e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 44 (1) Feb. 2021 / JTAS-2140-2020


Evaluation of Antagonism Activity and Control of Vibrio alginolyticus in Artemia Culture Using Mixed Probiotic

Mei Yun Beryl Chean, Puvaneswari Puvanasundram, Jasmin Yaminudin and Murni Karim

Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 1, February 2021


Keywords: Antagonism, Artemia, biofilm formation, mixed probiotic, Vibrio alginolyticus

Published on: 24 Febuary 2021

Supplementation with mixed probiotic in aquaculture has been proven to benefit the hosts as disease resistance tool. In this study, a mixed probiotic which consisted of three isolated strains (Lysinibacillus fusiformis strain SPS11, A2, and Bacillus megaterium strain I24) was formulated for the in vitro assays against Vibrio alginolyticus and in vivo preliminary study towards Artemia nauplii. These strains showed antagonism activities against V. alginolyticus in in vitro assay. An increase in biofilm formation of this mixed probiotic was observed which indicated that the strains could work synergistically with each other to confer benefits to the hosts. Enrichment of Artemia nauplii with the formulated mixed probiotic was done to investigate its role in enhancing resistance against the V. alginolyticus. Artemia nauplii were cultured in two different concentrations of mixed probiotic (106 and 108 CFU mL-1) and challenged via immersion method. The mixed probiotic at both concentrations resulted in significantly higher survival of Artemia compared to the challenged group with no probiont added (106 CFU mL-1, 65.00 ± 0.00 % and 108 CFU mL-1, 77.50 ± 3.53 %). Significant reduction of Vibrio loads was observed in Artemia and its culture water supplemented with mixed probiotic at 108 CFU mL-1 whereas there was no reduction of Vibrio at 106 CFU mL-1. This study suggests that the usage of formulated mixed probiotic at high concentration (108 CFU mL-1) as opposed to single-strain probiotic can confer protection against V. alginolyticus infection towards Artemia.

  • Abideen, S., & Babuselvam, M. (2014). Antagonistic activity of Lysinibacillus fusiformis n 139 strain isolated from marine fish Triacanthus strigilifer and genome sequence. International Journal of Current Microbiology and Applied Sciences, 3(4), 1066-1072.

  • Adebo, O., Njobeh, P., & Mavumengwana, V. (2016). Degradation and detoxification of AFB1 by Staphylocococcus warneri, Sporosarcina sp. and Lysinibacillus fusiformis. Food Control, 68, 92-96.

  • Ahmad, V., Muhammad Zafar Iqbal, A., Haseeb, M., & Khan, M. (2014). Antimicrobial potential of bacteriocin producing Lysinibacillus jx416856 against foodborne bacterial and fungal pathogens, isolated from fruits and vegetable waste. Anaerobe, 27, 87-95.

  • Al-Thubiani, A., Maher, Y., Fathi, A., Abourehab, M., Alarjah, M., Khan, M., & Al- Ghamdi, S. (2018). Identification and characterization of a novel antimicrobial peptide compound produced by Bacillus megaterium strain isolated from oral microflora. Saudi Pharmaceutical Journal, 26(8), 1089-1097.

  • Amin, M., Rakhisi, Z., & Zarei Ahmady, A. (2015). Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties. Avicenna Journal of Clinical Microbiology and Infection, 2(1), 23233.

  • Boonthai, T., Vuthiphandchai, V., & Nimrat, S. (2011). Probiotic bacteria effects on growth and bacterial composition of black tiger shrimp (Penaeus monodon). Aquaculture Nutrition, 17(6), 634–644.

  • Bruhn, J. B., Gram, L., & Belas, R. (2007). Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. Applied and Environmental Microbiology, 73(2), 442-450.

  • Chauhan, A., & Rahul, S. (2019). Probiotics in aquaculture: A promising emerging alternative approach. Symbiosis, 77(2), 99-113.

  • Chiu, T., Kao, L., & Chen, M. (2013). Antibiotic resistance and molecular typing of Photobacterium damselae subsp. damselae, isolated from seafood. Journal of Applied Microbiology, 114(4), 1184-1192.

  • Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881–890.

  • Ferreira, M. G. P., Melo, F. P., Lima, J. P. V., Andrade, H. A., Severi, W., & Correia, E. S. (2017). Bioremediation and biocontrol of commercial probiotic in marine shrimp culture with biofloc. Latin American Journal of Aquatic Research, 45(1), 167–176.

  • Fingerman, M. (Ed.). (2003). Recent advances in marine biotechnology: Molecular genetics of marine organisms (Vol. 10). CRC Press.

  • Food and Agriculture Organization. (2018). The state of world fisheries and aquaculture 2018 - Meeting the sustainable development goals. FAO.

  • Gallegos-Monterrosa, R., Kankel, S., Götze, S., Barnett, R., Stallforth, P., & Kovács, Á. T. (2017). Lysinibacillus fusiformis M5 induces increased complexity in Bacillus subtilis 168 colony biofilms via hypoxanthine. Journal of Bacteriology, 199, e00204-17.

  • Giri, S. S., Sukumaran, V., & Oviya, M. (2013). Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish and Shellfish Immunology, 34(2), 660–666.

  • Guo, J.-J., Liu, K.-F., Cheng, S.-H., Chang, C.-I., Lay, J.-J., Hsu, Y.-O., Yang, J.-Y., & Chen, T.-I. (2009). Selection of probiotic bacteria for use in shrimp larviculture. Aquaculture Research, 40(5), 609–618.

  • Haq, M. B., Vijayasanthi, P., Vignesh, R., Shalini, R., Chakraborty, S., & Rajaram, R. (2012). Effect of probiotics against marine pathogenic bacteria on Artemia franciscana. Journal of Applied Pharmaceutical Science, 2(4), 38-43.

  • Interaminense, J. A., Vogeley, J. L., Gouveia, C. K., Portela, R. W., Oliveira, J. P., Andrade, H. A., Silvio, M. P., Roberta, B. S., Diego, S., & Bezerra, R. S. (2018). In vitro and in vivo potential probiotic activity of Bacillus subtilis and Shewanella algae for use in Litopenaeus vannamei rearing. Aquaculture, 488, 114–122.

  • Jafaryan, H., Mehdi, T. M., & Mohammad, M. N. (2010). The effects of probiotic Bacillus for promotion of growth and feeding parameters in beluga (Huso huso) larvae via feeding by bioencapsulated Artemia. Aquaculture, Aquarium, Conservation and Legislation, 3(4), 273-280.

  • Jasmin, M. Y., Wagaman, H., Yin, T. A., Ina-salwany, M. Y., Daud, H. M., & Karim, M. (2016). Screening and evaluation of local bacteria isolated from shellfish as potential probiotics against pathogenic Vibrios. Journal of Environmental Biology, 37(4), 801–809.

  • Kesarcodi-Watson, A., Kaspar, H., Lategan, M., & Gibson, L. (2008). Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture, 274(1), 1-14.

  • Kumar, S., Lekshmi, M., Parvathi, A., Nayak, B., & Varela, M. (2016). Antibiotic resistance in seafood-borne pathogens. In O. V. Singh (Ed.), Foodborne pathogens and antibiotic resistance (pp. 397-415). Wiley.

  • Lee, Y. K., & Salminen, S. (Eds.) (2009). Handbook of probiotics and prebiotics (2nd ed.). Wiley.

  • Liñan-Vidriales, M. A., Peña-Rodríguez, A., Tovar-Ramírez, D., Elizondo-González, R., Barajas-Sandoval, D. R., Ponce-Gracía, E. I., Rodríguez-Jaramillo, C., Rodríguez-Jaramillo, J. L., & Quiroz-Guzmán, E. (2020). Effect of rice bran fermented with Bacillus and Lysinibacillus species on dynamic microbial activity of Pacific white shrimp (Penaeus vannamei). Aquaculture, 531, 735958.

  • Liu, H., Li, Z., Tan, B., Lao, Y., Duan, Z., Sun, W., & Dong, X. (2014). Isolation of a putative probiotic strain S12 and its effect on growth performance, nonspecific immunity and disease-resistance of white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 41(2), 300-307.

  • Luis-Villaseñor, I. E., Macías-Rodríguez, M. E., Gómez-Gil, B., Ascencio-Valle, F., & Campa-Córdova, Á. I. (2011). Beneficial effects of four Bacillus strains on the larval cultivation of Litopenaeus vannamei. Aquaculture, 321(1-2), 136-144.

  • Marques, A., Dinh, T., Ioakeimidis, C., Huys, G., Swings, J., Verstraete, W., Dhont, J., Sorgeloos, P., & Bossier, P (2005). Effects of bacteria on Artemia franciscana cultured in different gnotobiotic environments. Applied and Environmental Microbiology, 71(8), 4307-4317.

  • Melnick, R., Suárez, C., Bailey, B., & Backman, P. (2011). Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao diseases. Biological Control, 57(3), 236-245.

  • Nimrat, S., Suksawat, S., Boonthai, T., & Vuthiphandchai, V. (2012). Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Veterinary Microbiology, 159(3-4), 443–450.

