Home / Regular Issue / JTAS Vol. 44 (2) May. 2021 / JTAS-2178-2020

 

Diversity, Relative Abundance, and Functional Genes of Intestinal Microbiota of Tiger Grouper (Epinephelus fuscoguttatus) and Asian Seabass (Lates calcarifer) Reared in A Semi-Closed Hatchery in Dry and Wet Seasons

Jumria Sutra, Hamidu Saadu, Amalia Mohd. Hashim, Mohd Zamri Saad, Ina Salwany Md Yasin and Mohammad Noor Azmai Amal

Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 2, May 2021

DOI: https://doi.org/10.47836/pjtas.44.2.06

Keywords: Asian seabass, marine fish hatchery, metagenomics, tiger grouper

Published on: 28 May 2021

Grouper and Asian seabass are among the economically important cultured marine fish in Malaysia. However, fry productions in large scale tend to introduce stress that changes the fish microbiota and increases susceptibility to diseases. Currently, high-throughput sequencing is used to study fish microbiota and their respective gene functions. In this study, we investigate the diversity, abundance and functional genes of intestinal microbiota of tiger grouper and Asian seabass that were reared in a semi-closed hatchery during dry and wet seasons. Intestinal samples were collected from tiger grouper and Asian seabass of different sizes before proceeded to DNA extraction. The extracted DNA were then subjected to 16S rRNA gene amplicon sequencing using the Illumina Miseq platform targeting V3 and V4 regions for determination of the bacterial diversity, abundance and functional genes in both seasons. The results revealed that intestinal microbiota of Asian seabass were dominated by the phylum Proteobacteria and order Vibrionales in both seasons. Meanwhile, intestinal microbiome of tiger groupers were shifted from domination of phylum Firmicutes and order Clostridiales in dry season to Proteobacteria and order Lactobacillales in wet season. PICRUSt analysis revealed that the functional genes that were dominantly present were the genes encoded for metabolism, genetic information processing, environmental information processing, cellular process and human diseases. Remarkably, SIMPER analysis showed several potential metagenomics biomarker genes in dry and wet seasons. This study revealed the importance of utilizing amplicon metagenomics approaches in microbiome studies for better identification of the microbial profiling in aquaculture systems.

  • Abdullah, A., Ramli, R., Ridzuan, M. S. M., Murni, M., Hashim, S., Sudirwan, F., Abdullah, S. Z., Mansor, N. N., Amira, S., Saad, M. Z., & Amal, M. N. A. (2017). The presence of Vibrionaceae, Betanodavirus and Iridovirus in marine cage-cultured fish: Role of fish size, water physicochemical parameters and relationships among the pathogens. Aquaculture Reports, 7, 57-65. https://doi.org/10.1016/j.aqrep.2017.06.001

  • Abia, A. L. K., Alisoltani, A., Keshri, J., & Ubomba-Jaswa, E. (2018). Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. Science of the Total Environment, 616-617, 326-334. https://doi.org/10.1016/j.scitotenv.2017.10.322

  • Ahmad, A. K., Amal, M. N. A., Saad, M. Z., Murni, M., Abdullah, A., Mustafa, S., & Yusof, N. H. N. (2019). Prevalence, risk factors and transmission of Nervous Necrosis Virus in a hatchery producing hybrid grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus) fry. Pertanika Journal of Tropical Agricultural Science, 42(1), 125-138.

  • Alonso, S., Castro, M. C., Berdasco, M., de la Banda, I. G., Moreno-Ventas, X., & de Rojas, A. H. (2019). Isolation and partial characterization of lactic acid bacteria from the gut microbiota of marine fishes for potential application as probiotics in aquaculture. Probiotics and Antimicrobial Proteins, 11(2), 569-579. https://doi.org/10.1007/s12602-018-9439-2

  • Amal, M. N.A., Zamri-Saad, M., Zulkafli, A. R., Siti-Zahrah, A., Misri, S., Ramley, B., Shahidan, H., & Sabri, M. Y. (2010). Water thermocline confirms susceptibility of tilapia cultured in lakes to Streptococcus agalactiae. Journal of Animal and Veterinary Advances, 9(22), 2811-2817. http://doi.org/10.3923/javaa.2010.2811.2817

  • Amalina, N. Z., Santha, S., Zulperi, D., Amal, M. N. A., Yusof, M. T., Zamri-Saad, M., & Ina-Salwany, M. Y. (2019). Prevalence, antimicrobial susceptibility and plasmid profiling of Vibrio spp. isolated from cultured groupers in Peninsular Malaysia. BMC Microbiology, 19(1), 251. https://doi.org/10.1186/s12866-019-1624-2

  • Barkham, T., Zadoks, R. N., Amal, M. N. A., Baker, S., Bich, V. T. N., Chalker, V., Chau, M. L., Dance, D., Deepak, R. N., van Doorn, H. R., Gutierrez, R. A., Holmes, M. A., Huong, L. N. P., Koh, T. H., Martins, E., Mehershahi, K., Newton, P., Ng, L. C., Phuoc, N. N. … Chen, S. L. (2019). One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia. PLoS Neglected Tropical Diseases, 13(6), e0007421. https://doi.org/10.1371/journal.pntd.0007421

  • Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecology Monographs, 27(4), 325-349. https://doi.org/10.2307/1942268

  • Dang, H., Li, T., Chen, M., & Huang, G. (2008). Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Applied and Environmental Microbiology, 74(1), 52-60. https://doi.org/10.1128/AEM.01400-07

  • de Bruijn, I., Liu, Y., Wiegertjes, G. F., & Raaijmakers, J. M. (2018). Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiology Ecology, 94(1), fix161. https://doi.org/10.1093/femsec/fix161

  • Debroas, D., Humbert, J. F., Enault, F., Bronner, G., Faubladier, M., & Cornillot, E. (2009). Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget – France). Environmental Microbiology, 11(9), 2412-2424. https://doi.org/10.1111/j.1462-2920.2009.01969.x

  • Dehler, C. E., Secombes, C. J., & Martin, S. A. (2017a). Environmental and physiological factors shape the gut microbiota of Atlantic salmon parr (Salmo salar L.). Aquaculture, 467, 149-157. https://doi.org/10.1016/j.aquaculture.2016.07.017

  • Dehler, C. E., Secombes, C. J., & Martin, S. A. (2017b). Seawater transfer alters the intestinal microbiota profiles of Atlantic salmon (Salmo salar L.). Scientific Reports, 7, 13877. https://doi.org/10.1038/s41598-017-13249-8

  • Di Maiuta, N., Schwarzentruber, P., Schenker, M., & Schoelkopf, J. (2013). Microbial population dynamics in the faeces of wood-eating loricariid catfishes. Letters in Applied Microbiology, 56(6), 401-407. https://doi.org/10.1111/lam.12061

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194-2200. https://doi.org/10.1093/bioinformatics/btr381

  • Fuellen, G., Spitzer, M., Cullen, P., & Lorkowski, S. (2005). Correspondence of function and phylogeny of ABC proteins based on an automated analysis of 20 model protein data sets. Proteins, 61(4), 888-899. https://doi.org/10.1002/prot.20616

  • Gao, Y. M., Zou, K. S., Zhou, L., Huang, X. D., Li, Y. Y., Gao, X. Y., & Zhang, X. Y. (2020). Deep insights into gut microbiota in four carnivorous coral reef fishes from the South China Sea. Microorganisms, 8(3), 426. https://doi.org/10.3390/microorganisms8030426

  • Givens, C. E., Ransom, B., Bano, N., & Hollibaugh, J. T. (2015). Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Marine Ecology Progress Series, 518, 209-223. https://doi.org/10.3354/meps11034

  • Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S. K., Sodergren, E., Methe, B., DeSantis, T. Z., The Human Microbiome Consortium, H. M., Petrosino, J. F., Knight, R., & Birren, B. W. (2011). Chimeric 16S rRNA sequence formation and detection in sanger and 454-pyrosequenced PCR amplicons. Genome Research, 21(3), 494-504. https://doi.org/10.1101/gr.112730.110

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1-9.

