lin, L. Y. (2019). Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 101, 177-185. https://doi.org/10.1016/j.jtice.2019.04.050

  • Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., & Taberna, P. L. (2006). Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 313(5794), 1760-1763. https://doi.org/10.1126/science.1132195

  • Chowdhury, T. S., & Grebel, H. (2019). Supercapacitors with electrical gates. Electrochimica Acta, 307, 459-464. https://doi.org/10.1016/j.electacta.2019.03.222

  • Devillers, N., Jemei, S., Péra, M. C., Bienaimé, D., & Gustin, F. (2014). Review of characterization methods for supercapacitor modelling. Journal of Power Sources, 246, 596-608. https://doi.org/https://doi.org/10.1016/j.jpowsour.2013.07.116

  • Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics Reports, 409(2), 47-99. https://doi.org/https://doi.org/10.1016/j.physrep.2004.10.006

  • Elaiyappillai, E., Srinivasan, R., & Johnbosco, Y. (2019). Applied surface science low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application. Applied Surface Science, 486(April), 527-538.

  • Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., & Moreno-Castilla, C. (2012). Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource Technology, 111, 185-190. https://doi.org/10.1016/j.biortech.2012.02.010

  • Enock, T. K., King’ondu, C. K., Pogrebnoi, A., & Jande, Y. A. C. (2017). Status of biomass derived carbon materials for supercapacitor application. International Journal of Electrochemistry, 2017, 1-14. https://doi.org/10.1155/2017/6453420

  • Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N. H., Manjunatha, J. G., Ishak, M. M., Dollah, B. N. M., & Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technology, 132, 254-261. https://doi.org/10.1016/j.biortech.2013.01.044

  • Ghosh, S., Santhosh, R., Jeniffer, S., Raghavan, V., Jacob, G., Nanaji, K., Kollu, P., Jeong, S. K., & Grace, A. N. (2019). Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Scientific Reports, 9, Article 16315. https://doi.org/10.1038/s41598-019-52006-x

  • Gu, W., & Yushin, G. (2014). Review of nanostructured carbon materials for electrochemical capacitor applications: Advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment, 3(5), 424-473. https://doi.org/10.1002/wene.102

  • Gupta, G. K., Sagar, P., Pandey, S. K., Srivastava, M., Singh, A. K., Singh, J., Srivastava, A., Srivastava, S. K., & Srivastava, A. (2021). In Situ fabrication of activated carbon from a bio-waste Desmostachya bipinnata for the improved supercapacitor performance. Nanoscale Research Letters, 16(1), 1-12. https://doi.org/10.1186/s11671-021-03545-8

  • Hu, L., Zhu, Q., Wu, Q., Li, D., An, Z., & Xu, B. (2018). Natural biomass-derived hierarchical porous carbon synthesized by an in Situ hard template coupled with NaOH activation for ultrahigh rate supercapacitors. ACS Sustainable Chemistry & Engineering, 6(11), 13949-13959. https://doi.org/10.1021/acssuschemeng.8b02299

  • Im, U. S., Kim, J., Lee, S. H., Lee, S. M., Lee, B. R., Peck, D. H., & Jung, D. H. (2019). Preparation of activated carbon from needle coke via two-stage steam activation process. Materials Letters, 237, 22-25. https://doi.org/https://doi.org/10.1016/j.matlet.2018.09.171

  • Ioannidou, O., & Zabaniotou, A. Ã. (2007). Agricultural residues as precursors for activated carbon production - A review. Renewable and Sustainable Energy Reviews, 11, 1966-2005. https://doi.org/10.1016/j.rser.2006.03.013

  • Jiang, L., Yan, J., Hao, L., Xue, R., Sun, G., & Yi, B. (2013). High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon, 56, 146-154. https://doi.org/10.1016/j.carbon.2012.12.085

  • Kim, H., Cho, J., Jang, S. Y., & Song, Y. W. (2011). Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers. Applied Physics Letters, 98(2), Article 21104. https://doi.org/10.1063/1.3536502

  • Lei, E., Li, W., Ma, C., Xu, Z., & Liu, S. (2018). CO2-activated porous self-templated N-doped carbon aerogel derived from banana for high-performance supercapacitors. Applied Surface Science, 457, 477-486. https://doi.org/https://doi.org/10.1016/j.apsusc.2018.07.001

  • Li, Z., Xu, Z., Tan, X., Wang, H., Holt, C. M. B., Stephenson, T., Olsen, B. C., & Mitlin, D. (2013). Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy & Environmental Science, 6(3), 871-878. https://doi.org/10.1039/C2EE23599D

  • Liu, P., Yan, J., Guang, Z., Huang, Y., Li, X., & Huang, W. (2019). Recent advancements of polyaniline-based nanocomposites for supercapacitors. Journal of Power Sources, 424, 108-130. https://doi.org/10.1016/j.jpowsour.2019.03.094

  • Lu, W., Cao, X., Hao, L., Zhou, Y., & Wang, Y. (2020). Activated carbon derived from pitaya peel for supercapacitor applications with high capacitance performance. Materials Letters, 264, Article 127339. https://doi.org/10.1016/j.matlet.2020.127339

  • Luo, X., Chen, Y., & Mo, Y. (2021). A review of charge storage in porous carbon-based supercapacitors. New Carbon Materials, 36(1), 49-68. https://doi.org/https://doi.org/10.1016/S1872-5805(21)60004-5

  • Lyu, L., Seong, K., Ko, D., Choi, J., Lee, C., Hwang, T., Cho, Y., Jin, X., Zhang, W., Pang, H., & Piao, Y. (2019). Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Materials Chemistry Frontiers, 3(12), 2543-2570. https://doi.org/10.1039/C9QM00348G

  • Ma, M., Ying, H., Cao, F., Wang, Q., & Ai, N. (2020). Adsorption of congo red on mesoporous activated carbon prepared by CO2 physical activation. Chinese Journal of Chemical Engineering, 28(4), 1069-1076. https://doi.org/https://doi.org/10.1016/j.cjche.2020.01.016

  • Mhamane, D., Ramadan, W., Fawzy, M., Rana, A., Dubey, M., Rode, C., Lefez, B., Hannoyer, B., & Ogale, S. (2011). From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation. Green Chemistry, 13(8), 1990-1996. https://doi.org/10.1039/C1GC15393E

  • Misnon, I. I., Zain, N. K. M., Aziz, R. A., Vidyadharan, B., & Jose, R. (2015). Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochimica Acta, 174(1), 78-86. https://doi.org/10.1016/j.electacta.2015.05.163

  • Moralı, U., Demiral, H., & Şensöz, S. (2018). Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance. Journal of Cleaner Production, 189, 602-611. https://doi.org/10.1016/j.jclepro.2018.04.084

  • Musa, M. S., Sanagi, M. M., Nur, H., & Ibrahim, W. A. W. (2015). Understanding pore formation and structural deformation in carbon spheres during KOH activation. Sains Malaysiana, 44, 613-618. https://doi.org/10.17576/jsm-2015-4404-17

  • Namisnyk, A., & Zhu, J. (2003). A survey of electrochemical super-capacitor technology. In Australian Universities Power Engineering Conference (pp. 1-6). University of Canterbury.

  • Nor, N. M., Lau, L. C., Lee, K. T., & Mohamed, A. R. (2013). Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - A review. Journal of Environmental Chemical Engineering, 1(4), 658-666. https://doi.org/10.1016/j.jece.2013.09.017

  • Pang, P., Yan, F., Chen, M., Li, H., Zhang, Y., Wang, H., Wu, Z., & Yang, W. (2016). Promising biomass-derived activated carbon and gold nanoparticle nanocomposites as a novel electrode material for electrochemical detection of rutin. RSC Advances, 6(93), 90446-90454. https://doi.org/10.1039/C6RA16804C

  • Peng, C., Yan, X. B., Wang, R. T., Lang, J. W., Ou, Y. J., & Xue, Q. J. (2013). Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochimica Acta, 87, 401-408. https://doi.org/10.1016/j.electacta.2012.09.082

  • Purkait, T., Singh, G., Singh, M., Kumar, D., & Dey, R. S. (2017). Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Scientific Reports, 7, Article 15239. https://doi.org/10.1038/s41598-017-15463-w

  • Qin, L. (2019). Porous carbon derived from pine nut shell prepared by steam activation for supercapacitor electrode material. International Journal of Electrochemical Science, 14, 8907-8918. https://doi.org/10.20964/2019.09.20

  • Raju, K., & Ozoemena, K. I. (2015). Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors. Scientific Reports, 5, Article 17629. https://doi.org/10.1038/srep17629

  • Rawal, S., Joshi, B., & Kumar, Y. (2018). Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors. Journal of Energy Storage, 20(October), 418-426. https://doi.org/10.1016/j.est.2018.10.009

  • Rombaldo, C. F. S., & Lisboa, A. C. L. (2014). Brazilian natural fiber (jute) as raw material for activated carbon production. Anais da Academia Brasileira de Ciências, 86, 2137-2144.

  • Saini, S., Chand, P., & Joshi, A. (2021). Biomass derived carbon for supercapacitor applications: Review. Journal of Energy Storage, 39, Article 102646. https://doi.org/https://doi.org/10.1016/j.est.2021.102646

  • Samantray, R., & Mishra, S. C. (2019). Saccharum spontaneum, a precursor of sustainable activated carbon: Synthesis, characterization and optimization of process parameters and its suitability for supercapacitor applications. Diamond and Related Materials, 101, Article 107598. https://doi.org/10.1016/j.diamond.2019.107598

  • Sayyed, S. G., Mahadik, M. A., Shaikh, A. V., Jang, J. S., & Pathan, H. M. (2019). Nano-metal oxide based supercapacitor via electrochemical deposition . ES Energy & Environment, 3, 25-44. https://doi.org/10.30919/esee8c211

  • Shimodaira, N., & Masui, A. (2002). Raman spectroscopic investigations of activated carbon materials. Journal of Applied Physics, 92(2), 902-909. https://doi.org/10.1063/1.1487434

  • Shinde, P. A., & Jun, S. C. (2020). Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage. ChemSusChem, 13(1), 11-38. https://doi.org/https://doi.org/10.1002/cssc.201902071

  • Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7(11), 845-854. https://doi.org/10.1038/nmat2297

  • Subramanian, V., Luo, C., Stephan, A. M., Nahm, K. S., Thomas, S., & Wei, B. (2007). Supercapacitors from activated carbon derived from banana fibers. Journal of Physical Chemistry C, 111(20), 7527-7531. https://doi.org/10.1021/jp067009t

  • Sun, Q. (2019). Porous carbon material based on biomass prepared by MgO template method and ZnCl2 activation method as electrode for high performance supercapacitor. International Journal of Electrochemical Science, 14, 1-14. https://doi.org/10.20964/2019.01.50

  • Tan, Y. B., & Lee, J. M. (2013). Graphene for supercapacitor applications. Journal of Materials Chemistry A, 1(47), 14814-14843. https://doi.org/10.1039/C3TA12193C

  • Teo, E. Y. L., Muniandy, L., Ng, E. P., Adam, F., Mohamed, A. R., Jose, R., & Chong, K. F. (2016). High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta, 192, 110-119. https://doi.org/10.1016/j.electacta.2016.01.140

  • Thulasi, K. M., Manikkoth, S. T., Paravannoor, A., Palantavida, S., Bhagiyalakshmi, M., & Vijayan, B. K. (2019). Ceria deposited titania nanotubes for high performance supercapacitors. Journal of Physics and Chemistry of Solids, 135, Article 109111. https://doi.org/10.1016/j.jpcs.2019.109111

  • Tobi, A. R., Dennis, J. O., Zaid, H. M., Adekoya, A. A., Yar, A., & Fahad, U. (2019). Comparative analysis of physiochemical properties of physically activated carbon from palm bio-waste. Journal of Materials Research and Technology, 8(5), 3688-3695. https://doi.org/10.1016/j.jmrt.2019.06.015

  • Tounsadi, H., Khalidi, A., Farnane, M., Abdennouri, M., & Barka, N. (2016). Experimental design for the optimization of preparation conditions of highly efficient activated carbon from Glebionis coronaria L. and heavy metals removal ability. Process Safety and Environmental Protection, 102, 710-723. https://doi.org/https://doi.org/10.1016/j.psep.2016.05.017

  • Tsang, C. H. A., Huang, H., Xuan, J., Wang, H., & Leung, D. Y. C. (2020). Graphene materials in green energy applications: Recent development and future perspective. Renewable and Sustainable Energy Reviews, 120, Article 109656. https://doi.org/https://doi.org/10.1016/j.rser.2019.109656

  • Wei, H., Wang, H., Li, A., Li, H., Cui, D., Dong, M., Lin, J., Fan, J., Zhang, J., Hou, H., Shi, Y., Zhou, D., & Guo, Z. (2019). Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors. Journal of Alloys and Compounds, 820, Article 153111. https://doi.org/10.1016/j.jallcom.2019.153111

  • Wu, F., Gao, J., Zhai, X., Xie, M., Sun, Y., Kang, H., Tian, Q., & Qiu, H. (2019). Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors. Carbon, 147, 242-251. https://doi.org/10.1016/j.carbon.2019.02.072

  • Wu, M. B., Li, R. C., He, X. J., Zhang, H. B., Sui, W. B., & Tan, M. H. (2015). Microwave-assisted preparation of peanut shell-based activated carbons and their use in electrochemical capacitors. Xinxing Tan Cailiao/New Carbon Materials, 30(1), 86-91. https://doi.org/10.1016/S1872-5805(15)60178-0

  • Xiong, G., Meng, C., Reifenberger, R. G., Irazoqui, P. P., & Fisher, T. S. (2014). A review of graphene-based electrochemical microsupercapacitors. Electroanalysis, 26(1), 30-51. https://doi.org/10.1002/elan.201300238

  • Xu, J., Gao, Q., Zhang, Y., Tan, Y., Tian, W., Zhu, L., & Jiang, L. (2014). Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor. Scientific Reports, 4, Article 5545. https://doi.org/10.1038/srep05545

  • Yakout, S. M., & Sharaf El-Deen, G. (2016). Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian Journal of Chemistry, 9, S1155-S1162. https://doi.org/https://doi.org/10.1016/j.arabjc.2011.12.002

  • Yao, F., Pham, D. T., & Lee, Y. H. (2015). Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices. ChemSusChem, 8(14), 2284-2311. https://doi.org/https://doi.org/10.1002/cssc.201403490

  • Yar, A., Dennis, J. O., Saheed, M. S. M., Mohamed, N. M., Irshad, M. I., Mumtaz, A., & Jose, R. (2020). Physical reduction of graphene oxide for supercapacitive charge storage. Journal of Alloys and Compounds, 822, Article 153636. https://doi.org/https://doi.org/10.1016/j.jallcom.2019.153636

  • Yu, L. J., Rengasamy, K., Lim, K. Y., Tan, L. S., Tarawneh, M., Zulkoffli, Z. B., & Yong, E. N. S. (2019). Comparison of activated carbon and zeolites’ filtering efficiency in freshwater. Journal of Environmental Chemical Engineering, 7(4), Article 103223. https://doi.org/10.1016/j.jece.2019.103223

  • Zequine, C., Ranaweera, C. K., Wang, Z., Dvornic, P. R., Kahol, P. K., Singh, S., Tripathi, P., Srivastava, O. N., Singh, S., Gupta, B. K., Gupta, G., & Gupta, R. K. (2017). High-performance flexible supercapacitors obtained via recycled jute: Bio-waste to energy storage approach. Scientific Reports, 7(1), 1-12. https://doi.org/10.1038/s41598-017-01319-w

  • Zhang, Y., Song, X., Xu, Y., Shen, H., Kong, X., & Xu, H. (2019). Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. Journal of Cleaner Production, 210, 366-375. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.11.041

  • Zhang, Z. P., Rong, M. Z., Zhang, M. Q., & Yuan, C. (2013). Alkoxyamine with reduced homolysis temperature and its application in repeated autonomous self-healing of stiff polymers. Polymer Chemistry, 4(17), 4648-4654. https://doi.org/10.1039/C3PY00679D

  • Zhu, Z., Liu, Y., Ju, Z., Luo, J., Sheng, O., Nai, J., Liu, T., Zhou, Y., Wang, Y., & Tao, X. (2019). Synthesis of diverse green carbon nanomaterials through fully utilizing biomass carbon source assisted by KOH. ACS Applied Materials & Interfaces, 11(27), 24205-24211. https://doi.org/10.1021/acsami.9b08420

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles