e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Adon, R., Bakar, I., Wijeyesekera, D. C., & Zainorabidin, A. (2012). Overview of the sustainable uses of peat soil in malaysia with some relevant geotechnical assessments. International Journal of Integrated Engineering, 4(4), 38-46.
Azmi, N. A. C., Apandi, N. M., & Ahmad, A. S. (2021). Carbon emissions from the peat fire problem - A review. Environmental Science and Pollution Research, 28(14), 16948-16961. https://doi.org/10.1007/s11356-021-12886-x
Cancellieri, D., Leroy-Cancellieri, V., Leoni, E., Simeoni, A., Kuzin, A. Y., Filkov, A. I., & Rein, G. (2012). Kinetic investigation on the smouldering combustion of boreal peat. Fuel, 93, 479-485. https://doi.org/10.1016/j.fuel.2011.09.052
Chen, H., Zhao, W., & Liu, N. (2011). Thermal analysis and decomposition kinetics of Chinese forest peat under nitrogen and air atmospheres. Energy and Fuels, 25(2), 797-803. https://doi.org/10.1021/ef101155n
Dommain, R., Couwenberg, J., & Joosten, H. (2011). Development and carbon sequestration of tropical peat domes in south-east Asia: Links to post-glacial sea-level changes and Holocene climate variability. Quaternary Science Reviews, 30(7-8), 999-1010. https://doi.org/10.1016/j.quascirev.2011.01.018
Dong, H., Hu, X., Yu, A., Wang, W., Zhao, Q., Wei, H., Yang, Z., Wang, X., & Luo, C. (2023). Study on the mechanism of an enteromorpha-based compound inhibitor for inhibiting the spontaneous combustion of coal using in situ infrared spectroscopy and thermal analysis kinetics. Journal of Environmental Chemical Engineering, 11(2), Article 109577. https://doi.org/10.1016/j.jece.2023.109577
Fawzi, N. I., Qurani, I. Z., & Darajat, R. (2021). Alleviating peatland fire risk using water management trinity and community involvement. In IOP Conference Series: Earth and Environmental Science (Vol. 914, No. 1, p. 012037). IOP Publishing. https://doi.org/10.1088/1755-1315/914/1/012037
Gogoi, M., Konwar, K., Bhuyan, N., Borah, R. C., Kalita, A. C., Nath, H. P., & Saikia, N. (2018). Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresource Technology Reports, 4, 40-49. https://doi.org/10.1016/j.biteb.2018.08.016
Goldstein, J. E., Graham, L., Ansori, S., Vetrita, Y., Thomas, A., Applegate, G., Vayda, A. P., Saharjo, B. H., & Cochrane, M. A. (2020). Beyond slash-and-burn: The roles of human activities, altered hydrology and fuels in peat fires in Central Kalimantan, Indonesia. Singapore Journal of Tropical Geography, 41(2), 190-208. https://doi.org/10.1111/sjtg.12319
Hänninen, K. I. (2017). A chemical mechanism for self-ignition in a peat stack. Environment and Ecology Research, 5(1), 6-12. https://doi.org/10.13189/eer.2017.050102
Hu, Y., Fernandez-Anez, N., Smith, T. E. L., & Rein, G. (2018). Review of emissions from smouldering peat fires and their contribution to regional haze episodes. International Journal of Wildland Fire, 27(5), 293-312. https://doi.org/10.1071/WF17084
Huang, X., & Rein, G. (2014). Smouldering combustion of peat in wildfires: Inverse modelling of the drying and the thermal and oxidative decomposition kinetics. Combustion and Flame, 161(6), 1633-1644. https://doi.org/10.1016/j.combustflame.2013.12.013
Jayaraman, K., & Gökalp, I. (2015). Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Conversion and Management, 89, 83-91. https://doi.org/10.1016/j.enconman.2014.09.058
Jayaraman, K., Kok, M. V., & Gokalp, I. (2017a). Combustion properties and kinetics of different biomass samples using TG–MS technique. Journal of Thermal Analysis and Calorimetry, 127(2), 1361-1370. https://doi.org/10.1007/s10973-016-6042-1
Jayaraman, K., Kok, M. V., & Gokalp, I. (2017b). Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renewable Energy, 101, 293-300. https://doi.org/10.1016/j.renene.2016.08.072
Jayaraman, K., Kök, M. V., & Gökalp, I. (2020). Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach. Energy, 204, Article 117905. https://doi.org/10.1016/j.energy.2020.117905
Khelkhal, M. A., Lapuk, S. E., Buzyurov, A. V., Krapivnitskaya, T. O., Peskov, N. Yu., Denisenko, A. N., & Vakhin, A. V. (2022). Thermogravimetric study on peat catalytic pyrolysis for potential hydrocarbon generation. Processes, 10(5), Article 974. https://doi.org/10.3390/pr10050974
Khelkhal, M. A., Lapuk, S. E., Ignashev, N. E., Eskin, A. A., Glyavin, M. Y., Peskov, N. Y., Krapivnitskaia, T. O., & Vakhin, A. V. (2021). A thermal study on peat oxidation behavior in the presence of an iron-based catalyst. Catalysts, 11(11), Article 1344. https://doi.org/10.3390/catal11111344
Khoroshavin, L. B., Medvedev, O. A., Belyakov, V. A., & Bezzaponnaya, O. V. (2012). Peat Fires and their Extinguishing. ResearchGate. https://www.researchgate.net/publication/324694093_PEAT_FIRES_AND_THEIR_EXTINGUISHING
Kosyakov, D. S., Ul’yanovskii, N. V., Latkin, T. B., Pokryshkin, S. A., Berzhonskis, V. R., Polyakova, O. V., & Lebedev, A. T. (2020). Peat burning - An important source of pyridines in the earth atmosphere. Environmental Pollution, 266, Article 115109. https://doi.org/10.1016/j.envpol.2020.115109
Lourenco, M., Fitchett, J. M., & Woodborne, S. (2022). Peat definitions: A critical review. Progress in Physical Geography, 47(4), 506-520. https://doi.org/10.1177/03091333221118353
Melling, L. (2015). Peatland in Malaysia. In Tropical Peatland Ecosystems (pp. 59-73). Springer. https://doi.org/10.1007/978-4-431-55681-7_4
Mezbahuddin, S., Nikonovas, T., Spessa, A., Grant, R. F., Imron, M. A., Doerr, S. H., & Clay, G. D. (2023). Accuracy of tropical peat and non-peat fire forecasts enhanced by simulating hydrology. Scientific Reports, 13(1), 1-10. https://doi.org/10.1038/s41598-022-27075-0
Mishra, R. K., & Mohanty, K. (2018). Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresource Technology, 251, 63-74. https://doi.org/10.1016/j.biortech.2017.12.029
Othman, J., Sahani, M., Mahmud, M., & Ahmad, M. K. S. (2014). Transboundary smoke haze pollution in Malaysia: Inpatient health impacts and economic valuation. Environmental Pollution, 189, 194-201. https://doi.org/10.1016/j.envpol.2014.03.010
Palamba, P., Ramadhan, M. L., Pamitran, A. S., Prayogo, G., Kosasih, E. A., & Nugroho, Y. S. (2018). Drying Kinetics of Indonesian Peat. International Journal of Technology, 9(5), Article 1006. https://doi.org/10.14716/ijtech.v9i5.805
Prat, N., Belcher, C. M., Hadden, R. M., Rein, G., & Yearsley, J. M. (2015). A laboratory study of the effect of moisture content on the spread of smouldering in peat fires. Flamma, 6(1), 35-38.
Qin, Y., Musa, D. N. S., Lin, S., & Huang, X. (2022). Deep peat fire persistently smouldering for weeks: A laboratory demonstration. International Journal of Wildland Fire, 32(1), 86-98. https://doi.org/10.1071/wf22143
Rein, G. (2013). Smouldering fires and natural fuels. In Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science (pp. 15-33). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118529539.ch2
Rezanezhad, F., Price, J. S., Quinton, W. L., Lennartz, B., Milojevic, T., & Van Cappellen, P. (2016). Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology, 429, 75-84. https://doi.org/10.1016/j.chemgeo.2016.03.010
Sundari, S., Hirano, T., Yamada, H., Kusin, K., & Limin, S. (2012). Effect of groundwater level on soil respiration in tropical peat swamp forests. Journal of Agricultural Meteorology, 68(2), 121-134. https://doi.org/10.2480/agrmet.68.2.6
Taufik, M., Widyastuti, M. T., Sulaiman, A., Murdiyarso, D., Santikayasa, I. P., & Minasny, B. (2022). An improved drought-fire assessment for managing fire risks in tropical peatlands. Agricultural and Forest Meteorology, 312, Article 108738. https://doi.org/10.1016/j.agrformet.2021.108738
Turetsky, M. R., Benscoter, B., Page, S., Rein, G., Van Der Werf, G. R., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8, 11-14. https://doi.org/10.1038/ngeo2325
Varol, M., Atimtay, A. T., Bay, B., & Olgun, H. (2010). Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Thermochimica Acta, 510(1-2), 195-201. https://doi.org/10.1016/j.tca.2010.07.014
Zhao, W., Chen, H., Liu, N., & Zhou, J. (2014). Thermogravimetric analysis of peat decomposition under different oxygen concentrations. Journal of Thermal Analysis and Calorimetry, 17(1), 489-497. https://doi.org/10.1007/s10973-014-3696-4
ISSN 1511-3701
e-ISSN 2231-8542