  • Hennersdorf, P., Mrotzek, G., Abdul-Aziz, M. A., & Saluz, H. P. (2016). Metagenomic analysis between free-living and cultured Epinephelus fuscoguttatus under different environmental conditions in Indonesian waters. Marine Pollution Bulletin, 110(2), 726-734. https://doi.org/10.1016/j.marpolbul.2016.05.009

  • Hewson, I., Paerl, R. W., Tripp, H. J., Zehr, J. P., & Karl, D. M. (2009). Metagenomic potential of microbial assemblages in the surface waters of the central Pacific Ocean tracks variability in oceanic habitat. Limnology and Oceanography, 54(6), 1981-1994. https://doi.org/10.4319/lo.2009.54.6.1981

  • Huang, F., Pan, L., Lv, N., & Tang, X. (2017). Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification–aerobic denitrification. Journal of Bioscience and Bioengineering, 124(5), 564-571. https://doi.org/10.1016/j.jbiosc.2017.06.008

  • Huang, P., Zhang, Y., Xiao, K., Jiang, F., Wang, H., Tang, D., & Liu, H. (2018). The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome, 6, 211. https://doi.org/10.1186/s40168-018-0590-5

  • Ismail, M. S., Syafiq, M. R., Siti-Zahrah, A., Fahmi, S., Shahidan, H., Hanan, Y., Amal, M. N. A., & Zamri-Saad, M. (2017). The effect of feed-based vaccination on tilapia farm endemic for streptococcosis. Fish and Shellfish Immunology, 60, 21-24. https://doi.org/10.1016/j.fsi.2016.11.040

  • Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1. https://doi.org/10.1093/nar/gks808

  • Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., & Beiko, R. G. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814-821. https://doi.org/10.1038/nbt.2676

  • Little, D. C., Newton, R. W., & Beveridge, M. C. M. (2016). Aquaculture: A rapidly growing and significant source of sustainable food? Status, transitions and potential. Proceedings of the Nutrition Society, 75(3), 274-286. https://doi.org/10.1017/S0029665116000665

  • Lyons, P. P., Turnbull, J. F., Dawson, K. A., & Crumlish, M. (2015). Exploring the microbial diversity of the distal intestinal lumen and mucosa of farmed rainbow trout Oncorhynchus mykiss (Walbaum) using next generation sequencing (NGS). Aquaculture Research, 48(1), 77-91. https://doi.org/10.1111/are.12863

  • Magoč, T., & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21), 2957-2963. https://doi.org/10.1093/bioinformatics/btr507

  • Martínez-Porchas, M., & Vargas-Albores, F. (2017). Microbial metagenomics in aquaculture: A potential tool for a deeper insight into the activity. Reviews in Aquaculture, 9(1), 42-56. https://doi.org/10.1111/raq.12102

  • Mohamad, N., Amal, M. N. A., Saad, M. Z., Yasin, I. S. M., Zulkiply, N. A., Mustafa, M., & Nasruddin, N. S. (2019a). Virulence-associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cultured marine fishes in Malaysia. BMC Veterinary Research, 15(1), 176. https://doi.org/10.1186/s12917-019-1907-8

  • Mohamad, N., Amal, M. N. A., Yasin, I. S. M., Saad, M. Z., Nasruddin, N. S., Al-saari, N., Mino. S., & Sawabe, T. (2019b). Vibriosis in cultured marine fishes: A review. Aquaculture, 512, 734289. https://doi.org/10.1016/j.aquaculture.2019.734289

  • Mohamad, N., Mustafa, M., Amal, M. N. A., Saad, M. Z., Md Yasin, I. S., & Al-saari, N. (2019c). Environmental factors associated with the presence of Vibrionaceae in tropical cage-cultured marine fishes. Journal of Aquatic Animal Health, 31(2), 154-167. https://doi.org/10.1002/aah.10062

  • Naimi, T. S., LeDell, K. H., Como-Sabetti, K., Borchardt, S. M., Boxrud, D. J., Etienne, J., & Danila, R. N. (2003). Comparison of community- and health care–associated methicillin-resistant Staphylococcus aureus infection. Journal of the American Medical Association, 290(22), 2976–298. https://doi.org/10.1001/jama.290.22.2976

  • Octavia, S., & Lan, R. (2014). The family Enterobacteriaceae. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The prokaryotes (pp. 223-286). Springer. https://doi.org/10.1007/978-3-642-38922-1_167

  • Othman, M. F., Hashim, M., Eim, Y. M., Amal, M. N. A., Ikhsan, N., Chong, H. G., & Merican, Z. (2017). Transforming the aquaculture industry in Malaysia. World Aquaculture, 48(2), 16-23.

  • Qu, A., Brulc, J. M., Wilson, M. K., Law, B. F., Theoret, J. R., Joens, L. A., & Nelson, K. E. (2008). Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLOS One, 3(8), e2945. https://doi.org/10.1371/journal.pone.0002945

  • Ray, C. (2016). Characterization of the gut and skin microbiomes of wild-caught fishes from Lake Guntersville, Alabama [Master’s thesis, Auburn University]. Auburn University Electronic Theses and Dissertations. https://etd.auburn.edu/handle/10415/5314

  • Ringø, E., Strøm, E., & Tabachek, J. A. (1995). Intestinal microflora of salmonids: A review. Aquaculture Research, 26(10), 773-789. https://doi.org/10.1111/j.1365-2109.1995.tb00870.x

  • Roeselers, G., Mittge, E. K., Stephens, W. Z., Parichy, D. M., Cavanaugh, C. M., Guillemin, K., & Rawls, J. F. (2011). Evidence for a core gut microbiota in the zebrafish. The ISME Journal, 5(10), 1595-1608. https://doi.org/10.1038/ismej.2011.38

  • Roquigny, R., Mougin, J., Le Bris, C., Bonnin-Jusserand, M., Doyen, P., & Grard, T. (2020). Characterization of the marine aquaculture microbiome: A seasonal survey in a seabass farm. Aquaculture, 531, 735987. https://doi.org/10.1016/j.aquaculture.2020.735987

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), 1-18. https://doi.org/10.1186/gb-2011-12-6-r60

  • Sullam, K. E., Essinger, S. D., Lozupone, C. A., O’connor, M. P., Rosen, G. L., Knight, R. O. B., & Russell, J. A. (2012). Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Molecular Ecology, 21(13), 3363-3378. https://doi.org/10.1111/j.1365-294X.2012.05552.x

  • Tarnecki, A. M., Burgos, F. A., Ray, C. L., & Arias, C. R. (2017). Fish intestinal microbiome: Diversity and symbiosis unravelled by metagenomics. Journal of Applied Microbiology, 123(1), 2-17. https://doi.org/10.1111/jam.13415

  • Walter, J. (2008). Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Applied and Environmental Microbiology, 74(16), 4985-4996. https://doi.org/10.1128/AEM.00753-08

  • Wang, L., Zhang, J., Li, H., Yang, H., Peng, C., Peng, Z., & Lu, L. (2018). Shift in the microbial community composition of surface water and sediment along an urban river. Science of the Total Environment, 627, 600-612. https://doi.org/10.1016/j.scitotenv.2018.01.203

  • Wu, S., Gao, T., Zheng, Y., Wang, W., Cheng, Y., & Wang, G. (2010). Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquaculture, 303(1-4), 1-7. https://doi.org/10.1016/j.aquaculture.2009.12.025

  • Wu, S., Wang, G., Angert, E. R., Wang, W., Li, W., & Zou, H. (2012). Composition, diversity, and origin of the bacterial community in grass carp intestine. PLOS One, 7(2), e30440. https://doi.org/10.1371/journal.pone.0030440

  • Xu, Q., Black, W. P., Nascimi, H. M., & Yang, Z. (2011). DifA, a methyl-accepting chemoreceptor protein-like sensory protein, uses a novel signaling mechanism to regulate exopolysaccharide production in Myxococcus xanthus. Journal of Bacteriology, 193(3), 759-767. https://doi.org/10.1128/JB.00944-10

  • Zarkasi, K. Z., Abell, G. C., Taylor, R. S., Neuman, C., Hatje, E., Tamplin, M. L., & Bowman, J. P. (2014). Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system. Journal of Applied Microbiology, 117(1), 18-27. https://doi.org/10.1111/jam.12514

  • Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2013). PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30(5), 614-620. https://doi.org/10.1093/bioinformatics/btt593

  • Zhang, M., Sun, Y., Liu, Y., Qiao, F., Chen, L., Liu, W. T., & Li, E. (2016). Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. Aquaculture, 454, 72-80. https://doi.org/10.1016/j.aquaculture.2015.12.014

  • Zhang, X., Li, L., Butcher, J., Stintzi, A., & Figeys, D. (2019). Advancing functional and translational microbiome research using meta-omics approaches. Microbiome, 7(1), 154. https://doi.org/10.1186/s40168-019-0767-6

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2178-2020

Download Full Article PDF

Share this article

Recent Articles