PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Ahmad, A., Jin, Y., Zhu, C., Javed, I., & Akram, M. W. (2020). Electrical power and energy systems investigating tension in overhead high voltage power transmission line using fi nite element method. Electrical Power and Energy Systems, 114, Article 105418. https://doi.org/10.1016/j.ijepes.2019.105418

  • Ajenikoko, G., & Adeleke, B. S. (2017). Effect of temperature change on the resistance of transmission line losses in electrical power network. International Journal of Renewable Energy Technology Research, 6(1), 1–8.

  • Ali, S., & Smith, K. A. (2003, October 27-29). Automatic parameter selection for polynomial kernel. [Paper presentation]. Proceedings Fifth IEEE Workshop on Mobile Computing Systems and Applications, Las Vegas, USA. https://doi.org/10.1109/IRI.2003.1251420

  • Bendjabeur, A., Kouadri, A., & Mekhilef, S. (2020). Novel technique for transmission line parameters estimation using synchronised sampled data. IET Generation, Transmission and Distribution, 14(3), 506–515. https://doi.org/10.1049/iet-gtd.2019.0702

  • Bhavsar, H., & Ganatra, A. (2012). A comparative study of training algorithms for supervised machine learning. International Journal of Soft Computing and Engineering, 2(4), 74–81. https://doi.org/10.1.1.492.6088

  • Bockarjova, M., & Andersson, G. (2007, July 1-5). Transmission line conductor temperature impact on state estimation accuracy. [Paper presentation]. IEEE Lausanne Power Tech, Lausanne, Switzerland. https://doi.org/10.1109/PCT.2007.4538401

  • Brownlee, J. (2016). Master Machine Learning Algorithms. MachineLearningMastery

  • Campbell, R. J. (2012). Weather-related power outages and electric system resiliency (Report No. 7-5700). CRS Report. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ourenergypolicy.org/wp-content/uploads/2016/02/R42696.pdf

  • Cecchi, V., Miu, K., Leger, A. S., & Nwankpa, C. (2011, July 24-28). Study of the impacts of ambient temperature variations along a transmission line using temperature-dependent line models. [Paper presentation]. IEEE Power and Energy Society General Meeting, Detroit, USA. https://doi.org/10.1109/PES.2011.6039110

  • Chakrabortty, A., Chow, J. H., & Salazar, A. (2009). Interarea model estimation for radial power system transfer paths with intermediate voltage control using synchronized phasor measurements. IEEE Transactions on Power Systems, 24(3), 1318-1326. https://doi.org/10.1109/TPWRS.2009.2022995

  • Changsong, C., Shaxu, D., & Jinjun, Y. (2009). Design of photovoltaic array power forecasting model based on neutral network. Transactions of China Electrotechnical Society, 24(9), 153–158. https://doi.org/10.19595/j.cnki.1000-6753.tces.2009.09.023

  • Chang, C. C., & Lin, C. J. (2002). Training v-support vector regression: Theory and algorithms. Neural Computation, 14(8), 1959–1977. https://doi.org/10.1162/089976602760128081

  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: A Library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), Article 27. https://doi.org/10.1145/1961189.1961199

  • Chavan, G., Weiss, M., Chakrabortty, A., Bhattacharya, S., Salazar, A., & Ashrafi, F. H. (2017). Identification and predictive analysis of a multi-area WECC power system model using synchrophasors. IEEE Transactions on Smart Grid, 8(4), 1977–1986. https://doi.org/10.1109/TSG.2016.2531637

  • Diao, R., Vittal, V., & Logic, N. (2010). Design of a real-time security assessment tool for situational awareness enhancement in modern power systems. IEEE Transactions on Power Systems, 25(2), 957–965. https://doi.org/10.1109/TPWRS.2009.2035507

  • Du, Y., & Liao, Y. (2012). On-line estimation of transmission line parameters, temperature and sag using PMU measurements. Electric Power Systems Research, 93, 39–45. https://doi.org/10.1016/j.epsr.2012.07.007

  • Dutta, R., Member, S., Patel, V., Chakrabarti, S., Member, S., Sharma, A., Das, R. K., & Mondal, S. (2020). Parameter estimation of distribution lines using SCADA measurements. IEEE Transactions on Instrumentation and Measurement, 70 Article 9000411. https://doi.org/10.1109/TIM.2020.3026116

  • Fan, L. (2015, July 26-30). Least squares estimation and kalman filter based dynamic state and parameter estimation. [Paper presentation]. IEEE Power & Energy Society General Meeting, Denver, USA.

  • Farzaneh, M., Farokhi, S., & Chisholm, W. A. (2013). Electrical design of overhead power transmission lines. McGraw-Hill Education.

  • Fu, J., Morrow, D. J., Abdelkader, S., & Fox, B. (2011, September 5-8). Impact of dynamic line rating on power systems. [Paper presentation]. International Universities’ Power Engineering Conference (UPEC), Soest, Germany.

  • Géron, A. (2017). Hands-on machine learning with Scikit-learn and TensorFlow. O’Reilly Media.

  • Ghiasi, S. M. S., Abedi, M., & Hosseinian, S. H. (2019). Mutually coupled transmission line parameter estimation and voltage profile calculation using one terminal data sampling and virtual black-box. IEEE Access, 7, 106805–106812. https://doi.org/10.1109/ACCESS.2019.2901813

  • House, H. E., & Tuttle, P. D. (1958). Current-carrying capacity of ACSR. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 77(3), 1169-1173. https://doi.org/10.1109/AIEEPAS.1958.4500119

  • Huang, T. M., Kecman, V., & Kopriva, I. (2006). Kernel based algorithms for mining huge data sets. Springer.

  • IEEE Std 738 - 2006. (2007). Standard for Calculating the Current-Temperature of Bare Overhead Conductors. IEEE. https://doi.org/10.1109/IEEESTD.2007.301349

  • Indulkar, C. S., & Ramalingam, K. (2008). Estimation of transmission line parameters from measurements. International Journal of Electrical Power & Energy Systems, 30(5), 337–342. https://doi.org/10.1016/j.ijepes.2007.08.003

  • Kirschen, D., Allan, R., & Strbac, G. (1997). Contributions of individual generators to loads and flows. IEEE Transactions on power systems, 12(1), 52-60. https://doi.org/10.1109/59.574923

  • Mellit, A., & Pavan, A. M. (2010). A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy, 84(5), 807–821. https://doi.org/10.1016/j.solener.2010.02.006

  • Morteza, A., Sadipour, M., Fard, R. S., Taheri, S., & Ahmadi, A. (2023). A dagging-based deep learning framework for transmission line flexibility assessment. IET Renewable Power Generation, 17(5), 1092–1105. https://doi.org/10.1049/rpg2.12663

  • Nedic, D. P., Dobson, I., Kirschen, D. S., Carreras, B. A., & Lynch, V. E. (2006). Criticality in a cascading failure blackout model. International Journal of Electrical Power and Energy Systems, 28(9), 627–633. https://doi.org/10.1016/j.ijepes.2006.03.006

  • Rashid, M. H., Rashid, M. H., & Rashid, M. H. (2005). SPICE for power electronics and electric power. CRC Press. https://doi.org/10.1201/9781420026429

  • Reddy, B. S., & Chatterjee, D. (2016). Performance evaluation of high temperature high current conductors. IEEE Transactions on Dielectrics and Electrical Insulation, 23(3), 1570–1579. https://doi.org/10.1109/TDEI.2016.005529

  • Scholkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New support vector algorithms. Neural Computation, 12(5), 1207–1245. https://doi.org/10.1162/089976600300015565

  • Steidl, G., Didas, S., & Neumann, J. (2005). Relations between higher order TV regularization and support vector regression. In R. Kimmel, N. A. Sochen & J. Weickert (Eds.) Lecture Notes in Computer Science (pp. 515–527). Springer. https://doi.org/10.1007/11408031_44

  • Vapnik, V. N. (1999). The nature of statistical learning theory. Springer.

  • Wang, Y., Mo, Y., Wang, M., Zhou, X., Liang, L., & Zhang, P. (2018). Impact of conductor temperature time-space variation on the power system operational state. Energies, 11(4), Article 760. https://doi.org/10.3390/en11040760

  • Wei, Y., & Gao, X. (2021). Transmission line galloping prediction based on GA-BP-SVM combined method. IEEE Access, 9, 107680–107687. https://doi.org/10.1109/ACCESS.2021.3100345

  • Yan, Z., Wang, Y., & Liang, L. (2017). Analysis on ampacity of overhead transmission lines being operated. Journal of Information Processing Systems, 13(5), 1358–1371. https://doi.org/10.3745/JIPS.04.0044

  • Yao, R., Huang, S., Sun, K., Liu, F., Zhang, X., & Mei, S. (2016). A multi-timescale quasi-dynamic model for simulation of cascading outages. IEEE Transactions on Power Systems, 31(4), 3189–3201. https://doi.org/10.1109/TPWRS.2015.2466116

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles