PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abijo, A., Lee, C.-Y., Huang, C.-Y., Ho, P.-C., & Tsai, K.-J. (2023). The beneficial role of photobiomodulation in neurodegenerative diseases. Biomedicines, 11(7), 1828-1850. https://doi.org/10.3390/biomedicines11071828

  • Adnan, N., & Nordin, S. M. (2021). How COVID 19 effect Malaysian paddy industry? Adoption of green fertilizer a potential resolution. Environment, Development and Sustainability, 23, 8089-8129. https://doi.org/10.1007/s10668-020-00978-6

  • Akhtar, R., & Masud, M. M. (2022). Dynamic linkages between climatic variables and agriculture production in Malaysia: a generalized method of moments approach. Environmental Science and Pollution Research, 29, 41557-41566. https://doi.org/10.1007/s11356-021-18210-x

  • Ali, I., Cawkwell, F., Dwyer, E., Barrett, B., & Green, S. (2016). Satellite remote sensing of grasslands: From observation to management. Journal of Plant Ecology, 9(6), 649-671. https://doi.org/10.1093/jpe/rtw005

  • Alou, I. N., Steyn, J. M., Annandale, J. G., & Van der Laan, M. (2018). Growth, phenological, and yield response of upland rice (Oryza sativa L. cv. Nerica 4®) to water stress during different growth stages. Agricultural Water Management, 198, 39-52. https://doi.org/10.1016/j.agwat.2017.12.005

  • Barbedo, J. G. A. (2019). Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Computers and Electronics in Agriculture, 162, 482-492. https://doi.org/10.1016/j.compag.2019.04.035

  • Bazezew, M. N., Belay, A. T., Guda, S. T., & Kleinn, C. (2021). Developing maize yield predictive models from sentinel-2 msi derived vegetation indices: an approach to an early warning system on yield fluctuation and food security. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 89, 535-548. https://doi.org/10.1007/s41064-021-00178-5

  • Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidisb, G., Wan, S., & Goudos, S. K. (2020). Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things, 18, Article 100187. https://doi.org/10.1016/j.iot.2020.100187

  • Bujang, A. S., & Bakar, B. H. A. (2019, August). Precision agriculture in Malaysia. In Proceedings of International Workshop on ICTs for Precision Agriculture (pp. 6-8). ResearchGate.

  • Chemura, A., Mutanga, O., & Dube, T. (2017). Integrating age in the detection and mapping of incongruous patches in coffee (Coffea arabica) plantations using multi-temporal Landsat 8 NDVI anomalies. International Journal of Applied Earth Observation and Geoinformation, 57, 1-13. https://doi.org/10.1016/j.jag.2016.12.007

  • Chen, X., Thorp, K. R., Ouyang, Z., Hou, Y., Zhou, B., & Li, Y. (2019). Energy consumption due to groundwater pumping for irrigation in the North China Plain. Science of The Total Environment, 669, 1033-1042. https://doi.org/10.1016/j.scitotenv.2019.03.179

  • Cherlinka, V. (2023). NDVI FAQ: All you need to know about index. EOS Data Analytics. https://eos.com/blog/ndvi-faq-all-you-need-to-know-about-ndvi/

  • Chusnah, W. N., Chu, H. J., Tatas, & Jaelani, L. M. (2023). Machine-learning estimation of high spatiotemporal resolution chlorophyll-a concentration using multi-satellite imagery. Sustainable Environment Research, 33(1), Article 11. https://doi.org/10.1186/s42834-023-00170-1

  • Corti, M., Cavalli, D., Cabassi, G., Vigoni, A., Degano, L., & Gallina, P. M. (2019). Application of a low-cost camera on a UAV to estimate maize nitrogen-related variables. Precision Agriculture, 20, 675-696. https://doi.org/10.1007/s11119-018-9609-y

  • Costa, E. M., Tassinari, W. D. S., Pinheiro, H. S. K., Beutler, S. J., & Dos Anjos, L. H. C. (2018). Mapping soil organic carbon and organic matter fractions by geographically weighted regression. Journal of Environmental Quality, 47(4), 718-725. https://doi.org/10.2134/jeq2017.04.0178

  • Dardak, R. A. (2015). Transformation of Agricultural Sector in Malaysia through Agricultural Policy. Malaysian Agricultural Research and Development Institute (MARDI).

  • Della Chiesa, T., Del Grosso, S. J., Hartman, M. D., Parton, W. J., Echarte, L., Yahdjian, L., & Piñeiro, G. (2022). A novel mechanism to simulate intercropping and relay cropping using the DayCent model. Ecological Modelling, 465, Article 109869. https://doi.org/10.1016/j.ecolmodel.2021.109869

  • Deng, L., Mao, Z., Li, X., Hu, Z., Duan, F., & Yan, Y. (2018). UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 124-136. https://doi.org/10.1016/j.isprsjprs.2018.09.008

  • Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10), Article 1745. https://doi.org/10.3390/agriculture12101745

  • Dhau, I., Adam, E., Mutanga, O., & Ayisi, K. K. (2018). Detecting the severity of maize streak virus infestations in maize crop using in situ hyperspectral data. Transactions of the Royal Society of South Africa, 73(1), 8-15. https://doi.org/10.1080/0035919X.2017.1370034

  • Dorairaj, D., & Govender, N. T. (2023). Rice and paddy industry in Malaysia: governance and policies, research trends, technology adoption and resilience. Frontiers in Sustainable Food Systems, 7, Article 1093605. https://doi.org/10.3389/fsufs.2023.1093605

  • Duan, B., Fang, S., Zhu, R., Wu, X., Wang, S., Gong, Y., & Peng, Y. (2019) Remote estimation of rice yield with unmanned aerial vehicle (UAV) data and spectral mixture analysis. Frontiers Plant Science, 10, Article 204. https://doi.org/10.3389/fpls.2019.00204

  • Elfri, M. A. A., Rahman, F. H., Newaz, S. H., Suhaili, W. S., & Au, T. W. (2023). Determining paddy crop health from aerial image using machine learning approach: A Brunei Darussalam based study. In AIP Conference Proceedings (Vol. 2643, No. 1). AIP Publishing. https://doi.org/10.1063/5.0113668

  • Fahmi, Z., Samah, B. A., & Abdullah, H. (2013). Paddy industry and paddy farmers well-being: A success recipe for agriculture industry in Malaysia. Asian Social Science, 9(3), Article 177. https://doi.org/10.5539/ass.v9n3p177

  • FAO. (2022). Status of Digital Agriculture in 47 Sub-Saharan African Countries. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/cb7943en/cb7943en.pdf

  • Farag, M. A., Sheashea, M., Zhao, C., & Maamoun, A. A. (2022). UV fingerprinting approaches for quality control analyses of food and functional food coupled to chemometrics: A comprehensive analysis of novel trends and applications. Foods, 11(18), Article 2867. https://doi.org/10.3390/foods11182867

  • Feng, Z., Song, L., Duan, J., He, L., Zhang, Y., Wei, Y., & Feng, W. (2022). Monitoring wheat powdery mildew based on hyperspectral, thermal infrared, and RGB image data fusion. Sensors, 22(1), Article 31. https://doi.org/10.3390/s22010031

  • Fenghua, Y., Tongyu, X., Yingli, C., Guijun, Y., Wen, D., & Shu, W. (2016). Models for estimating the leaf NDVI of japonica rice on a canopy scale by combining canopy NDVI and multisource environmental data in Northeast China. International Journal of Agricultural and Biological Engineering, 9(5), 132-142. https://doi.org/10.3965/j.ijabe.20160905.2266

  • Firdaus, R. R., Leong Tan, M., Rahmat, S. R., & Senevi Gunaratne, M. (2020). Paddy, rice and food security in Malaysia: A review of climate change impacts. Cogent Social Sciences, 6(1), Articlw 1818373. https://doi.org/10.1080/23311886.2020.1818373

  • Gée, C., Denimal, E., Merienne, J., & Larmure, A. (2021). Evaluation of weed impact on wheat biomass by combining visible imagery with a plant growth model: Towards new non-destructive indicators for weed competition. Precision Agriculture, 22, 550-568. https://doi.org/10.1007/s11119-020-09776-6

  • Gohain, G. B., Singh, K. K., Singh, R. S., Dakhore, K. K., & Ghosh, K. (2022). Application of CERES-sorghum crop simulation model DSSAT v4. 7 for determining crop water stress in crop phenological stages. Modeling Earth Systems and Environment, 8, 1963-1975. https://doi.org/10.1007/s40808-021-01194-5

  • Gracia-Romero, A., Kefauver, S. C., Vergara-Diaz, O., Zaman-Allah, M. A., Prasanna, B. M., Cairns, J. E., & Araus, J. L. (2017). Comparative performance of ground vs. aerially assessed RGB and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization. Frontiers in Plant Science, 8, Article 2004. https://doi.org/10.3389/fpls.2017.02004

  • Grzebisz, W., & Łukowiak, R. (2021). Nitrogen gap amelioration is a core for sustainable intensification of agriculture - A concept. Agronomy, 11(3), Article 419. https://doi.org/10.3390/agronomy11030419

  • Guo, Y., Chen, S., Li, X., Cunha, M., Jayavelu, S., Cammarano, D., & Fu, Y. (2022). Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images. Remote Sensing, 14(6), Article 1337. https://doi.org/10.3390/rs14061337

  • Guo, Y., Yin, G., Sun, H., Wang, H., Chen, S., Senthilnath, J., Wang, J., & Fu, Y. (2020). Scaling effects on chlorophyll content estimations with RGB camera mounted on a UAV platform using machine-learning methods. Sensors, 20(18), Article 5130. http:// doi.org/10.3390/s20185130

  • Hassan, S. I., Alam, M. M., Illahi, U., Al Ghamdi, M. A., Almotiri, S. H., & Su’ud, M. M. (2021). A systematic review on monitoring and advanced control strategies in smart agriculture. IEEE Access, 9, 32517-32548. https://doi.org/10.1109/ACCESS.2021.3057865

  • Hassler, S. C., & Baysal-Gurel, F. (2019). Unmanned aircraft system (UAS) technology and applications in agriculture. Agronomy, 9(10), Article 618. https://doi.org/10.3390/agronomy9100618

  • Hogan, S., Kelly, N., Stark, B., & Chen, Y. (2017). Unmanned aerial systems for agriculture and natural resources. California Agriculture, 71(1), 5-14. https://doi.org/10.3733/ca.2017a0002

  • Hou, W., Tränkner, M., Lu, J., Yan, J., Huang, S., Ren, T., Cong, R., & Li, X. (2020). Diagnosis of nitrogen nutrition in rice leaves influenced by potassium levels. Frontiers in Plant Science, 11, Article 165. https://doi.org/10.3389/fpls.2020.00165

  • Ibrahim, E. S., Rufin, P., Nill, L., Kamali, B., Nendel, C., & Hostert, P. (2021). Mapping crop types and cropping systems in Nigeria with sentinel-2 imagery. Remote Sensing, 13(17), Article 3523. https://doi.org/10.3390/rs13173523

  • Irmulatov, B. R., Abdullaev, K. K., Komarov, A. A., & Yakushev, V. V. (2021). Prospects for precision management of wheat productivity in the conditions of Northern Kazakhstan. Agricultural Biology, 56(1), 92-102. https://doi.org/10.15389/agrobiology.2021.1.92eng

  • Ishihara, M., Inoue, Y., Ono, K., Shimizu, M., & Matsuura, S. (2015). The impact of sunlight conditions on the consistency of vegetation indices in croplands - Effective usage of vegetation indices from continuous ground-based spectral measurements. Remote Sensing, 7(10), 14079-14098. https://doi.org/10.3390/rs71014079

  • Iwahashi, Y., Sigit, G., Utoyo, B., Lubis, I., Junaedi, A., Trisasongko, B. H., Wijaya, I. M. A. S., Maki, M., Hongo, C., & Homma, K. (2022). Drought damage assessment for crop insurance based on vegetation index by unmanned aerial vehicle (UAV) multispectral images of paddy fields in Indonesia. Agriculture, 13(1), Article 113. https://doi.org/10.3390/agriculture13010113

  • Jamroen, C., Komkum, P., Fongkerd, C., & Krongpha, W. (2020). An intelligent irrigation scheduling system using low-cost wireless sensor network toward sustainable and precision agriculture. IEEE Access, 8, 172756-172769. https://doi.org/10.1109/ACCESS.2020.3025590

  • Janga, B., Asamani, G. P., Sun, Z., & Cristea, N. (2023). A review of practical ai for remote sensing in earth sciences. Remote Sensing, 15(16), Article 4112. https://doi.org/10.3390/rs15164112

  • Kalischuk, M., Paret, M. L., Freeman, J. H., Raj, D., Da Silva, S., Eubanks, S., Wiggins, D. J., Lollar, M., Marois, J. J., Mellinger, H. C., & Das, J. (2019). An improved crop scouting technique incorporating unmanned aerial vehicle–assisted multispectral crop imaging into conventional scouting practice for gummy stem blight in watermelon. Plant Disease, 103(7), 1642-1650. https://doi.org/10.1094/PDIS-08-18-1373-RE

  • Kamarianakis, Z., & Panagiotakis, S. (2023). Design and implementation of a low-cost chlorophyll content meter. Sensors, 23(5), Article 2699. https://doi.org/10.3390/s23052699

  • Karunanithy, K., & Velusamy, B. (2021). Directional antenna based node localization and reliable data collection mechanism using local sink for wireless sensor networks. Journal of Industrial Information Integration, 24, Article 100222. https://doi.org/10.1016/j.jii.2021.100222

  • Kasim, N. M., Ahmad, M. H., Shaharudin, A. B., Naidu, B. M., Chan, Y. Y., & Aris, T. (2018). Food choices among Malaysian adults: Findings from Malaysian adults nutrition survey (MANS) 2003 and MANS 2014. Malaysian Journal of Nutrition, 24(1), 63-75.

  • Kazemi, F., & Parmehr, E. G. (2023). Evaluation of RGB vegetation indices derived from UAV images for rice crop growth monitoring. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10, 385-390. https://doi.org/10.5194/isprs-annals-X-4-W1-2022-385-2023

  • Kganyago, M., Ovakoglou, G., Mhangara, P., Adjorlolo, C., Alexandridis, T., Laneve, G., & Beltran, J. S. (2023). Evaluating the contribution of Sentinel-2 view and illumination geometry to the accuracy of retrieving essential crop parameters. GIScience & Remote Sensing, 60(1), Article 2163046. https://doi.org/10.1080/15481603.2022.2163046

  • Low, J. W., Ortiz, R., Vandamme, E., Andrade, M., Biazin, B., & Grüneberg, W. J. (2020). Nutrient-dense orange-fleshed sweetpotato: Advances in drought-tolerance breeding and understanding of management practices for sustainable next-generation cropping systems in sub-Saharan Africa. Frontiers in Sustainable Food Systems, 4, Article 50. https://doi.org/https://doi.org/10.3389/fsufs.2020.00050

  • Lu, W., Okayama, T., & Komatsuzaki, M. (2021). Rice height monitoring between different estimation models using UAV photogrammetry and multispectral technology. Remote Sensing, 14(1), Article 78. https://doi.org/10.3390/rs14010078

  • Luo, S., Jiang, X., Jiao, W., Yang, K., Li, Y., & Fang, S. (2022). Remotely sensed prediction of rice yield at different growth durations using UAV multispectral imagery. Agriculture, 12(9), Article 1447. https://doi.org/10.3390/agriculture12091447

  • Mallareddy, M., Thirumalaikumar, R., Balasubramanian, P., Naseeruddin, R., Nithya, N., Mariadoss, A., Eazhilkrishna, N., Choudhary, A. K., Deiveegan, M., Subrramanian, E., Padmaja, B., & Vijayakumar, S. (2023). Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies. Water, 15(10), Article 1802. https://doi.org/10.3390/w15101802

  • Mapfumo, R. B., Murwira, A., Masocha, M., & Andriani, R. (2017). Detection of subtle deforestation due to logging using satellite remote sensing in wet and dry savanna woodlands of Southern Africa. Geocarto International, 32(5), 514-530. https://doi.org/10.1080/10106049.2016.1161074

  • McCarthy, C., Nyoni, Y., Kachamba, D. J., Banda, L. B., Moyo, B., Chisambi, C., Banfill, J., & Hoshino, B. (2023). Can drones help smallholder farmers improve agriculture efficiencies and reduce food insecurity in Sub-Saharan Africa? Local perceptions from Malawi. Agriculture, 13(5), Article 1075. https://doi.org/10.3390/agriculture13051075

  • McCarty, J. L., Neigh, C. S. R., Carroll, M. L., & Wooten, M. R. (2017). Extracting smallholder cropped area in Tigray, Ethiopia with wall-to-wall sub-meter WorldView and moderate resolution Landsat 8 imagery. Remote Sensing of Environment, 202, 142-151. https://doi.org/10.1016/j.rse.2017.06.040

  • Meroni, M., d’Andrimont, R., Vrieling, A., Fasbender, D., Lemoine, G., Rembold, F., Seguini, L., & Verhegghen, A. (2021). Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and-2. Remote Sensing of Environment, 253, Article 112232. https://doi.org/10.1016/j.rse.2020.112232

  • Ministry of Agiculture. (1984). Third National Agricultural Policy (1998 ‐ 2010) ‐ Executive Summary. https://www.pmo.gov.my/dokumenattached/Dasar/29THIRD_NATIONAL_AGRICULTURAL_POLICY_(1998_-_2010)_-_EXECUTIVE_SUMMARY.pdf

  • Ministry of Agriculture (2016). Dasar Sekuriti Makanan Negara [National Food Security Policy]. Ministry of Agriculture and Agro-based Industry. https://www.kpkm.gov.my/

  • Monteiro, A., Santos, S., & Gonçalves, P. (2021). Precision agriculture for crop and livestock farming - Brief review. Animals, 11(8), Article 2345. https://doi.org/10.3390/ani11082345

  • Montilla, R., Montilla, G., Perez, E., Frassato, L., & Seijas, C. (2021). Precision agriculture for rice crops with an emphasis in low health index areas. Revista Facultad Nacional de Agronomía Medellín, 74(1), 9383-9393. https://doi.org/10.15446/rfnam.v74n1.85310

  • Munnaf, M. A., Haesaert, G., Van Meirvenne, M., & Mouazen, A. M. (2020). Site-specific seeding using multi-sensor and data fusion techniques: A review. Advances in Agronomy, 161, 241-323. https://doi.org/10.1016/bs.agron.2019.08.001

  • Naguib, N. S., & Daliman, S. (2022, November). Analysis of NDVI and NDRE indices using satellite images for crop identification at Kelantan. In IOP Conference Series: Earth and Environmental Science (Vol. 1102, No. 1, p. 012054). IOP Publishing. https://doi.org/10.1088/1755-1315/1102/1/012054

  • Nestel, D., Cohen, Y., Shaked, B., Alchanatis, V., Nemny-Lavy, E., Miranda, M. A., Sciarretta, A., & Papadopoulos, N. T. (2019). An integrated decision support system for environmentally-friendly management of the Ethiopian fruit fly in greenhouse crops. Agronomy, 9(8), Article 459. https://doi.org/10.3390/agronomy9080459

  • Neupane, K., & Baysal-Gurel, F. (2021). Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review. Remote Sensing, 13(19), Article 3841. https://doi.org/10.3390/rs13193841

  • Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., & Rundquist, D. (2012). Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agronomy Journal Abstract – Biometry, Modeling and Statistics, 104(5), 1336-1347. https://doi.org/10.2134/agronj2012.0065

  • Norasma, C. Y. N., Fadzilah, M. A., Roslin, N. A., Zanariah, Z. W. N., Tarmidi, Z., & Candra, F. S. (2019, April). Unmanned aerial vehicle applications in agriculture. In IOP Conference Series: Materials Science and Engineering (Vol. 506, p. 012063). IOP Publishing. https://doi.org/10.1088/1757-899X/506/1/012063

  • Olson, D., & Anderson, J. (2021). Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. Agronomy Journal, 113(2), 971-992. https://doi.org/10.1002/agj2.20595

  • Omar, S. C., Shaharudin, A., & Tumin, S. A. (2019). The Status of the Paddy and Rice Industry in Malaysia. Khazanah Research Institute. https://www.krinstitute.org/assets/contentMS/img/template/editor/Rice%20Report_Ppt%20Slide_Sarena.pdf

  • Onyango, C. M., Nyaga, J. M., Wetterlind, J., Söderström, M., & Piikki, K. (2021). Precision agriculture for resource use efficiency in smallholder farming systems in Sub-Saharan Africa: A systematic review. Sustainability, 13(3), Article 1158. https://doi.org/10.3390/su13031158

  • Osman, Z., & Shahiri, H. (2017). Ethnic and gender inequality in employment during the new economic policy. Institutions and Economies, 6(1), 57-72.

  • Othman, K., Omar, H., Fuad, H. A., Laidin, J., & Ramli, I. M. (2020). The causal impact of government support on the small strategic crop industry: Malaysia’s experience. Asian Journal of Agriculture and Rural Development, 10(1), 298-310. https://doi.org/10.18488/journal.1005/2020.10.1/1005.1.298.310

  • Pérez-Ortiz, M., Gutiérrez, P. A., Peña, J. M., Torres-Sánchez, J., López-Granados, F., & Hervás-Martínez, C. (2016). Machine learning paradigms for weed mapping via unmanned aerial vehicles. In 2016 IEEE symposium series on computational intelligence (SSCI) (pp. 1-8). IEEE Publication. https://doi.org/10.1109/SSCI.2016.7849987

  • Pokhrel, A., Virk, S., Snider, J. L., Vellidis, G., Hand, L. C., Sintim, H. Y., Parkash, V., Chalise, D. P., Lee, J. M., & Byers, C. (2023). Estimating yield-contributing physiological parameters of cotton using UAV-based imagery. Frontiers in Plant Science, 14. https://doi.org/10.3389%2Ffpls.2023.1248152

  • Ponnusamy, V., & Natarajan, S. (2021). Precision agriculture using advanced technology of IoT, unmanned aerial vehicle, augmented reality, and machine learning. In D. Gupta, C. Hugo, de Albuquerque, A. Khanna & P. L. Mehta, (Eds.), Smart Sensors for Industrial Internet of Things (pp. 207-229). Springer. https://doi.org/10.1007/978-3-030-52624-5_14

  • Pretorius, Z. A., Lan, C. X., Prins, R., Knight, V., McLaren, N. W., Singh, R. P., Bender, C. M., & Kloppers, F. J. (2017). Application of remote sensing to identify adult plant resistance loci to stripe rust in two bread wheat mapping populations. Precision Agriculture, 18, 411-428. https://doi.org/10.1007/s11119-016-9461-x

  • Raddi, S., Giannetti, F., Martini, S., Farinella, F., Chirici, G., Tani, A., Maltoni, A., & Mariotti, B. (2022). Monitoring drought response and chlorophyll content in Quercus by consumer-grade, near-infrared (NIR) camera: A comparison with reflectance spectroscopy. New Forests, 53(2), 241-265. https://doi.org/10.1007/s11056-021-09848-z

  • Rahmat, S. R., Firdaus, R. R., Mohamad Shaharudin, S., & Yee Ling, L. (2019). Leading key players and support system in Malaysian paddy production chain. Cogent Food & Agriculture, 5(1), Article 1708682. https://doi.org/10.1080/23311932.2019.1708682

  • Ramli, N. N., Shamsudin, M. N., Mohamed, Z., & Radam, A. (2012). The impact of fertilizer subsidy on Malaysia paddy/rice industry using a system dynamics approach. International Journal of Social Science and Humanity, 2(3), Article 213.

  • Richard, K., Abdel-Rahman, E. M., Subramanian, S., Nyasani, J. O., Thiel, M., Jozani, H., Borgemeister, C., & Landmann, T. (2017). Maize cropping systems mapping using rapideye observations in agro-ecological landscapes in Kenya. Sensors, 17(11), Article 2537. https://doi.org/10.3390/s17112537

  • Roman, A., & Ursu, T. (2016). Multispectral satellite imagery and airborne laser scanning techniques for the detection of archaeological vegetation marks. In C. H. Opreanu & V. A. Lazarecu (Eds.), Landscape Archaeology on the Northern Frontier of the Roman Empire at Porolissum: An Interdisciplinary Research Project (pp. 141-152). Mega Publishing House.

  • Rosle, R., Che’Ya, N. N., Roslin, N. A., Halip, R. M., & Ismail, M. R. (2019). Monitoring early stage of rice crops growth using normalized difference vegetation index generated from UAV. In IOP Conference Series: Earth and Environmental Science (Vol. 355, No. 1, p. 012066). IOP Publishing. https://doi.org/10.1088/1755-1315/355/1/012066

  • Rosle, R., Sulaiman, N., Che′ Ya, N. N., Radzi, M. F. M., Omar, M. H., Berahim, Z., Ilahi, W. F. F., Shah, J. A., & Ismail, M. R. (2022). Weed detection in rice fields using UAV and multispectral aerial imagery. Chemistry Proceedings, 10(1), Article 44. https://doi.org/10.3390/IOCAG2022-12519

  • Roth, L., Barendregt, C., Bétrix, C. A., Hund, A., & Walter, A. (2022). High-throughput field phenotyping of soybean: Spotting an ideotype. Remote Sensing of Environment, 269, Article 112797. https://doi.org/10.1016/j.rse.2021.112797

  • Rusli, N. M., Noor, Z. Z., & Taib, S. M. (2024). Life cycle assessment of rice production in Muda Granary Area, Kedah, Malaysia. Journal of Advanced Research in Applied Sciences and Engineering Technology, 35(2), 69-83. https://doi.org/10.37934/araset.35.2.6983

  • Sari, M. Y. A., Hassim, Y. M. M., Hidayat, R., & Ahmad, A. (2021). Monitoring rice crop and paddy field condition using UAV RGB imagery. International Journal on Informatics Visualization, 5(4), 469-474. https://dx.doi.org/10.30630/joiv.5.4.742

  • Sato, N. K., Tsuji, T., Iijima, Y., Sekiya, N., & Watanabe, K. (2023). Predicting rice lodging risk from the distribution of available nitrogen in soil using uas images in a paddy field. Sensors, 23(14), Article 6466. https://doi.org/10.3390/s23146466

  • Seglah, P. A., Wang, Y., Wang, H., Bi, Y., Zhou, K., Wang, Y., Wang, Y., Wang, H., & Feng, X. (2020). Crop straw utilization and field burning in Northern region of Ghana. Journal of Cleaner Production, 261, Article 121191. https://doi.org/10.1016/j.jclepro.2020.121191

  • Sharabiani, V. R., Nazarloo, A. S., Taghinezhad, E., Veza, I., Szumny, A., & Figiel, A. (2023). Prediction of winter wheat leaf chlorophyll content based on VIS/NIR spectroscopy using ANN and PLSR. Food Science & Nutrition, 11(5), 2166-2175. https://doi.org/10.1002/fsn3.3071

  • Shu, M., Zuo, J., Shen, M., Yin, P., Wang, M., Yang, X., Tang, J., Li, B., & Ma, Y. (2021). Improving the estimation accuracy of SPAD values for maize leaves by removing UAV hyperspectral image backgrounds. International Journal of Remote Sensing, 42, 5862-5881. https://doi.org/10.1080/01431161.2021.1931539

  • Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), Article 3136. https://doi.org/10.3390/rs12193136

  • Souza, F. H. Q., Martins, P. H. A., Martins, T. H. D., Teodoro, P. E., & Baio, F. H. R. (2020). The use of vegetation index via remote sensing allows estimation of soybean application rate. Remote Sensing Applications: Society and Environment, 17, Article 100279. https://doi.org/10.1016/j.rsase.2019.100279

  • Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of UAV regulations. Remote Sensing, 9(5), Article 459. https://doi.org/10.3390/rs9050459

  • Sudu, B., Rong, G., Guga, S., Li, K., Zhi, F., Guo, Y., Zhang, J., & Bao, Y. (2022). Retrieving SPAD values of summer maize using UAV hyperspectral data based on multiple machine learning algorithm. Remote Sensing, 14(21), Article 5407. https://doi.org/10.3390/rs14215407

  • Sui, Y. Y., Wang, Q. Y., & Yu, H. Y. (2016). Prediction of greenhouse cucumber disease based on chlorophyll fluorescence spectrum index. Guang pu xue yu Guang pu fen xi= Guang pu, 36(6), 1779-1782.

  • Takoutsing, B., Martín, J. A. R., Weber, J. C., Shepherd, K., Sila, A., & Tondoh, J. (2017). Landscape approach to assess key soil functional properties in the highlands of Cameroon: Repercussions of spatial relationships for land management interventions. Journal of Geochemical Exploration, 178, 35-44. https://doi.org/10.1016/j.gexplo.2017.03.014

  • The Star. (2019, April 13). Where does Malaysia’s paddy and rice industry stand? The Star. https://www.thestar.com.my/business/business-news/2019/04/13/where-does-malaysias-paddy-and-rice-industry-stand/

  • Tsai, D. M., & Chen, W. L. (2017). Coffee plantation area recognition in satellite images using Fourier transform. Computers and Electronics in Agriculture, 135, 115-127. https://doi.org/10.1016/j.compag.2016.12.020

  • Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-based applications for precision agriculture. Information, 10(11), Article 349. https://doi.org/10.3390/info10110349

  • USDA. (2020). World Agricultural Production. USDA Foreign Agricultural Service, USA. https://www.fas.usda.gov/data/world-agricultural-production

  • Wan, L., Cen, H., Zhu, J., Zhang, J., Zhu, Y., Sun, D., Du, X., Zhai, L., Weng, H., Li, Y., Li, X., Bao, Y., Shou, J., & He, Y. (2020). Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer - A case study of small farmlands in the South of China. Agricultural and Forest Meteorology, 291, Article 108096. https://doi.org/10.1016/j.agrformet.2020.108096

  • Wan, W., Zhao, Y., Xu, J., Liu, K., Guan, S., Chai, Y., Cui, H., Wu, P., & Diao, M. (2022). Reducing and delaying nitrogen recommended by leaf critical SPAD value was more suitable for nitrogen utilization of spring wheat under a new type of drip-irrigated system. Agronomy, 12(10), Article 2331. https://doi.org/10.3390/agronomy12102331

  • Wang, K., Huggins, D. R., & Tao, H. (2019). Rapid mapping of winter wheat yield, protein, and nitrogen uptake using remote and proximal sensing. International Journal of Applied Earth Observation and Geoinformation, 82, Article 101921. https://doi.org/10.1016/j.jag.2019.101921

  • Wang, Y. P., Chang, Y. C., & Shen, Y. (2022). Estimation of nitrogen status of paddy rice at vegetative phase using unmanned aerial vehicle based multispectral imagery. Precision Agriculture, 23(1), 1-17. https://doi.org/10.1007/s11119-021-09823-w

  • Winowiecki, L. A., Vågen, T. G., Boeckx, P., & Dungait, J. A. (2017). Landscape-scale assessments of stable carbon isotopes in soil under diverse vegetation classes in East Africa: Application of near-infrared spectroscopy. Plant and Soil, 421, 259-272. https://doi.org/10.1007/s11104-017-3418-3

  • Xie, C., & Yang, C. (2020). A review on plant high-throughput phenotyping traits using UAV-based sensors. Computers and Electronics in Agriculture, 178, Article 105731. https://doi.org/10.1016/j.compag.2020.105731

  • Yang, X., Yang, R., Ye, Y., Yuan, Z., Wang, D., & Hua, K. (2021). Winter wheat SPAD estimation from UAV hyperspectral data using cluster-regression methods. International Journal of Applied Earth Observation and Geoinformation, 105, Article 102618. https://doi.org/10.1016/j.jag.2021.102618

  • Yin, Q., Zhang, Y., Li, W., Wang, J., Wang, W., Ahmad, I., Zhou, G., & Huo, Z. (2023). Estimation of winter wheat SPAD values based on UAV multispectral remote sensing. Remote Sensing, 15(14), Article 3595. https://doi.org/10.3390/rs15143595

  • Yuan, Z., Cao, Q., Zhang, K., Ata-Ul-Karim, S. T., Tian, Y., Zhu, Y., Cao, W., & Liu, X. (2016). Optimal leaf positions for SPAD meter measurement in rice. Frontiers in plant science, 7, Article 719. https://doi.org/10.3389/fpls.2016.00719

  • Yuhao, A., Che’Ya, N. N., Roslin, N. A., & Ismail, M. R. (2020). Rice chlorophyll content monitoring using vegetation indices from multispectral aerial imagery. Pertanika Journal of Science & Technology, 28(3), 779-795.

  • Zhang, K., Liu, X., Ma, Y., Wang, Y., Cao, Q., Zhu, Y., Cao, W., & Tian, Y. (2021). A new canopy chlorophyll index-based paddy rice critical nitrogen dilution curve in eastern China. Field Crops Research, 266, Article 108139. https://doi.org/10.1016/j.fcr.2021.108139

  • Zhang, R., Yang, P., Liu, S., Wang, C., & Liu, J. (2022). Evaluation of the methods for estimating leaf chlorophyll content with SPAD chlorophyll meters. Remote Sensing, 14(20), Article 5144. https://doi.org/10.3390/rs14205144

  • Zhang, S., Zhao, G., Lang, K., Su, B., Chen, X., Xi, X., & Zhang, H. (2019) Integrated satellite, unmanned aerial vehicle (UAV) and ground inversion of the SPAD of winter wheat in the reviving stage. Sensors, 19(17), Article 1485. http://doi.org/10.3390/s19071485

  • Zhang, Z., & Zhu, L. (2023). A review on unmanned aerial vehicle remote sensing: platforms, sensors, data processing methods, and applications. Drones, 7(6), Article 398. https://doi.org/10.3390/drones7060398

  • Zhao, Y., Yang, P., Cheng, Y., Liu, Y., Yang, Y., & Liu, Z. (2023). Insights into the physiological, molecular, and genetic regulators of albinism in Camellia sinensis leaves. Frontiers in Genetics, 14. https://doi.org/10.3389%2Ffgene.2023.1219335

  • Zhu, W., Feng, Z., Dai, S., Zhang, P., & Wei, X. (2022). Using UAV multispectral remote sensing with appropriate spatial resolution and machine learning to monitor wheat scab. Agriculture, 12(11), Article 1785. https://doi.org/10.3390/agriculture12111785

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles