PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Aitoulghazi, O., Jaafari, A., & Mourhir, A. (2022). DarSpeech: An automatic speech recognition system for the Moroccan dialect. In 2022 International Conference on Intelligent Systems and Computer Vision (ISCV) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/ISCV54655.2022.9806105

  • Ali, A. R. (2020). Multi-dialect Arabic speech recognition. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE Publishing. https://doi.org/10.1109/IJCNN48605.2020.9206658

  • Asmah, H. O. (1991). Aspek bahasa dan kajiannya [Aspects of language and its study]. Dewan Bahasa dan Pustaka.

  • Baevski, A., Zhou, H., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. ArXiv, Article 2006.11477. https://doi.org/10.48550/arXiv.2006.11477

  • Boersma, P. (2001). Praat: A system for doing phonetics by computer. Glot International, 5(9) 341-345.

  • Chong, T. Y., Xiao, X., Xu, H., Tan, T. P., Chau-Khoa, P., Lyu, D. C., Chng, E. S., & Li, H., (2013). The development and analysis of a Malay broadcast news corpus. In 2013 International Conference Oriental COCOSDA held jointly with 2013 Conference on Asian Spoken Language Research and Evaluation (O-COCOSDA/CASLRE) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/ICSDA.2013.6709862

  • Colins, J. T. (1989). Malay dialect research in Malaysia: The issue of perspective. Bijdragen tot de Taal-, Land- en Volkenkunde, 235-264.

  • Grace, M., Bastani, M., & Weinstein. E. (2018). Occam’s adaptation: A comparison of interpolation of bases adaptation methods for multi-dialect acoustic modeling with LSTMS. In 2018 IEEE Spoken Language Technology Workshop (SLT), (pp. 174-181). IEEE Publishing. https://doi.org/10.1109/SLT.2018.8639654

  • Hori, T., Watanabe, S., Zhang, Y., & Chan, W. (2017). Advances in joint CTC-attention based end-to-end speech recognition with a deep CNN encoder and RNN-LM. ArXiv, Article 1706.02737. https://doi.org/10.48550/arXiv.1706.02737

  • Hou, W., Dong, Y., Zhuang, B., Yang, L. Shi, J. & Shinozaki, T. (2020). Large-scale end-to-end multilingual speech recognition and language identification with multi-task learning. In Interspeech (pp. 1037-1041). ISCA Publishing. https://doi.org/10.21437/Interspeech.2020-2164

  • Jain, A., Upreti, M. & P. Jyothi, P. (2018) Improved accented speech recognition using accent embeddings and multi-task learning. In Proceedings of Interspeech (pp. 2454-2458). ISCA Publishing.

  • Juan, S. S., Besacier, L., & Tan, T. P. (2012). Analysis of Malay speech recognition for different speaker origins. In 2012 International Conference on Asian Language Processing (pp. 229-232). IEEE Publishing. https://doi.org/10.1109/IALP.2012.23

  • Khaw, J. Y. M. (2017). Bootstrapping Kelantan and Sarawak Malay dialect models on text and phonetic analyses in text-to-speech system [Doctorate Dissertation]. Universiti Sains Malaysia.

  • Khaw, J. K. M., Tan, T.-P. & Ranaivo-Malancon, B. (2024). Hybrid distance-statistical-based phrase alignment for analyzing parallel texts in standard Malay and Malay dialects. Malaysian Journal of Computer Science, 37(1), 89–106. https://doi.org/10.22452/mjcs.vol37no1.5

  • Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., & Herbst, E. (2007). Moses: Open source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, (pp. 177-180). Association for Computational Linguistics.

  • Li, B., Sainath, T. N., Sim, K. C., Bacchiani, M., Weinstein, E., Nguyen, P., Chen, Z., Wu, Y. & Rao, K. (2018) Multi-dialect speech recognition with a single sequence-to-sequence model. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (pp. 4749-4753). IEEE Publishing. https://doi.org/10.1109/ICASSP.2018.8461886

  • Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlíček, P., Qian, Y., Schwarz, P., Silovský, J., Stemmer, G. & Vesel, K. (2011). The Kaldi speech recognition toolkit. In IEEE 2011 workshop on automatic speech recognition and understanding (pp. 1-4). IEEE Signal Processing Society.

  • Rahman, F. D., Mohamed, N., Mustafa, M. B., & Salim, S. S. (2014). Automatic speech recognition system for Malay speaking children. In 2014 Third ICT International Student Project Conference (ICT-ISPC) (pp. 79-82). IEEE Publishing. https://doi.org/10.1109/ICT-ISPC.2014.6923222

  • Ravanelli, M., Parcollet, T., Plantinga, P. W., Rouhe, A., Cornell, S., Lugosch, L., Subakan, C., Dawalatabad, N., Heba, A., Zhong, J., Chou, J., Yeh, S., Fu, S., Liao, C., Rastorgueva, E. N., Grondin, F., Aris, W., Na, H., Gao, Y., Mori, R. D., & Bengio, Y. (2021). SpeechBrain: A general-purpose speech toolkit. ArXiv, Article 2106.04624. https://doi.org/10.48550/arXiv.2106.04624

  • Renduchintala, A., Ding, S., Wiesner, M., & Watanabe, S. (2018). Multi-modal data augmentation for end-to-end ASR. ArXiv, Article 1803.10299. https://doi.org/10.48550/arXiv.1803.10299

  • Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., & Khudanpur, S. (2018). X-Vectors: Robust DNN embeddings for speaker recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (pp. 5329-5333). IEEE Publishing. https://doi.org/10.1109/ICASSP.2018.8461375

  • Tan, T. P., Xiao, X., Tang, E. K., Chng, E. S., & Li, H. (2009). MASS: A Malay language LVCSR corpus resource. In 2009 Oriental COCOSDA International Conference on Speech Database and Assessments (pp. 25-30). IEEE Publishing. https://doi.org/10.1109/ICSDA.2009.5278382

  • Watanabe, S., Hori, T., Kim, S., Hershey, J. R., & Hayashi, T. (2017). Hybrid CTC/attention architecture for end-to-end speech recognition. In IEEE Journal of Selected Topics in Signal Processing, (Vol. 11, No. 8, pp. 1240-1253). IEEE Publishing. https://doi.org/10.1109/JSTSP.2017.2763455

  • Yan, J., Yu, H., & Li, G. (2018). Tibetan acoustic model research based on TDNN. In 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) (pp. 601-604). IEEE Publishing. https://doi.org/10.23919/APSIPA.2018.8659584

  • Yi, C., Wang, J., Cheng, N., Zhou, S., & Xu, B. (2021). Transfer ability of monolingual Wav2vec2.0 for low-resource speech recognition. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/IJCNN52387.2021.9533587

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles