e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Adman, E. T., & Jensen, L. H. (1981). Structural features of Azurin at 2.7 angstroms resolution. Israel Journal of Chemistry, 21(1), 8-12. https://doi.org/10.1002/ijch.198100003
Arumugam, S., Chwastek, G., & Schwille, P. (2011). Protein–membrane interactions: The virtue of minimal systems in systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3(3), 269-280. https://doi.org/10.1002/wsbm.119
Beveridge, D. L., & DiCapua, F. M. (1989). Free energy via molecular simulation: Applications to chemical and biomolecular systems. Annual Review of Biophysics and Biophysical Chemistry, 18(1), 431-492. https://doi.org/10.1146/annurev.bb.18.060189.002243
Frauenfelder, H., Chena, G., Berendzena, J., Fenimorea, P. W., Janssonb, H., McMahona, B. H., Stroec, I. R., Swensond, J., & Younge, R. D. (2009). A unified model of protein dynamics. Proceedings of the National Academy of Sciences, 106(13), 5129-5134. https://doi.org/10.1073/pnas.0900336106
Gumbart, J., & Roux B. (2012). Determination of membrane-insertion free energies by molecular dynamics simulations. Biophysical Journal, 102(4), 795-801. https://doi.org/10.1016/j.bpj.2012.01.021
Gumbart J., Chipot C., & Schultena K. (2011). Free-energy cost for translocon-assisted insertion of membrane proteins. Proceedings of the National Academy of Sciences, 108(9), 3596-3601. https://doi.org/10.1073/pnas.1012758108
Gurtovenko, A. A., & Anwar, J. (2009). Interaction of ethanol with biological membranes: The formation of non- bilayer structures within the membrane interior and their significance. Journal of Physical Chemistry B, 2009, 113(7), 1983-1992. https://doi.org/10.1021/jp808041z
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD-visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5.
Jiang, W., Hodoscek, M., & Roux, B. (2009). Computation of absolute hydration and binding free energy with free energy perturbation distributed replica-exchange molecular dynamics (FEP/REMD). Journal of Chemical Theory and Computation, 5(10), 2583-2588. https://doi.org/10.1021/ct900223z.
Kucerka, N., Tristram-Nagle, S., & Nagle, J. F. (2006). Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. Journal of Membrane Biology, 208(3), 193-202. https://doi: 10.1007/s00232-005-7006-8.
Kurniawan, I., Kawaguchi, K., Sugimori, K., Sakurai, T., & Nagao, H. (2019). Theoretical studies on electronic structure and proteins of type I copper center in copper proteins. Science Report Kanazawa University, 63, 1-13.
Li, Y., & Nam, K. (2020). Repulsive soft-core potentials for efficient alchemical free energy calculations. Journal of Chemical Theory and Computation, 16(8), 4776-4789. https://doi:10.1021/acs.jctc.0c00163.
Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., & De Vries, A. H. (2007). The MARTINI force field: Coarse-grained model for biomolecular simulations. Journal of Physical Chemistry B, 111(27), 7812-7824. https://doi.org/10.1021/jp071097f
Mark, A. E. (1998). Free energy perturbation calculations. In P. V. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer & P. R. Schreiner (Eds.), Encyclopedia of Computational Chemistry (pp.1070-1083). Wiley and Sons.
Pappalardo, M., Milardi, D., Grasso, D. M., & La Rosa, C. (2003). Free energy perturbation and molecular dynamics calculations of copper binding to Azurin. Journal of Computational Chemistry, 24(6), 779-785. https://doi.org/10.1002/jcc.10213
Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Henin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A. Luthey-Schulten, Z., … & Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. Journal of Chemical Physics, 153(4), Article 044130. https://doi.org/10.1063/5.0014475
Pohorille, A., Jarzynski, C., & Chipot, C. (2010). Good practices in free-energy calculations. Journal of Physical Chemistry B, 114(32), 10235-10253. https://doi.org/10.1021/jp102971x.
Pozdnyakova, I., Guidry, J., & Wittung-Stafshede, P. (2002). Studies of pseudomonas aeruginosa Azurin mutants: Cavities in β-barrel do not affect refolding speed. Biophysical Journal, 82(5), 2645-2651. https://doi.org/10.1016/S0006-3495(02)75606-3
Pozdnyakova, I., & Wittung-Stafshede, P. (2001). Copper binding before polypeptide folding speeds up the formation of active (holo) Pseudomonas aeruginosa Azurin. Biochemistry, 40(45), 13728-13733. https://doi.org/10.1021/bi011591o
Zhu, F., Bourguet, F. A., Bennett, W. F. D., Lau, E. Y., Arrildt, K. T., Segelke, B. W., Zemla, A. T., Desautels, T. A., & Faissol, D. M. (2022). Large scale application of free energy perturbation calculations for antibody design. Scientific Reports, 12, Article 12489, https://doi.org/10.1038/s41598-022-14443-z
ISSN 1511-3701
e-ISSN 2231-8542