Home / Regular Issue / JTAS Vol. 31 (5) Aug. 2023 / JST-3926-2022

 

Effects of UV Irradation on Electrospun PLLA and PAN in the Production of Short Electropun Fibres Using Ultrasonication Method

Marini Sawawi, Cheryl Rinnai Raja, Shirley Jonathan Tanjung, Sinin Hamdan, Siti Kudnie Sahari, Rohana Sapawi, Ervina Junaidi, Mahshuri Yusof and Noor Hisyam Noor Mohamed

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 5, August 2023

DOI: https://doi.org/10.47836/pjst.31.5.21

Keywords: Electrospun fibres, short fibres, ultrasonication

Published on: 31 July 2023

This work showed that exposure of ductile electrospun polymers, namely poly-L-Lactide acid (PLLA) and polyacrylonitrile (PAN) to UV-Ozone, leads to the embrittlement of fibres. Young’s modulus for PLLA and PAN increased by 39% and 78%, respectively. Meanwhile, the ductility was reduced by 23% for PLLA and 40% for PAN. The SEM images show that the UV irradiation resulted in a surface pitted of PLLA and no changes in PAN surface morphology. The ATR-FTIR results indicate that this treatment did not change the chemical structure of the electrospun PLLA and PAN fibres. The as-spun polymers that failed to be scission directly using ultrasonication can now be fragmented into micron-length short fibres after the UV irradiation treatment. The minimum time to produce the short fibres is 18 mins for PAN and 29 mins for PLLA. It indicates ultrasonication is suitable for producing short electrospun fibres, even for ductile materials.

  • Bazilevsky, A. V., Yarin, A. L., & Megaridis, C. M. (2007). Co-electrospinning of core-shell fibers using a single-nozzle technique. Langmuir, 23(5), 2311-2314. https://doi.org/10.1021/la063194q

  • Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnol Advances, 28(3), 325-347. https://doi.org/10.1016/j.biotechadv.2010.01.004

  • Deniz, A. E., Celebioglu, A., Kayaci, F., & Uyar, T. (2011). Electrospun polymeric nanofibrous composites containing TiO2 short nanofibers. Materials Chemistry and Physics, 129(3), 701-704. https://doi.org/10.1016/j.matchemphys.2011.06.018

  • Guillet, J. (1972). Fundamental processes in the UV degradation and stabilization of polymers. Chemical Transformations of Polymers, 135-144. Butterworth-Heinemann. https://doi.org/10.1016/B978-0-408-70310-9.50012-5

  • He, J. H., Liu, Y., Mo, L. F., Wan, Y. Q., & Xu, L. (2008). Electrospun nanofibers and their applications. iSmithers.

  • Hennrich, F., Krupke, R., Arnold, K., Stutz, J. A. R., Lebedkin, S., Koch, T., Schimmel, T., & Kappes, M. M. (2007). The mechanism of cavitation-induced scission of single-walled carbon nanotubes. The Journal of Physical Chemistry B, 111(8), 1932-1937. https://doi.org/10.1021/jp065262n

  • Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7

  • Kim, J. S., & Reneker, D. H. (1999). Mechanical properties of composites using ultrafine electrospun fibers. Polymer Composites, 20(1), 124-131. https://doi.org/10.1002/pc.10340

  • Kriha, O., Becker, M., Lehmann, M., Kriha, D., Krieglstein, J., Yosef, M., Schlecht, S., Wehrspohn, R. B., Wendorff, J. H., & Greiner, A. (2007). Connection of hippocampal neurons by magnetically controlled movement of short electrospun polymer fibers - A route to magnetic micromanipulators. Advanced Materials, 19(18), 2483-2485. https://doi.org/10.1002/adma.200601937

  • Li, Y., Yin, X., Yu, J., & Ding, B. (2019). Electrospun nanofibers for high-performance air filtration. Composites Communications, 15, 6-19. https://doi.org/10.1016/j.coco.2019.06.003

  • Mark, S. S., Stolper, S. I., Baratti, C., Park, J. Y., Taku, M. A., Santiago-Aviles, J. J., & Kricka, L. J. (2008). Bioconjugation of alkaline phosphatase to mechanically processed, aqueous suspendible electrospun polymer nanofibers for use in chemiluminescent detection assays. Macromolecular Bioscience, 8(6), 484-498. https://doi.org/10.1002/mabi.200800016

  • Nakielski, P., Rinoldi, C., Pruchniewski, M., Pawlowska, S., Gazinska, M., Strojny, B., Rybak, D., Jezierska-Woźniak, K., urbanek, O., Denis, P., Sinderewicz, E., Czelejewska, W., Staszkiewicz-Chodor,J., Grodzik, M., Ziai, Y., Barczewska, M., Maksymowicz, W., & Pierini, F. (2022). Laser-assisted fabrication of injectable nanofibrous cell carriers. Small, 18(2), Article e2104971. https://doi.org/10.1002/smll.202104971

  • Niemczyk-Soczynska, B., Dulnik, J., Jeznach, O., Kolbuk, D., & Sajkiewicz, P. (2021). Shortening of electrospun PLLA fibers by ultrasonication. Micron, 145, Article 103066. https://doi.org/10.1016/j.micron.2021.103066

  • Ramakrishna, S., Fujihara, K., Teo, W. E., Lim, T. K., & Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers. World Scientific Publishing. https://doi.org/10.1142/5894

  • Rennhofer, H., & Zanghellini, B. (2021). Dispersion state and damage of carbon nanotubes and carbon nanofibers by ultrasonic dispersion: A review. Nanomaterials, 11(6), Article 1469. https://doi.org/10.3390/nano11061469

  • Sakai, W., & Tsutsumi, N. (2010). Photodegradation and radiation degradation. In R. A. Auras, L. T. Lim, S. E. M. Selke & H. Tsuji (Eds.), Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, Applications, and End of Life (pp. 413-421). John Wiley & Sons. https://doi.org/10.1002/9781119767480.ch19

  • Sancaktar, E., & Aussawasathien, D. (2009). Nanocomposites of epoxy with electrospun carbon nanofibers: Mechanical behavior. The Journal of Adhesion, 85(4-5), 160-179. https://doi.org/10.1080/00218460902881758

  • Sawawi, M., Wang, T. Y., Nisbet, D. R., & Simon, G. P. (2013). Scission of electrospun polymer fibres by ultrasonication. Polymer, 54(16), 4237-4252. https://doi.org/10.1016/j.polymer.2013.05.060

  • Stoiljkovic, A., & Agarwal, S. (2008). Short electrospun fibers by UV cutting method. Macromolecular Materials and Engineering, 293(11), 895-899. https://doi.org/10.1002/mame.200800171

  • Stowe, B. S., Fornes, R. E., & Gilbert, R. D. (1974). UV degradation of Nylon 66. Polymer-Plastics Technology and Engineering, 3(2), 159-197. https://doi.org/10.1080/03602557408545026

  • Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H., & Greiner, A. (2003). Compound core–shell polymer nanofibers by co-electrospinning. Advanced Materials, 15(22), 1929-1932. https://doi.org/10.1002/adma.200305136

  • Suslick, K. S. (Ed.) (1988). Ultrasound: Its Chemical, Physical and Biological Effects. VCH Publishers.

  • Verreck, G., Chun, I., Peeters, J., Rosenblatt, J., & Brewster, M. E. (2003). Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharmaceutical Research, 20(5), 810-817. https://doi.org/10.1023/a:1023450006281

  • Watmough, D. J. (1994). Role of ultrasonic cleaning in control of cross-infection in dentistry. Ultrasonics, 32(4), 315-317. https://doi.org/10.1016/0041-624x(94)90012-4

  • Yixiang, D., Yong, T., Liao, S., Chan, C. K., & Ramakrishna, S. (2008). Degradation of electrospun nanofiber scaffold by short wavelength ultraviolet radiation treatment and its potential applications in tissue engineering. Tissue Eng Part A, 14(8), 1321-1329. https://doi.org/10.1089/ten.tea.2007.0395

  • Zakrzewska, A., Bayan, M. A. H., Nakielski, P., Petronella, F., De Sio, L., & Pierini, F. (2022). Nanotechnology transition roadmap toward multifunctional stimuli-responsive face masks. ACS Appl Mater Interfaces, 14(41), 46123-46144. https://doi.org/10.1021/acsami.2c10335