Home / Regular Issue / JTAS Vol. 31 (5) Aug. 2023 / JST-3919-2022

 

Reactivity Enhancement of Lignin Extracted from Preconditioning Refiner Chemical-Recycle Bleached Mechanized Pulp (PRC-RBMP) Black Liquor by Phenolation

Lim Kah Yen, Tengku Arisyah Tengku Yasim-Anuar, Farhana Aziz Ujang, Hazwani Husin, Hidayah Ariffin, Paridah Md Tahir, Li Xin Ping and Mohd Termizi Yusof

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 5, August 2023

DOI: https://doi.org/10.47836/pjst.31.5.28

Keywords: Adhesive, black liquor, lignin, modification, phenolation, phenol-formaldehyde resin, pulp and paper, sustainability

Published on: 31 July 2023

Despite black liquor’s (BL) renown as a difficult-to-manage contaminant in the pulp and paper industry, BL has been found as a viable alternative material for adhesive formulation due to its high lignin content. Nevertheless, modification is required to enhance lignin’s reactivity, and there is currently a lack of study focusing on this aspect for BL-lignin. This study aims to increase the phenolic hydroxyl content of BL-lignin by phenolation. After being phenolated at lignin to phenol ratio of 1:1, at a temperature of 100°C for 110 minutes, and with the addition of 8% sulfuric acid (H2SO4) as a catalyst, the phenolic hydroxyl content improved by 51.5%. The results of Fourier transform infrared spectroscopy (FTIR), UV/Vis spectrophotometry, proton nuclear magnetic resonance (1H-NMR), thermogravimetry-differential scanning calorimetry (TG-DSC), and its differential curve showed that the structural change in phenolated lignin opened up more active sites, implying that this lignin could be a good substitute for phenol in phenol-formaldehyde resin manufacturing.

  • Abdelwahab, N. A., & Nassar, M. A. (2011). Preparation , optimisation and characterisation of lignin phenol formaldehyde resin as wood adhesive. Pigment & Resin Technology, 40(3), 169-174. https://doi.org/10.1108/03699421111130432

  • Ahmadzadeh, A., Zakaria, S., & Rashid, R. (2009). Liquefaction of oil palm empty fruit bunch (EFB) into phenol and characterization of phenolated EFB resin. Industrial Crops and Products, 30(1), 54-58. https://doi.org/10.1016/j.indcrop.2009.01.005

  • Alonso, M. V., Oliet, M., Rodriguez, F., Gilarranz, M. A., & Rodriguez, J. J. (2005). Modification of ammonium lignosulfonate by phenolation for use in phenolic resins. Bioresource Technology, 96(9), 1013-1018. https://doi.org/10.1016/j.biortech.2004.09.009

  • Chung, H., & Washburn, N. R. (2012). Improved lignin polyurethane properties with lewis acid treatment. American Chemical Society Applied Materials & Interfaces, 4, 2840-2846. https://doi.org/10.1021/am300425x

  • Funaoka, M., Matsubara, M., Seki, N., & Fukatsu, S. (1995). Conversion of native lignin to a highly phenolic functional polymer and its separation from lignocellulosics. Biotechnology and Bioengineering, 46, 545-552. https://doi.org/10.1002/bit.260460607

  • Gan, L., & Pan, X. (2019). Phenol-Enhanced Depolymerization and Activation of Kraft Lignin in Alkaline Medium. Industrial & Engineering Chemistry Research, 58(19), 7794-7800. https://doi.org/10.1021/acs.iecr.9b01147

  • Gao, C., Li, M., Zhu, C., Hu, Y., Shen, T., Li, M., Ji, X., Lyu, G., & Zhuang, W. (2021). One-pot depolymerization, demethylation and phenolation of lignin catalyzed by HBr under microwave irradiation for phenolic foam preparation. Composites Part B: Engineering, 205, Article 108530. https://doi.org/10.1016/j.compositesb.2020.108530

  • Garrigues, S. (2019). Paints | organic solvent-based. In P. Worsfold, C. Poole, A. Townshend, & M. Miró (Eds.), Encyclopedia of Analytical Science (3rd ed.) (pp. 110-120). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14227-1

  • Gerassimidou, S., Velis, C. A., Williams, P. T., & Komilis, D. (2020). Characterisation and composition identification of waste-derived fuels obtained from municipal solid waste using thermogravimetry: A review. Waste Management and Research, 38(9), 942-965. https://doi.org/10.1177/0734242X20941085

  • Ghaffar, S. H., & Fan, M. (2013). Structural analysis for lignin characteristics in biomass straw. Biomass and Bioenergy, 57, 264-279. https://doi.org/10.1016/j.biombioe.2013.07.015

  • Ház, A., Jablonský, M., Šurina, I., Kačík, F., Bubeníková, T., & Ďurkovič, J. (2019). Chemical composition and thermal behavior of kraft lignins. Forests, 10(6), Article 483. https://doi.org/10.3390/F10060483

  • Hidayati, S., Satyajaya, W., & Fudholi, A. (2020). Lignin isolation from black liquor from oil palm empty fruit bunch using acid. Journal of Materials Research and Technology, 9(5), 11382-11391. https://doi.org/10.1016/j.jmrt.2020.08.023

  • Hu, L., Pan, H., Zhou, Y., & Zhang, M. (2011). Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review. BioResources, 6(3), 3515-3525. https://doi.org/10.15376/biores.6.3.3515-3525

  • Hussin, M. H., Aziz, A. A., Iqbal, A., Ibrahim, M. N. M., & Latif, N. H. A. (2019). Development and characterization novel bio-adhesive for wood using kenaf core (Hibiscus cannabinus) lignin and glyoxal. International Journal of Biological Macromolecules, 122, 713-722. https://doi.org/10.1016/j.ijbiomac.2018.11.009

  • Hussin, M. H., Samad, N. A., Latif, N. H. A., Rozuli, N. A., Yusoff, S. B., Gambier, F., & Brosse, N. (2018). Production of oil palm (Elaeis guineensis) fronds lignin-derived non-toxic aldehyde for eco-friendly wood adhesive. International Journal of Biological Macromolecules, 113, 1266-1272. https://doi.org/10.1016/j.ijbiomac.2018.03.048

  • Ibrahim, M. N. M., Zakaria, N., Sipaut, C. S., Sulaiman, O., & Hashim, R. (2011). Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydrate Polymers, 86(1), 112-119. https://doi.org/10.1016/j.carbpol.2011.04.018

  • Ibrahim, V., Mamo, G., Gustafsson, P. J., & Hatti-Kaul, R. (2013). Production and properties of adhesives formulated from laccase modified Kraft lignin. Industrial Crops and Products, 45, 343-348. https://doi.org/10.1016/j.indcrop.2012.12.051

  • Inwood, J. P.W., Pakzad, L., & Fatehi, P. (2018). Production of sulfur containing kraft lignin products. BioResources, 13(1), 53-70. https://doi.org/10.15376/biores.13.1.53-70

  • Inwood, J. P. W. (2014). Sulfonation of kraft lignin to water soluble value added products [Doctoral thesis, Lakehead University]. Lakehead University. https://knowledgecommons.lakeheadu.ca/bitstream/2453/573/1/InwoodJ2014m-1a.pdf

  • Jiang, X., Liu, J., Du, X., Hu, Z., Chang, H.-M., & Jameel, H. (2018). Phenolation to improve lignin reactivity toward thermosets application. ACS Sustainable Chemistry & Engineering, 6(4), 5504-5512. https://doi.org/10.1021/acssuschemeng.8b00369

  • Jin, Y., Cheng, X., & Zheng, Z. (2010). Preparation and characterization of phenol - formaldehyde adhesives modified with enzymatic hydrolysis lignin. Bioresource Technology, 101(6), 2046-2048. https://doi.org/10.1016/j.biortech.2009.09.085

  • Kazzaz, A. E., Feizi, Z. H., & Fatehi, P. (2019). Grafting strategies for hydroxy groups of lignin for producing materials. Green Chemistry, 21, 5714-5752. https://doi.org/10.1039/c9gc02598g

  • Lai, Y., Zhang, Z., Huang, G., & Chi, C. (2007). Determination of the content of phenolic hydroxyl groups in lignin and pulp with fc-method. Transactions of China Pulp and Paper, 22(1), 54-58. https://doi.org/10.3321/j.issn:1000-6842.2007.01.014

  • Laurichesse, S., & Avérous, L. (2014). Chemical modification of lignins: Towards biobased polymers. Progress in Polymer Science, 39(7), 1266-1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

  • Lora, J. H., & Glasser, W. G. (2002). Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment, 10, 39-48. https://doi.org/10.1023/A:1021070006895

  • Luo, B., Jia, Z., Jiang, H., Wang, S., & Min, D. (2020). Improving the reactivity of sugarcane bagasse kraft lignin by a combination of fractionation and phenolation for phenol - formaldehyde adhesive applications. Polymer, 12(8), Article 1825. https://doi.org/10.3390/polym12081825

  • Ma, X., Dai, B., & Yang, X. H. (2007). Recovery of lignin from reed black liquor of paper-making by acidulation method. Technology and Development of Chemical Industry, 36(8), 44-46.

  • Makulski, W., & Jackowski, K. (2020). 1H, 13C and 29Si magnetic shielding in gaseous and liquid tetramethylsilane. Journal of Magnetic Resonance, 313, Article 106716. https://doi.org/10.1016/j.jmr.2020.106716

  • Mansouri, N.-E. E., & Salvadó, J. (2006). Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Industrial Crops and Products, 24(1), 8-16. https://doi.org/10.1016/j.indcrop.2005.10.002

  • Pang, B., Yang, S., Fang, W., Yuan, T.-Q., Argyropoulos, D. S., & Sun, R.-C. (2017). Structure-property relationships for technical lignins for the production of lignin-phenol-formaldehyde resins. Industrial Crops & Products, 108, 316-326. https://doi.org/10.1016/j.indcrop.2017.07.009

  • Podschun, J., Saake, B., & Lehnen, R. (2015). Reactivity enhancement of organosolv lignin by phenolation for improved bio-based thermosets. European Polymer Journal, 67, 1-11. https://doi.org/10.1016/j.eurpolymj.2015.03.029

  • Podschun, J., Stucker, A., Saake, B., & Lehnen, R. (2015). Structure − Function relationships in the phenolation of lignins from different sources. ACS Sustainable Chemistry & Engineering, 3(10), 2526-2532. https://doi.org/10.1021/acssuschemeng.5b00705

  • Pretsch, E., Bühlmann, P., & Badertscher, M. (2020). Structure Determination of Organic Compounds. Springer. https://doi.org/10.1007/978-3-662-62439-5

  • Qiao, W., Li, S., & Xu, F. (2016). Preparation and characterization of a phenol-formaldehyde resin adhesive obtained from bio-ethanol production residue. Polymers and Polymer Composites, 24(2), 99-105. https://doi.org/10.1177/096739111602400203

  • Rashid, T., Kait, C. F., & Murugesan, T. (2016). A “Fourier Transformed Infrared” compound study of lignin recovered from a formic acid process. Procedia Engineering, 148, 1312-1319. https://doi.org/10.1016/j.proeng.2016.06.547

  • Sammons, R. J., Harper, D. P., Labbé, N., Bozell, J. J., Elder, T., & Rials, T. G. (2013). Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis. BioResources, 8(2), 2752-2767.

  • Skulcova, A., Majova, V., Kohutova, M., Grosik, M., Sima, J., & Jablonsky, M. (2017). UV/Vis Spectrometry as a quantification tool for lignin solubilized in deep eutectic solvents. BioResources, 12(3), 6713-6722. https://doi.org/10.15376/biores.12.3.6713-6722

  • Taleb, F., Ammar, M., Mosbah, M. B., Salem, R. B., & Moussaoui, Y. (2020). Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Scientific Reports, 10, Article 11048. https://doi.org/10.1038/s41598-020-68047-6

  • Thébault, M., Kutuzova, L., Jury, S., Eicher, I., Zikulnig-Rusch, E. M., & Kandelbauer, A. (2020). Effect of phenolation, lignin-type and degree of substitution on the properties of lignin-modified phenol-formaldehyde impregnation resins: Molecular weight distribution, wetting behavior, rheological properties and thermal curing profiles. Journal of Renewable Materials, 8(6), 603-630. https://doi.org/10.32604/jrm.2020.09616

  • Wang, M., Sjöholm, E., & Li, J. (2017). Fast and reliable quantification of lignin reactivity via reaction with dimethylamine and formaldehyde (Mannich reaction). Holzforschung, 71(1), 27-34. https://doi.org/10.1515/hf-2016-0054

  • Wang, Y., Liu, W., Zhang, L., & Hou, Q. (2019). Characterization and comparison of lignin derived from corncob residues to better understand its potential applications. International Journal of Biological Macromolecules, 134, 20-27. https://doi.org/10.1016/j.ijbiomac.2019.05.013

  • Yang, C. Y., & Fang, T. J. (2014). Combination of ultrasonic irradiation with ionic liquid pretreatment for enzymatic hydrolysis of rice straw. Bioresource Technology, 164, 198-202. https://doi.org/10.1016/j.biortech.2014.05.004

  • Yang, S., Wen, J. L., Yuan, T. Q., & Sun, R. C. (2014). Characterization and phenolation of biorefinery technical lignins for lignin-phenol-formaldehyde resin adhesive synthesis. RSC Advances, 4(101), 57996-58004. https://doi.org/10.1039/c4ra09595b

  • Zhang, F., Jiang, X., Lin, J., Zhao, G., Chang, H.-M, & Jameel, H. (2019). Reactivity improvement by phenolation of wheat straw lignin isolated from a biorefinery process. New Journal of Chemistry, 43, 2238-2246. https://doi.org/10.1039/c8nj05016c

  • Zhang, H.-N., Ren, H., & Zhai, H.-M. (2021). Analysis of phenolation potential of spruce kraft lignin and construction of its molecular structure model. Industrial Crops & Products, 167, Article 113506. https://doi.org/10.1016/j.indcrop.2021.113506

  • Zhang, H., Chen, T., Li, Y., Han, Y., Sun, Y., & Sun, G. (2020). Novel lignin-containing high-performance adhesive for extreme environment. International Journal of Biological Macromolecules, 164, 1832-1839. https://doi.org/10.1016/j.ijbiomac.2020.07.307

  • Zhang, Y., Li, N., Chen, Z., Ding, C., Zheng, Q., Xu, J., & Meng, Q. (2020). Synthesis of high-water-resistance lignin-phenol resin adhesive with furfural as a crosslinking agent. Polymers, 12(12), Article 2805. https://doi.org/10.3390/polym12122805

  • Zhang, Y., & Lei, Z.-F. (2010). Study on antioxidant activity of lignin from pulping black liquor. Journal of Fudan University (Natural Science), 49(1), 60-65.

  • Zhen, X., Li, H., Xu, Z., Wang, Q., Zhu, S., Wang, Z., & Yuan, Z. (2021). Facile synthesis of lignin-based epoxy resins with excellent thermal-mechanical performance. International Journal of Biological Macromolecules, 182, 276-285. https://doi.org/10.1016/j.ijbiomac.2021.03.203

  • Zhu, W. (2013). Equilibrium of Lignin Precipitation: The Effects of pH, Temperature, Ion Strength and Wood Origins [Licentiate Thesis]. Chalmers University of Technology, Sweden. https://publications.lib.chalmers.se/records/fulltext/186940/186940.pdf

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST-3919-2022

Download Full Article PDF

Share this article

Related Articles