  • Parkouda, C., Thorsen, L., Compaoré, C., Nielsen, D., Tano-Debrah, K., & Jensen, J., Diawara, B., & Jakobsen, M. (2010). Microorganisms associated with Maari, a Baobab seed fermented product. International Journal of Food Microbiology, 142(3), 292-301.

  • Patra, S., & Mohamed, K. (2003). Enrichment of Artemia nauplii with the probiotic yeast Saccharomyces boulardii and its resistance against a pathogenic Vibrio. Aquaculture International, 11(5), 505-514.

  • Rengpipat, S., Rueangruklikhit, T., & Piyatiratitivorakul, S. (2008). Evaluations of lactic acid bacteria as probiotics for juvenile seabass Lates calcarifer. Aquaculture Research, 39(2), 134-143.

  • Rosland, N. A. (2018). Evaluation of potential probiotic bacteria for microalgae propagation and Artemia franciscana (Kellog, 1906) bioencapsulation. [Unpublished Master’s thesis]. Universiti Putra Malaysia.

  • Seenivasan, C., Saravana-Bhavan, P., Radhakrishnan, S., & Shanthi, R. (2012). Enrichment of Artemia nauplii with Lactobacillus sporogenes for enhancing the survival, growth and levels of biochemical constituents in the post larvae of the freshwater prawn Macrobrachium rosenbergii. Turkish Journal of Fisheries and Aquatic Sciences, 12(1).

  • Shefat, S. H. T. (2018). Probiotic strains used in aquaculture. International Research Journal of Microbiology, 7(2), 43-55. http:/

  • Skjermo, J., & Vadstein, O. (1999). Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture, 177(1-4), 333-343.

  • Tagg, J., & McGiven, A. (1971). Assay system for bacteriocins. Applied Microbiology, 21(5), 943.

  • Timmerman, H. M., Koning, C. J. M., Mulder, L., Rombouts, F. M., & Beynen, A. C. (2004). Monostrain, multistrain and multispecies probiotics — A comparison of functionality and efficacy. International Journal of Food Microbiology, 96(3), 219-233.

  • Touraki, M., Karamanlidou, G., Karavida, P., & Chrysi, K. (2012). Evaluation of the probiotics Bacillus subtilis and Lactobacillus plantarum bioencapsulated in Artemia nauplii against vibriosis in European sea bass larvae (Dicentrarchus labrax, L.). World Journal of Microbiology and Biotechnology, 28(6), 2425-2433.

  • Vary, P. S., Biedendieck, R., Fuerch, T., Meinhardt, F., Rohde, M., Deckwer, W.-D., & Jahn, D. (2007). Bacillus megaterium — From simple soil bacterium to industrial protein production host. Applied Microbiology and Biotechnology, 76(5), 957-967.

  • Verschuere, L., Rombaut, G., Sorgeloos, P., & Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64(4), 655-671.

  • Wang, J., Fan, Y., & Yao, Z. (2010). Isolation of a Lysinibacillus fusiformis strain with tetrodotoxin-producing ability from puffer fish Fugu obscurus and the characterization of this strain. Toxicon, 56(4), 640-643.

  • Wang, J., Woo, M., & Yan, C. (2017). Spot plating assay for the determination of survival and plating efficiency of Escherichia coli in sub-MIC levels of antibiotics. Journal of Experimental Microbiology and Immunology, 1, 26-29.

  • Xie, N., Zhou, T., & Li, B. (2011). Kefir yeasts enhance probiotic potentials of Lactobacillus paracasei H9: The positive effects of coaggregation between the two strains. Food Research International, 45(1), 394–401.

  • Yilmaz, M., Soran, H., & Beyatli, Y. (2006). Antimicrobial activities of some Bacillus spp. strains isolated from the soil. Microbiological Research, 161(2), 127-131.

  • Zabidi, N. A. (2018). Isolation and screening of bacteria from microalgae as potential probiont [Unpublished Bachelor’s thesis]. Universiti Putra Malaysia.

  • Zhao, W. (2014). Characterization of the probiotic mechanism of Phaeobacter gallaeciensis S4 against bacterial pathogens [Doctoral’s dissertation, University of Rhode Island]. DigitalCommons@URI.

  • Zorriehzahra, M. J., Delshad, S. T., Adel, M., Tiwari, R., Karthik, K., Dhama, K., & Lazado, C. C. (2016) Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: A review. Veterinary Quarterly, 36(4), 228–241.

  • Zoumpourtikoudi, V., Pyrgelis, N., Chatzigrigoriou, M., Tasakis, R. N., and Touraki, M. (2018). Interactions among yeast and probiotic bacteria enhance probiotic properties and metabolism offering augmented protection to Artemia franciscana against Vibrio anguillarum. Microbial Pathogenesis, 125, 497-506.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Recent Articles