PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abbasi, M. J., & Yaghobi, H. (2017). A new combined method to diagnosis loss of excitation from stable power swing in doubly fed induction generator. Journal of Modeling in Engineering, 15(51), 159-169. https://doi.org/10.22075/jme.2017.2684

  • Abdin, E. S., & Xu, W. (2000). Control design and dynamic performance analysis of a wind turbine-induction generator unit. IEEE Transactions on Energy Conversion, 15(1), 91-96. https://doi.org/10.1109/60.849122

  • Ahmed, S. D., Al-Ismail, F. S. M., Shafiullah, M., Al-Sulaiman, F. A., & El-Amin, I. M. (2020). Grid integration challenges of wind energy: A review. IEEE Access, 8, 10857-10878. https://doi.org/10.1109/ACCESS.2020.2964896

  • Alsyoufi, Y. R., & Hajjar, A. A. (2019). A high-speed algorithm to discriminate between power swing and faults in distance relays based on a fast wavelet. Electric Power Systems Research, 172, 269-276. https://doi.org/10.1016/j.epsr.2019.03.021

  • Arumuga, M., & Reddy, M. J. B. (2022). Distance protection methodology for detection of faulted phase and fault along with power swing using apparent impedance. IEEE Access, 10, 43583-43597. https://doi.org/10.1109/ACCESS.2022.3168563

  • Bakar, A. H. A., Yatim, F. M., Yusof, S., & Othman, M. R. (2010). Analysis of overload conditions in distance relay under severe system contingencies. International Journal of Electrical Power & Energy Systems, 32(5), 345-350. https://doi.org/10.1016/j.ijepes.2009.11.023

  • Benjamin, A., & Jain, S. K. (2018). A review of literature on effects of harmonics on protective relays. In 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia) (pp. 407-412). IEEE Publishing. https://doi.org/10.1109/ISGT-Asia.2018.8467876

  • Bowen, Z., Qiyu, C., & Dongsheng, Y. (2018). On the power system large-scale blackout in Brazil. Power Generation Technology, 39(2), 97-105. https://doi.org/10.12096/j.2096-4528.pgt.2018.016

  • Brahma, S. M. (2007). Distance relay with out-of-step blocking function using wavelet transform. IEEE Transactions on Power Delivery, 22(3), 1360-1366. https://doi.org/10.1109/TPWRD.2006.886773

  • Buraimoh, E., & Davidson, I. E. (2020). Overview of fault ride-through requirements for photovoltaic grid integration, design and grid code compliance. In 2020 9th International Conference on Renewable Energy Research and Application (ICRERA) (pp. 332-336). IEEE Publishing. https://doi.org/10.1109/ICRERA49962.2020.9242914

  • Cabrera-Tobar, A., Bullich-Massagué, E., Aragüés-Peñalba, M., & Gomis-Bellmunt, O. (2019). Active and reactive power control of a PV generator for grid code compliance. Energies, 12(20), Article 3872. https://doi.org/10.3390/en12203872

  • Camarillo-Peñaranda, J. R., Celeita, D., Gutierrez, M., Toro, M., & Ramos, G. (2020). An approach for out-of-step protection based on swing center voltage estimation and analytic geometry parameters. IEEE Transactions on Industry Applications, 56(3), 2402-2408. https://doi.org/10.1109/TIA.2020.2973590

  • Choudhury, S. (2020). A comprehensive review on issues, investigations, control and protection trends, technical challenges and future directions for Microgrid technology. International Transactions on Electrical Energy Systems, 30(9), Article e12446. https://doi.org/10.1002/2050-7038.12446

  • Chowdhury, M. A., Hosseinzadeh, N., Shen, W. X., & Pota, H. R. (2013). Comparative study on fault responses of synchronous generators and wind turbine generators using transient stability index based on transient energy function. International Journal of Electrical Power & Energy Systems, 51, 145-152. https://doi.org/10.1016/j.ijepes.2013.02.025

  • Chung, P. D. (2013). Comparison of steady-state characteristics between DFIG and SCIG in wind turbine. International Journal of Advanced Science and Technology, 51, 135-146.

  • Corsi, S., & Sabelli, C. (2004). General blackout in Italy sunday september 28, 2003, h. 03: 28: 00. In IEEE Power Engineering Society General Meeting, 2004 (pp. 1691-1702). IEEE Publishing. https://doi.org/10.1109/PES.2004.1373162

  • Desai, J., & Makwana, V. (2021). Power swing blocking algorithm based on real and reactive power transient stability. Electric Power Components and Systems, 48(16-17), 1673-1683. https://doi.org/10.1080/15325008.2021.1906794

  • Desai, J. P., & Makwana, V. H. (2022). Modeling and implementation of power swing detection and out-of-step protection. Journal of The Institution of Engineers (India): Series B, 103, 541-548. https://doi.org/10.1007/s40031-021-00679-2

  • Dreidy, M., Mokhlis, H., & Mekhilef, S. (2017). Inertia response and frequency control techniques for renewable energy sources: A review. Renewable and Sustainable Energy Reviews, 69, 144-155. https://doi.org/10.1016/j.rser.2016.11.170

  • Dubey, R., Samantaray, S. R., Panigrahi, B. K., & Venkoparao, V. G. (2016). Data-mining model based adaptive protection scheme to enhance distance relay performance during power swing. International Journal of Electrical Power & Energy Systems, 81, 361-370. https://doi.org/10.1016/j.ijepes.2016.02.014

  • Elliott, R. J. R., Nguyen-Tien, V., & Strobl, E. A. (2021). Power outages and firm performance: A hydro-IV approach for a single electricity grid. Energy Economics, 103, Article 105571. https://doi.org/10.1016/j.eneco.2021.105571

  • Emmanue, O., Othman, M. L., Hizam, H., Othman, M. M., Aker, E., Chidiebere, A. O., & Samuel, T. N. (2019). Hybrid signal processing and machine learning algorithm for adaptive fault classification of wind farm integrated transmission line protection. International Journal of Integrated Engineering, 11(4), 91-100. https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/4562

  • Emmanuel, O., Othman, M. L., Hizam, H., & Othman, M. M. (2020). Single line-to-ground fault special protection scheme for integrated windfarm transmission line using data mining. In 2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES) (pp. 76-81). IEEE Publishing. https://doi.org/10.1109/SPIES48661.2020.9242959

  • Folly, K., & Sheetekela, S. (2009). Impact of fixed and variable speed wind generators on the transient stability of a power system network. In 2009 IEEE/PES Power Systems Conference and Exposition (pp. 1-7). IEEE Publishing. https://doi.org/10.1109/PSCE.2009.4840178

  • Gao, Z. D., & Wang, G. B. (1991). A new power swing block in distance protection based on a microcomputer-principle and performance analysis. In 1991 International Conference on Advances in Power System Control, Operation and Management, APSCOM-91 (Vol. 2, pp. 843-847). IET.

  • Gautam, D., Vittal, V., & Harbour, T. (2009). Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems. IEEE Transactions on Power Systems, 24(3), 1426-1434. https://doi.org/10.1109/TPWRS.2009.2021234

  • Gonzalez-Longatt, F., Adiyabazar, C., & Martinez, E. V. (2021). Setting and testing of the out-of-step protection at mongolian transmission system. Energies, 14(23), Article 8170. https://doi.org/10.3390/en14238170

  • Gunasegaran, M. K., Tan, C., Bakar, A. H. A., Mokhlis, H., & Illias, H. A. (2015). Progress on power swing blocking schemes and the impact of renewable energy on power swing characteristics: A review. Renewable and Sustainable Energy Reviews, 52, 280-288. https://doi.org/10.1016/j.rser.2015.07.066

  • Haddadi, A., Farantatos, E., Kocar, I., & Karaagac, U. (2021). Impact of inverter based resources on system protection. Energies, 14(4), Article 1050. https://doi.org/10.3390/en14041050

  • Haddadi, A., Kocar, I., Karaagac, U., Gras, H., & Farantatos, E. (2019). Impact of wind generation on power swing protection. IEEE Transactions on Power Delivery, 34(3), 1118-1128. https://doi.org/10.1109/TPWRD.2019.2896135

  • Hashemi, S. M., & Sanaye-Pasand, M. (2018). Distance protection during asymmetrical power swings: challenges and solutions. IEEE Transactions on Power Delivery, 33(6), 2736-2745. https://doi.org/10.1109/TPWRD.2018.2816304

  • He, H., Chen, L., Yin, T., Cao, Z., Yang, J., Tu, X., & Ren, L. (2016). Application of a SFCL for fault ride-through capability enhancement of DG in a microgrid system and relay protection coordination. IEEE Transactions on Applied Superconductivity, 26(7), 1-8. https://doi.org/10.1109/TASC.2016.2599898

  • Holbach, J. (2006). New out of step blocking algorithm for detecting fast power swing frequencies. In 2006 Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources (pp. 182-199). IEEE Publishing. https://doi.org/10.1109/PSAMP.2006.285388

  • Jedrzejczak, J., Anders, G. J., Fotuhi-Firuzabad, M., Farzin, H., & Aminifar, F. (2016). Reliability assessment of protective relays in harmonic-polluted power systems. IEEE Transactions on Power Delivery, 32(1), 556-564. https://doi.org/10.1109/TPWRD.2016.2544801

  • Jia, K., Gu, C., Xuan, Z., Li, L., & Lin, Y. (2017). Fault characteristics analysis and line protection design within a large-scale photovoltaic power plant. IEEE Transactions on Smart Grid, 9(5), 4099-4108. https://doi.org/10.1109/TSG.2017.2648879

  • Kang, D., & Gokaraju, R. (2016). A new method for blocking third-zone distance relays during stable power swings. IEEE Transactions on Power Delivery, 31(4), 1836-1843. https://doi.org/10.1109/PESGM.2017.8273837

  • Khadka, N., Paudel, R., Adhikary, B., Bista, A., Sharma, S., & Shrestha, A. (2020). Transient stability in renewable energy penetrated power systems: A review. Proceedings of the RESSD 2020 International Conference on Role of Energy for Sustainable Social Development in ‘New Normal’Era, Kathmandu, Nepal. IEEE PES Nepal Chapter.

  • Khodaparast, J., & Khederzadeh, M. (2014). Three-phase fault detection during power swing by transient monitor. IEEE Transactions on Power Systems, 30(5), 2558-2565. https://doi.org/10.1109/TPWRS.2014.2365511

  • Khoradshadi-Zadeh, H. (2005). Evaluation and performance comparison of power swing detection algorithms. In IEEE Power Engineering Society General Meeting, 2005 (Vol. 2, pp. 1842-1848). https://doi.org/10.1109/PES.2005.1489280

  • Lawan, M. M. G., Raharijaona, J., Camara, M. B., & Dakyo, B. (2017). Power control for decentralized energy production system based on the renewable energies—using battery to compensate the wind/load/PV power fluctuations. In 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 1132-1138). IEEE Publishing. https://doi.org/10.1109/ICRERA.2017.8191230

  • Lazaro, C., Marques, J. P., Marchesan, G., & Cardoso, G. (2018). Waveform asymmetry of instantaneous current signal based symmetrical fault detection during power swing. Electric Power Systems Research, 155, 340-349. https://doi.org/10.1016/j.epsr.2017.11.005

  • Liang, Y., Li, W., & Zha, W. (2020). Adaptive mho characteristic-based distance protection for lines emanating from photovoltaic power plants under unbalanced faults. IEEE Systems Journal, 15(3), 3506-3516. https://doi.org/10.1109/JSYST.2020.3015225

  • Liu, S., Bi, T., & Liu, Y. (2017). Theoretical analysis on the short-circuit current of inverter-interfaced renewable energy generators with fault-ride-through capability. Sustainability, 10(1), Article 44. https://doi.org/10.3390/su10010044

  • Mahamedi, B. (2010). A very fast unblocking scheme for distance protection to detect symmetrical faults during power swings. In 2010 Conference Proceedings IPEC. IEEE Publishing. https://doi.org/10.1109/IPECON.2010.5697162

  • Mararakanye, N., & Bekker, B. (2019). Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics. Renewable and Sustainable Energy Reviews, 108, 441-451. https://doi.org/10.1016/j.rser.2019.03.045

  • Mathe, R., & Folly, K. (2017). Impact of large scale grid-connected wind generators on the power system network. In 2017 IEEE PES PowerAfrica (pp. 328-333). IEEE Publishing. https://doi.org/10.1109/PowerAfrica.2017.7991246

  • Mishra, P., Pradhan, A. K., & Bajpai, P. (2020). Adaptive distance relaying for distribution lines connecting inverter-interfaced solar PV plant. IEEE Transactions on Industrial Electronics, 68(3), 2300-2309. https://doi.org/10.1109/TIE.2020.2975462

  • Mohapatra, S., Mohanty, S. K., & Patel, T. K. (2017). Out-of-step technique based symmetrical fault analysis. In 2017 Innovations in Power and Advanced Computing Technologies (i-PACT) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/IPACT.2017.8244912

  • Mondal, A., Das, S., & Patel, B. (2020). Fault detection during power swing using fast discrete S-transform. In K. Maharatna, M. R. Kanjilal, S. C. Konar, S. Nandi, & K. Das (Eds.), Lecture notes in electrical engineering: Vol. 575. Computational Advancement in Communication Circuits and Systems (pp. 73-79). Springer. https://doi.org/10.1007/978-981-13-8687-9_7

  • Mooney, P. E. J., & Fischer, N. (2006). Application guidelines for power swing detection on transmission systems. In 2006 Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources (pp. 159-168). https://doi.org/10.1109/PSAMP.2006.285385

  • Morais, A. P., Júnior, G. C., Mariotto, L., & Marchesan, G. (2015). A morphological filtering algorithm for fault detection in transmission lines during power swings. Electric Power Systems Research, 122, 10-18. https://doi.org/10.1016/j.epsr.2014.12.009

  • Moustakas, K., Loizidou, M., Rehan, M., & Nizami, A. (2020). A review of recent developments in renewable and sustainable energy systems: Key challenges and future perspective. Renewable and Sustainable Energy Reviews, 119, Article 109418. https://doi.org/10.1016/j.rser.2019.109418

  • Muljadi, E., Butterfield, C. P., Parsons, B., & Ellis, A. (2007). Effect of variable speed wind turbine generator on stability of a weak grid. IEEE Transactions on Energy Conversion, 22(1), 29-36. https://doi.org/10.1109/TEC.2006.889602

  • Nasab, M. R., & Yaghobi, H. (2020). A real-time out-of-step protection strategy based on instantaneous active power deviation. IEEE Transactions on Power Delivery, 36(6), 3590-3600. https://doi.org/10.1109/TPWRD.2020.3045276

  • Nayak, P. K., Rao, J. G., Kundu, P., Pradhan, A. K., & Bajpai, P. (2010). A comparative assessment of power swing detection techniques. In 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India (pp. 1-4). IEEE Publishing. https://doi.org/10.1109/PEDES.2010.5712568

  • O’Donovan, M., Cowhey, E., Barry, N., & Connell, J. (2020). Assessment of Power Swing Blocking Functions. In 2020 55th International Universities Power Engineering Conference (UPEC) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/UPEC49904.2020.9209826

  • Ontiveros, L. J., Mercado, P. E., & Suvire, G. O. (2010). A new model of the double-feed induction generator wind turbine. In 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA) (pp. 263-269). IEEE Publishing. https://doi.org/10.1109/TDC-LA.2010.5762892

  • Othman, M. L., & Aris, I. (2012). Inconsistent decision system: rough set data mining strategy to extract decision algorithm of a numerical distance relay–tutorial. In A. Karahoca (Ed.), Advances in Data Mining Knowledge Discovery and Applications. IntechOpen. https://doi.org/10.5772/50460

  • Othman, M. L., Aris, I., Abdullah, S. M., Bakar, M. L. A. M. A., & Othman, M. R. (2009). Discovering decision algorithm of numerical distance relay using rough-set-theory-based data mining. European Journal of Scientific Research, 33(1), 30-56.

  • Othman, M. L., Aris, I., Abdullah, S. M., Ali, M. L., & Othman, M. R. (2010). Knowledge discovery in distance relay event report: a comparative data-mining strategy of rough set theory with decision tree. IEEE Transactions on Power Delivery, 25(4), 2264-2287. https://doi.org/10.1109/TPWRD.2010.2055587

  • Othman, M. L., Aris, I., & Ananthapadmanabha, T. (2016). Novel rule base development from IED-resident big data for protective relay analysis expert system. In S. V. Soto, J. M. Luna, & A. Cano (Eds.), Big Data on Real-World Applications. IntechOpen. https://doi.org/ 10.5772/63756

  • Othman, M. L., Aris, I., Othman, M. R., & Osman, H. (2011). Rough-set-and-genetic-algorithm based data mining and rule quality measure to hypothesize distance protective relay operation characteristics from relay event report. International Journal of Electrical Power & Energy Systems, 33(8), 1437-1456. https://doi.org/10.1016/j.ijepes.2011.06.024

  • Paladhi, S., Pradhan, A. K., & Rao, J. G. (2022). Accurate superimposed component estimation for improved relay performance during power swing. IEEE Systems Journal, 16(4), 6119-6129. https://doi.org/10.1109/JSYST.2021.3138758

  • Patil, D., Naidu, O., Yalla, P., & Hida, S. (2019). An ensemble machine learning based fault classification method for faults during power swing. In 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia) (pp. 4225-4230). IEEE Publishing. https://doi.org/10.1109/ISGT-Asia.2019.8881359

  • Rampokanyo, M., & Kamera, P. (2018). Impact of increased penetration levels of distributed inverter-based generation on transient stability. In 2018 IEEE PES/IAS PowerAfrica (pp. 573-578). IEEE Publishing. https://doi.org/10.1109/PowerAfrica.2018.8521139

  • Rao, A. V. K., & Ahmad, A. (2017). Power swing blocking (PSB) function for distance relay using prediction technique. International Journal of System Assurance Engineering and Management, 8(2), 301-307. https://doi.org/10.1007/s13198-016-0434-2

  • Rao, A. V. K., Soni, K. M., Sinha, S. K., & Nasiruddin, I. (2017). Tracking of impedance trajectory for distance protection using neural networks. In 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON) (pp. 289-294). IEEE Publishing. https://doi.org/10.1109/UPCON.2017.8251062

  • Rao, J. G., & Pradhan, A. K. (2017). Supervising distance relay during power swing using synchrophasor measurements. IET Generation, Transmission & Distribution, 11(17), 4136-4145. https://doi.org/10.1049/iet-gtd.2016.1110

  • Ratha, A. (2013). India’s blackouts of July 2012: What happened and why. ESI Bulletin on Energy Trends and Development, 5(4), 3-6.

  • Saha, S., Das, S., & Nandi, C. (2014). Harmonics analysis of power electronics loads. International Journal of Computer Applications, 92(10), 32-36. https://research.ijcaonline.org/volume92/number10/pxc3895228.pdf

  • Saleh, K. A., Moursi, M. S. E., & Zeineldin, H. H. (2015). A new protection scheme considering fault ride through requirements for transmission level interconnected wind parks. IEEE Transactions on Industrial Informatics, 11(6), 1324-1333. https://doi.org/10.1109/TII.2015.2479583

  • Samuelsson, O., & Lindahl, S. (2005). On speed stability. IEEE Transactions on Power Systems, 20(2), 1179-1180. https://doi.org/10.1109/TPWRS.2005.846194

  • Shafiullah, G. M., Oo, A. M. T., Ali, A. B. M. S., & Wolfs, P. (2013). Potential challenges of integrating large-scale wind energy into the power grid-A review. Renewable and Sustainable Energy Reviews, 20, 306-321. https://doi.org/10.1016/j.rser.2012.11.057

  • Shair, J., Li, H., Hu, J., & Xie, X. (2021). Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics. Renewable and Sustainable Energy Reviews, 145, Article 111111. https://doi.org/10.1016/j.rser.2021.111111

  • Sinsel, S. R., Riemke, R. L., & Hoffmann, V. H. (2020). Challenges and solution technologies for the integration of variable renewable energy sources-A review. Renewable Energy, 145, 2271-2285. https://doi.org/10.1016/j.renene.2019.06.147

  • Slootweg, J., & Kling, W. L. (2003). The impact of large scale wind power generation on power system oscillations. Electric Power Systems Research, 67(1), 9-20. https://doi.org/10.1016/S0378-7796(03)00089-0

  • Sorrentino, E., Navas, G., & Orea, E. (2018). Effect of an additional large disturbance during power swings on the impedance seen by the out-of-step blocking function. International Journal of Electrical Power & Energy Systems, 99, 79-84. https://doi.org/10.1016/j.ijepes.2017.12.026

  • Sravanthi, P., & Rani, K. R. (2014). Transient stability improvement of SCIG based wind farm with STATCOM. Journal of Electrical and Electronics Engineering Research (IJEEER), 4(2), 47-57.

  • Swetapadma, A., & Yadav, A. (2016). Data-mining-based fault during power swing identification in power transmission system. IET Science, Measurement & Technology, 10(2), 130-139. https://doi.org/10.1049/iet-smt.2015.0169

  • Taheri, B., & Razavi, F. (2018). Power swing detection using rms current measurements. Journal of Electrical Engineering and Technology, 13(5), 1831-1840.

  • Taheri, B., Salehimehr, S., Razavi, F., & Parpaei, M. (2020). Detection of power swing and fault occurring simultaneously with power swing using instantaneous frequency. Energy Systems, 11, 491-514. https://doi.org/10.1007/s12667-018-00320-0

  • Taheri, B., & Sedighizadeh, M. (2020). Detection of power swing and prevention of mal-operation of distance relay using compressed sensing theory. IET Generation, Transmission & Distribution, 14(23), 5558-5570. https://doi.org/10.1049/iet-gtd.2020.0540

  • Tin, H., Abu-Siada, A., & Masoum, M. S. (2011). Impact of harmonics on the performance of over-current relays. In AUPEC 2011(pp. 1-4). IEEE Publishing.

  • Torres, S., Esponda, H., Andrade, M., Vázquez, E., Paternina, M. R. A., Zamora, A., & Ramirez, J. M. (2016). Unblocking function of distance relay during power swing based on modal analysis. In 2016 IEEE PES Transmission & Distribution Conference and Exposition-Latin America (PES T&D-LA) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/TDC-LA.2016.7805633

  • Tziouvaras, D. A., & Hou, D. (2004). Out-of-step protection fundamentals and advancements. In 57th Annual Conference for Protective Relay Engineers, 2004 (pp. 282-307). IEEE Publishing. https://doi.org/10.1109/CPRE.2004.238495

  • Tu, D. V., Chaitusaney, S., & Yokoyama, A. (2014). Maximum-allowable distributed generation considering fault ride-through requirement and reach reduction of utility relay. In 2012 10th International Power & Energy Conference (IPEC) (pp. 127-134). IEEE Publishing. https://doi.org/10.1109/ASSCC.2012.6523251

  • Verzosa, Q. (2013). Realistic testing of power swing blocking and out-of-step tripping functions. In 2013 66th Annual Conference for Protective Relay Engineers (pp. 420-449). IEEE Publishing. https://doi.org/10.1109/CPRE.2013.6822056

  • Višić, I., Strnad, I., & Marušić, A. (2020). Synchronous generator out of step detection using real time load angle data. Energies, 13(13), Article 3336. https://doi.org/10.3390/en13133336

  • Wannous, K., & Toman, P. (2018). Evaluation of harmonics impact on digital relays. Energies, 11(4), Article 893. https://doi.org/10.3390/en11040893

  • Yan, R., Roediger, S., & Saha, T. K. (2011). Impact of photovoltaic power fluctuations by moving clouds on network voltage: A case study of an urban network. In AUPEC 2011 (pp. 1-6). IEEE Publishing.

  • Yang, W., Zhou, X., & Xue, F. (2010). Impacts of large scale and high voltage level photovoltaic penetration on the security and stability of power system. In 2010 Asia-Pacific Power and Energy Engineering Conference (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/APPEEC.2010.5448930

  • Yellajosula, J. R. A. K., Wei, Y., Grebla, M., Paudyal, S., & Mork, B. A. (2019). Online detection of power swing using approximate stability boundaries. IEEE Transactions on Power Delivery, 35(3), 1220-1229. https://doi.org/10.1109/TPWRD.2019.2941522

  • Ying, J., Yuan, X., & Hu, J. (2017). Inertia characteristic of DFIG-based WT under transient control and its impact on the first-swing stability of SGs. IEEE Transactions on Energy Conversion, 32(4), 1502-1511. https://doi.org/10.1109/TEC.2017.2698521

  • Yoosefian, D., & Chabanloo, R. M. (2020). Protection of distribution network considering fault ride through requirements of wind parks. Electric Power Systems Research, 178, Article 106019. https://doi.org/10.1016/j.epsr.2019.106019

  • Yusoff, N., & Abidin, A. F. (2013). The effect of solar Photovoltaic (PV) system to the characteristic of power swing. In 2013 IEEE 3rd International Conference on System Engineering and Technology (pp.99-102). https://doi.org/10.1109/ICSEngT.2013.6650151

  • Zare, J., & Azad, S. P. (2020). A new distance protection scheme for SCIG-based wind farms. In 2020 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/PESGM41954.2020.9281962

  • Zheng, Q., Li, J., Ai, X., Wen, J., & Fang, J. (2017). Overivew of grid codes for photovoltaic integration. In 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/EI2.2017.8245501

  • Zhu, S., Gu, Q., & Zheng, L. (2004). New swing-blocking methods for digital distance protection. In IEEE PES Power Systems Conference and Exposition, 2004 (pp. 587-591). IEEE Publishing. https://doi.org/10.1109/PSCE.2004.1397484

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles